Essay 26

A Multilevel Secure Object-
Oriented Data Model

Sushil Jajodia, Boris Kogan, and Ravi S. Sandhu

Recently, several security models have appeared in the literature deal-
ing with mandatory access controls in object-oriented databases. While
some of them are of considerable interest and merit (see the later section
“Review of relevant research” for a discussion), they seem to lack intuitive
appeal because they do not appear to model security in a way that takes
full advantage of the object-oriented paradigm. Our goal in this essay is
to construct a database security model for mandatory access controls
that dovetails with the object-oriented data model in a natural way. The
result, we hope, is a set of principles to help design and implement secu-
rity policies in object-oriented database management systems in a clear
and concise fashion.

The object-subject paradigm of Bell and LaPadula [BELL76, DENN82] is
widely used in work on mandatory access controls. An object is under-
stood to be a data file or, at an abstract level, a data item. A subject is an
active process that can request access to objects. Every object is assigned
a classification, and every subject a clearance. Classifications and clear-
ances are collectively referred to as security levels (or classes). Security
levels are partially ordered. A subject is allowed a read access to an ob-
ject only if the former’s clearance is equivalent to or higher (in the partial
order) than the latter’s classification. A subject is allowed a write access
to an object only if the former’s clearance is equivalent to or lower than
the latter’s classification. Since a system may not be secure even if it al-
ways enforces the two Bell-LaPadula restrictions correctly, a secure sys-
tem must guard against not only the direct revelation of data but also
violations that produce illegal information flows through indirect means,
including covert channels [DENN82]. The above restrictions are intended
to ensure that there is no flow of information from high objects to low
subjects. For otherwise, since subjects can represent users, a breach of
security occurs wherein users get access to information for which they
have not been cleared.

596 Information Security

Most security models for mandatory access controls are based on the
traditional Bell-LaPadula paradigm. While this paradigm has proven to
be quite effective for modeling security in operating systems as well as
relational databases, it appears somewhat forced when applied to object-
oriented systems. The problem is that the notion of object in the object-
oriented data model does not correspond to the Bell-LaPadula notion of
object. The former combines the properties of a passive information re-
pository, represented by attributes and their values, with the properties
of an active agent, represented by methods and their invocations. Thus,
the object of the object-oriented data model can be thought of as the ob-
ject and the subject of the Bell-LaPadula paradigm fused into one.

Continuing the examination of the object-oriented model from the secu-
rity perspective, one arrives at the realization that information flow in
this context has a very concrete and natural embodiment in the form of
messages and their replies. Moreover, taking into account encapsulation,
a cardinal property of object-oriented systems, messages can be consid-
ered the only instrument of information flow.

The main elements of our model can be sketched out as follows. The
system consists of objects (in the object-oriented sense rather than the
Bell-LaPadula sense). Every object is assigned a unique classification.
Objects can communicate — and thereby exchange information — only
by sending messages and replies among themselves. However, messages
are not allowed to flow directly from one object to another. Instead, every
message or reply is intercepted by the message filter, a system element
charged with implementing security policies. The message filter decides,
upon examining a given message (or reply) and the classifications of the
sender and receiver, what action is appropriate. It may

¢ let the message go through unaltered,

¢ completely reject the message (for example, when a low object
sends a message to a high object requesting the value of one of the
latter’s attributes), or

¢ take some other action (such as restricting the method invocation
which processes the message to be “memoryless,” as will be dis-
cussed later).

The principal advantages of the proposed model are its compatibility with
the object-oriented data model and the simplicity and conceptual clarity
with which mandatory security policies are stated and enforced.

One comment is in order at this point. Even though all objects are sin-
gle-level (in the sense of having a unique classification assigned to the
entire object and not assigning any classifications to individual attributes
or methods), this does not preclude the possibility of modeling multilevel
entities by means of multiple single-level objects, as will be demonstrated
later.

A Multilevel Secure Object-Oriented Data Model 597

The organization of this essay is as follows. We begin by introducing
our basic object-oriented data model and then enhance this basic model
by adding to it the elements needed for security. We discuss how our se-
curity model handles information flow due to inheritance in a class hier-
archy. Then we show how we can represent multilevel entities in a
security model in which all objects are single-level. After a brief review of
related research, we give our conclusions and discuss our future work.

Object-oriented data model

An object-oriented database is a collection of objects communicating via
messages and their replies. Objects are of two types: primitive and non-
primitive. We postulate a finite set of domains D;, D,, ..., D,. Let D be the
union of the domains augmented with a special element nil (whose pur-
pose we explain later). Every element of D is referred to as a primitive ob-

Ject.
A nonprimitive object o is defined by its unique identifier i, an ordered
set a = (a;, ..., a;) of attribute names, an ordered set v = (v;, ..., v;) of

corresponding values, and a set |1 of methods. A value is either a primi-
tive object or an identifier. (A more general object model would also per-
mit a value to be a set of identifiers and/or primitive values. However, for
simplicity of exposition, we forego this generalization in this essay. The
results developed here do not depend on this simplification.)

We will use the following notation in the rest of the essay. For an object
o, i(0) denotes its unique identifier, a(o) denotes its attributes, v(o) de-
notes the corresponding values, and [(0) denotes its methods.

A message g consists of a message name h, an ordered set p = (py, ...,
pi), k=2 0, of primitive objects or object identifiers called the message pa-
rameters, and a reply r. Similar to the notation used for objects, we let
h(g), p(g), and r(g) denote the name, the parameter list, and the reply
for message g, respectively.

Each object o has an interface f, that determines which messages o re-
sponds to. Moreover, the interface determines which particular method,
out of the set of methods H(o) defined for object o, is to be invoked, de-
pending on the name of the given message.

An object will invoke one of its methods in response to a message re-
ceived from another object.! A method invocation can, in turn, carry out
one or more of the following actions:

1. directly access an attribute belonging to the object (read or change
its value),
2. invoke other methods belonging to the object,

1f an object cannot find a method to process this particular message, we as-
sume there is a default failure method that returns an appropriate reply.

598 Information Security

3. send a message to another object, or
4. create a new object, eventually returning a reply to the source of
the message.

An object sends a message g by invoking a system primitive SEND(g, 1),
where i is the identifier of the receiver object. The reply r(g) is computed
by the method activated in the receiver upon the arrival of g there and
returned to the sender. As we shall see in the next section, sometimes
the security component of the system will have to interfere in the matter
of computing r(g) (particularly to ensure that this computation is “memo-
ryless” if so required by security considerations).

There is a special type of object, called user object. A user object repre-
sents a user session with the system. User objects can be created only by
the system, at login time. User objects differ from regular objects in that,
in addition to being able to invoke methods in response to messages, they
can also invoke methods spontaneously. The notion of spontaneous
method invocation may seem rather arbitrary at first. It is, however, nec-
essary to avoid running into a version of the chicken-or-the-egg paradox:
Namely, if a message can be sent only through a method invocation (see
property 3 of method invocations) and if a method can be activated only
by a message received from another object, then how does any processing
in such a system ever get initiated? (One has to insist that either the egg
or the chicken comes first.) In reality, we want a user to be able to initi-
ate a system activity, for example, by typing a string of characters on the
keyboard. This would serve as a signal for the corresponding user object
to initiate a method. We choose to think of this as a “spontaneous” ini-
tiation, because the keyboard and any signals that it sends are external
to our model.

Objects are used to model real-world entities. This is done by associat-
ing properties, or facets, of an entity with attributes of the corresponding
object.? The attribute values are, then, instantiations of those properties.
For instance, a country can be represented in a geographic object-
oriented database by an object o where a(o) = (COUNTRY_NAME,
POPULATION, CAPITAL, NATIONAL_FLAG, FORM_OF_GOVERNMENT)
and v(o) = (“Albania”, 117, i(0;), i(0y), i(03)). The values of the first and
second attributes are a string and an integer, respectively. The values of
the rest of the attributes are references to other objects that, in turn, de-
scribe the capital, the national flag, and the form of government of the
nation Albania.

Note that an object’s methods, unlike its attributes, do not have coun-
terparts in the real-world entity modeled by the object. The purpose of
methods is quite different. It is to provide support for manipulation of

2More generally, as we will see later, a single entity may be modeled by more
than one object.

A Multilevel Secure Object-Oriented Data Model 599

objects, including the basic database functions of querying and updating
objects.

A realistic object-oriented model should also contain the notion of con-
straints. For instance, an attribute of an object may be allowed to as-
sume values only from a restricted subset of domains or object
identifiers. To simplify the exposition, we choose to disregard the issue of
constraints in this essay. However, it is a conceptually simple matter to
incorporate this notion in our secure data model.

Object-oriented security model

We gave our earlier informal exposition of our security model in terms
of objects with unique security-level assignments exchanging messages
subject to some security constraints. This section is devoted to develop-
ing a formal model of object-oriented security, in accordance with this
general idea.

Security levels and information flow. The system consists of a set O
of objects and a partially ordered set S of security levels with ordering
relation <. A level S; U Sis said to be dominated by another level S; U S,
this being denoted by S;< S;, if i = jor S; < S;. For two levels S; and S; that
are unordered by <, we write S; <> S;.

There is a total function L: O - S, called the security classification
function. In other words, every object o has a unique security level L(o)
associated with it.

Characterization of information flows. The main goal of a security
policy concerned with confidentiality is to control the flow of information
among objects. More specifically, information can legally flow from an
object o; to an object oy if and only if L(o;) < L(o). All other information
flows are considered illegal.

In the Bell-LaPadula model this objective is achieved by prohibiting
read-ups and write-downs. That is, a subject is allowed to read an object
only if the security level of the subject dominates the security level of the
object. Similarly, a subject is allowed to update an object only if the secu-
rity level of the former is dominated by that of the latter.

In our model, due to the property of encapsulation, information trans-
fer between objects can take place either

1. when a message is passed from one object to another, or
2. when a new object is created.

In the first case, information can flow in both directions: from the sender
to the receiver and back. The forward flow is carried through the list of

600 Information Security

parameters contained in the message, and the backward flow through
the reply. In the second case, information flows only in the forward di-
rection: from the creating object to the created one — for example, by
means of supplying attribute values for the new object.

A transfer of information does not necessarily occur every time a mes-
sage is passed. An object acquires information by changing its internal
state, that is, by changing the values of some of its attributes. Thus, if no
such changes occur as a result of a method invocation in response to a
message, then no information has been transferred. In such cases we can
say that the forward flow has been ineffective. This situation is analogous
to taking pictures with an unloaded camera. The information in the form
of light is flowing into the camera but not being retained there.

Similarly, if the reply of a message is nil, the backward flow has been
ineffective. To eliminate the information channel associated with the re-
ceiver object’s security level being dynamically changed (in which case
the sender can get back a sequence of nil and non-nil replies if it repeat-
edly sends messages to the same object), we have to require that all secu-
rity-level assignments be static. That is, the level associated with an
object at creation time cannot be changed.3 If, however, the security level
of the real-world entity that the object models must be changed, then a
new object has to be created. The new object will be exactly like the one
that it replaced, except for the new security level to reflect the desired
change.

We say that a transitive flow from an object o, to an object o, occurs
when there is a flow from o, to a third object o; and from o5 to o,.

All types of flows discussed until now can be termed direct flows. Now,
consider what happens when an object 0, sends a message g; to another
object 0,, and o, does not change its internal state as a result of receiv-
ing g;, but instead sends a message g, to a third object o;. Further, sup-
pose that p(g,) contains information derived from message g; (for
example, by copying some parameters of g; to g,). If, then, the invocation
of f,, (h(g;)) results in updating oy’s state, a transfer of information has
taken place from o; to o;. There is no message exchange between o; and
03, nor was o; created by o;; therefore, this flow cannot be considered
direct. Moreover, there may or may not be a flow from o; to o,; therefore,
this is not necessarily a transitive flow either. This is an instance of what
we call an indirect flow of information. Note that an indirect flow can in-
volve more than three objects. For example, instead of updating its state,
0; could send a message to a fourth object that would result in updating
the latter’s state.

SThis is similar to the tranquillity requirement in the Bell-LaPadula model,
whereby the security labels on subjects and objects cannot change [DENNS82].

A Multilevel Secure Object-Oriented Data Model 601

Both direct and indirect illegal flows of information should be prevented
(this will also account for all transitive flows) if the system is to be se-
cure.

Primitive messages. We assume that access to internal attributes,
object creation (creation by an object of an instance of itself), and invo-
cation of internal methods are all effected by having an object send a
message to itself.* We now define three built-in messages for that pur-
pose. First, however, it is necessary to modify the definition of a message
as follows. A message g consists of a message name h, an ordered set p =
(P15 ---» Px), k2 0, of message parameters where a p; can be a primitive
object or an object identifier or a security level, and a reply r. (The differ-
ence, with respect to our earlier definition, is that now a parameter can
be a method, an attribute name, or a security level in addition to the pre-
vious cases of a primitive value or an object identifier.)

The three primitive messages can now be defined as follows:>

¢ A read message is a message sent by an object o to itself defined as
g = (READ, (aj), r) where a; U a(o). A read message results in
binding r to the value of attribute a;. If this cannot be done, say,
because there is no attribute a;, r is returned as FAILURE (which
is a reserved symbol with obvious significance).

¢ A write message is a message sent by an object o to itself defined as
g = (WRITE, (a;, v)), r) where a; U a(o). The effect of sending a write
message is an update of attribute a; with value v; The reply r is
either SUCCESS or FAILURE (SUCCESS, like FAILURE, is a re-
served symbol with obvious significance).

e Finally, a create message is defined as g = (CREATE, (v, ..., Uy, S)),
r) where p is a list of attribute values, v, ..., v,, appended with a
security level S;. When sent by an object o to itself, a create mes-
sage results in a new object being created. This new object is as-
signed an identifier i by the system. The object inherits attributes

4There are existing object-oriented database systems (for example, GemStone)
that, in fact, actually use this kind of implementation. At the same time it is im-
portant to note that our model is a conceptual one telling us what needs to be
done, rather than how it will actually be implemented. A correct implementation
must demonstrate that it satisfies the model’s requirements, even though it may
do so without mimicking each aspect of the model action for action.

SIn reality, we would need additional primitive messages in a practical system.
The three primitives identified here suffice to illustrate the main ideas. Additional
primitive messages would be handled in much the same way. In particular, we
have not included a delete primitive operation. Delete can be regarded as an ex-
treme form of write, and essentially requires the same kind of security mediation
as write.

602 Information Security

and methods from o. The attributes are initialized with the values
vy, ..., Ux. The new object is assigned security level S;, as specified
in g. If the creation is successful, the identifier i is returned to o as
r. Otherwise, FAILURE is returned.

Message-filtering algorithm. The message filter is a security element
of the system whose goal is to recognize and prevent illegal information
flows. The message filter intercepts every message sent by any object in
the system and, based on the security levels of the sender and receiver,
as well as some auxiliary information, decides how to handle the mes-
sage. In other words, the message filter is the reference monitor of the
system.

The message-filtering algorithm is presented in Figure 1. We assume
that o; and o, are sender and receiver objects respectively. Also, let t; be
the method invocation in o; that sent the message g;, and t, the method
invocation in o, on receipt of g;. The two major cases of the algorithm
correspond to whether or not g, is a primitive message.

Cases 1 through 4 in Figure 1 deal with nonprimitive messages sent
between two objects, say o, and o,. In case 1, the sender and the receiver
are at the same level. The message and the reply are allowed to pass. The
rlevel of t, will be the same as that of ¢;. Note that rlevel is a property of a
method invocation. We will explain its significance shortly, but for the
moment let us ignore it. In case 2, the levels of o; and o, are incompara-
ble, and thus the message is blocked and a nil reply returned to method
t;. In case 3, the receiver is at a higher level than the sender. The mes-
sage is passed through. However, a nil reply is returned to t;, while the
actual reply from t, is discarded, thus effectively cutting off the backward
flow. (Note that the delivery of this nil reply to t; cannot be synchronized
with the attempted reply from ¢, to t;; otherwise, there will be informa-
tion leakage associated with the timing of the reply.) For case 4, the re-
ceiver is at a lower level than the sender. The message and the reply are
allowed to pass. However, the rlevel of t, (in the receiver object) is set in
such a manner as to prevent illegal flows. In other words, although a
message is allowed to pass from a high-level sender to a low-level re-
ceiver, it cannot cause a “write-down” violation because the method invo-
cation in the receiver is restricted from modifying the state of the object
or creating a new object (that is, the method invocation is “memoryless”).
Moreover, this restriction is propagated along with further messages sent
out by this method invocation to other objects, as far as is needed for se-
curity purposes.

A Multilevel Secure Object-Oriented Data Model 603

% let g; = (hy, (py, ---» Px), 1) be the message sent from o, to oy

if 0, # 03 0 hy 0 {(READ, WRITE, CREATE} then case
% i.e., gj is a nonprimitive message

(1) L(oy) =L(ogy): % let g; pass, let reply pass
invoke t, with rlevel(ty) rlevel(t;);
r — reply from t,; return rto t;

(2) L(oq) <> L(0,): % block gy, inject NIL reply
r « NIL; return r to t;;

(38) L(o1) < L(og): % let g; pass, inject NIL reply, ignore actual reply
r « NIL; return r to t;;
invoke t, with rlevel(ty) ~ lub[L(o0,), rlevel(t)];
% where lub denotes least upper bound
discard reply from t,;

(4) L(o1) > L(oy): % let g; pass, let reply pass
invoke t, with rlevel(t,) ~ rlevel(t;);
r — reply from t,; return rto t;

end case;

if o1 = 0y O h; O {READ, WRITE, CREATE} then case
% i.e., g; is a primitive message

(5) g1 = (READ, (a;), r): % allow unconditionally
r « value of a;; return rto t1;
6) g1 = (WRITE, (q;, v;), r): % allow if status of t; is unrestricted
if rlevel(t;) = L(oy)
then [aj “ Vi T e SUCCESS]
else r « FAILURE;
return r to ty;

(7) g1 = (CREATE, (vy, ..., Vi, S)), 1): % allow if status of t; is unrestricted
relative to S;
if rlevel(t,) < S;
then [CREATE i with values vy, ..., v, and
L(i) « S; r 1]
else r « FAILURE;
return r to ty;

end case

Figure 1. Message-filtering algorithm.

604 Information Security

The intuitive significance of rlevel is that it keeps track of the least up-
per bound of all objects encountered in a chain of method invocations,
going back to the user object at the root of the chain. We can show this
by induction on the length of the method invocation chain. To do so, it is
also useful to show the related property that rlevel(t;) = L(o,). For the ba-
sis case, we assume that the spontaneous method invocation in the root
user object has its rlevel set to the level of the user object. The induction
step follows by inspection of cases 1, 2, and 3 of Figure 1. The use of
least upper bound is explicit in case 3.% In cases 2 and 4, because of the
induction hypothesis and the relative levels of o; and o,, the assignment
of rlevel can be equivalently written as in case 3.

We say that a method invocation t; has restricted status if rlevel(t;) >
L(o;). In such cases, t; is not allowed to write to o; (case 6 of Figure 1) or
to create an object (case 7). A key element of the message filter algorithm
is that the restricted status is propagated along with further messages
sent out by a method invocation to other objects (exactly so far as is
needed for security purposes). This is critical in preventing indirect in-
formation flows.

To understand how the message filter algorithm propagates the re-
stricted status on method invocations, it is useful to visualize the gen-
eration of a tree of method invocations, as shown in Figure 2. The root ¢,
is a “spontaneous” method invocation by a user. The restricted method
invocations are shown within shaded regions. Suppose ¢, is a method for
object o, and t, a method for object o,,, which resulted from a message
sent from ¢, to o,. The method ¢, has a restricted status because L(o,,) <
L(o,). The children and descendants of ¢, will continue to have a re-
stricted status until ¢, is reached. The method t, is no longer restricted
because L(og) = L(o,) and a write by ¢, to the state of o, no longer con-
stitutes a write-down. This is accounted for in the assignment to
rlevel(t,) in case 3 of Figure 1.

The variable rlevel clearly plays a critical role in determining whether
the child of a restricted method should itself be restricted. A method in-
vocation potentially obtains information from security levels at or below
its own rlevel. It follows that a method invocation should only be allowed
to record information labeled at levels which dominate its own rlevel. For
example, consider a message sent from a Secret object to a Confidential
one (where Secret > Confidential). The rlevel derived for the method invo-
cation at the receiver object will be Secret.

®We need to use the least upper bound for computing rlevel in case 3 rather
than the maximum, because the security levels are partially ordered. It is possi-
ble for a chain of method invocations to descend in security levels along one
branch of the partial order, and then turn around and start ascending along a
different branch.

A Multilevel Secure Object-Oriented Data Model 605

Restrictad subtres

Resirictad subiroa

Figure 2. Method invocation tree.

We now discuss the security mediation of primitive messages. Read op-
erations (case 5) never fail due to security reasons because read-up op-
erations cannot occur. This is because read operations are confined to an
object’s methods, and their results can only be exported by messages or
replies which are filtered by the message filter. The write and create op-
erations invoked on receiving the write and create messages (cases 6 and
7) will succeed only if the status of the method invoking the operations is
unrestricted. If a write or create operation fails, a failure message is sent

606 Information Security

to the sender. This failure message does not violate security since infor-
mation is flowing upward in level.

The general idea of the message filter is similar to that of the law filter
introduced by Minsky and Rozenshtein [MINS87], although their work
has no direct relation to security. The message filter can be implemented
on top of the object layer. Since its purpose is to enforce security, the
message filter has to be trusted (that is, it has to be part of the trusted
computing base).

An example of message filtering. We now present a brief example to
illustrate the message-filtering algorithm of Figure 1 with the help of a
payroll database. Our simple object-oriented database consists of three
classes of objects: (1) EMPLOYEE (Unclassified), (2) PAY-INFO (Secret),
and (3) WORK-INFO (Unclassified) with the corresponding attributes as
shown in Figure 3. Objects EMPLOYEE and WORK-INFO are Unclassified
as their attributes (such as name, address, hours worked) represent in-
formation about an employee that can be made readily available. The ob-
ject PAY-INFO is Secret because its attributes contain sensitive
information such as hourly rate and weekly pay.

Let us see how cases 1, 3, and 4 in the filtering algorithm apply to the
payroll database. Case 1 occurs when the sender and receiver are at the
same level and applies to the message exchange between objects
EMPLOYEE and WORK-INFO. The message RESET-WEEKLY-HOURS and
reply DONE are both allowed to pass by the message filter. Case 3 applies
to the message exchange between objects EMPLOYEE and PAY-INFO. As
the latter is classified higher, a NIL reply is returned in response to the
PAY message and the actual reply is discarded. Case 4 involves the ob-
jects PAY-INFO and WORK-INFO. As the object WORK-INFO is classified
lower than PAY-INFO, the message GET-HOURS and reply HOURS-
WORKED are allowed to pass. However, the method invocation in WORK-
INFO is given the restricted status (due to its rlevel being Secret). This
prevents the method from updating the state of object WORK-INFO
(which, if allowed, would cause a write-down violation).

Class hierarchy and security

The notion of classes is usually considered very important for object-
oriented databases, if not for object-oriented systems in general. Most
existing object-oriented databases support classes. In this section, we
discuss how our security model deals with information flow due to in-
heritance in a class hierarchy.

The notion of classes is akin to that of relations in relational databases.
Objects of similar structure (types and names of attributes) and similar
behavior (methods) are grouped into classes, just like tuples of the same
structure, in relational databases, are grouped into relations. The parallel

A Multilevel Secure Object-Oriented Data Model 607

to relational systems does not go very far, however. First, in relational
databases, there is no notion analogous to that of object behavior. Sec-
ond, classes in object-oriented databases are represented by objects that
contain information on the names and types of attributes of the constitu-
ent instance objects of the class as well as the methods common to them.
Objects of this kind are called class-defining objects, or simply class ob-
jects. Thus, there is essentially no distinction between representations of
data and metadata in object-oriented systems.

*Woal
= Hioutly e
PAY-INFO (5)
HOURS-WORKED
GET-HOURS
_ 1 RESET-WEEKLY-HOURS
* " - W
» Addtass o
DONE k
EMPLOYEE () WORK-ANFO-(U)

Figure 3. Objects in a payroll database.

We assume that the reader has a basic familiarity with the notions of
inheritance and class hierarchy [KIM89, ZDON90]. A typical class hierar-

608

Information Security

chy has a class OBJECT at its root. It also includes a special class
CLASS such that every object defining a class is an instance of CLASS.

Earlier we discussed ways by which objects can transfer information to
one another. Message sending and object creation were mentioned in this
connection. We then went on to define several types of information flow.
With the introduction of classes and inheritance, two more (implicit) ways
to transfer information are added.

Since a class object (that is, a class-defining object) contains structure
and behavior information for all its instance objects, the latter have an
implicit read access to the former. Thus, an information flow exists from
a class object to an instance object. We refer to this type of flow as a
class-instance flow.

Since classes inherit attributes and methods from their ancestors in
the class hierarchy, a class object has an implicit read access to all its
ancestors. Therefore, there is an information flow down along all hierar-
chy links. This type of flow is designated inheritance flow.

It is easy to see that an inheritance flow is illegal unless the level of a
class object dominates the level of each of its ancestors. Similarly, a
class-instance flow is illegal unless the level of an instance object domi-
nates that of its class.

Our approach to dealing with illegal inheritance and class-instance
flows is to implement the classification and inheritance features by
means of message passing. (The details of such an implementation are
available elsewhere [MINS87].) The purpose of this approach is to make
the implicit flows discussed above explicit, that is, realized by messages.
As a consequence, class-instance and inheritance flows can be checked
by the message filter, just as forward, backward, and indirect flows are.”

It is still a good idea, though, to place the following constraints on the
way the security levels of instance objects and subclass objects relate to
those of the corresponding class objects:

e Security-level constraint 1. If o; is an object of class c; (c; also de-
notes the corresponding class object), then L(c;) < L(o)).

* Security-level constraint 2. If ¢; and c; are classes such that c; is a
child of ¢; in the class hierarchy, then L(c;) < L(c)).

It is important to understand that these two constraints are not intro-
duced for security reasons — security is still handled by the message-

71t should be noted that there is a great deal of disagreement with respect to
the exact scope of inheritance in a class hierarchy (for example, see [NIER89]).
Since we have chosen to define our security model in terms of information flow
among objects, any illegal information flow due to inheritance, regardless of its
specific inheritance features, will be prevented as long as these features are im-
plemented by message passing.

A Multilevel Secure Object-Oriented Data Model 609

filtering algorithm because all flows, including the class-instance and in-
heritance flows, are explicitly cast in the form of messages. Therefore, a
violation of these constraints will not lead to a violation of security. In-
stead, a violation of security-level constraint 2, for example, will result in
breakdown of the inheritance mechanism. It will create a situation
wherein a class object is prevented by the message filter from gaining ac-
cess to a method it inherits from its parent class (because the security
level of the child does not dominate that of the parent, as required by the
constraint).

Note that security-level constraint 1 is automatically satisfied by the
message-filtering algorithm (see case 7 of Figure 1) at the instance-
creation time. It is interesting to note, though, that this feature was
originally included in the algorithm to prevent the illegal direct flow to
the newly created object at the creation time, rather than the illegal
class-instance flow, which can take place at any time after the instance
is created. However, the provision works equally well in both cases.

Constraint 2 is not automatically satisfied by the message-filtering al-
gorithm, but the algorithm could be modified for that purpose. Alterna-
tively, the constraint could be enforced by supplying the object CLASS
with a method for creation of new classes that would check that the se-
curity levels of the new classes are in the prescribed relationship to the
levels of their parents. The second possibility is, perhaps, preferable be-
cause we want to keep the message filter — a trusted piece of software —
as small as possible.

Modeling multilevel entities with single-level objects

In an object-oriented data model, objects are used to model real-world
entities. Therefore, it may seem somewhat discouraging that our security
model insists that all objects be “flat,” that is, at a single security level.
Much modeling flexibility would be lost if multilevel entities could not be
represented in our database.

In this section, we will demonstrate that restricting objects to be single-
level does not have to imply that the same type of restriction exists for
entities that we are trying to model. We will do this by means of a few
simple examples.

Suppose that there are two security levels: U (Unclassified) and S (Se-
cret), the latter dominating the former. Consider an entity e characterized
by attributes A, B, and C such that A and B are at level U and C is at
level S (e could be a collection of information pertaining to an employee,
where A is the employee’s name, B is the home address, and C is the sal-
ary). The intention is to allow access to C only for users with Secret
clearance. All other users can access only A and B. Entity e can be repre-
sented by objects o0, and o, such that a(o;) = (A, B), a(oy) = (A, B, C),
L(o;) = U, and L(o,) = S. Object o, is the internal representation of entity

610 Information Security

e for users with the Secret clearance, while o, is the representation of e
for all other users. The example is illustrated in Figure 4. Attributes of
entity e have individual security labels (shown in parentheses). This is in
contrast to objects o; and o0,, which have labels only at the object level.

[+

A (U)

B W

c (8

o, (U} o, (5}

A
A B
8 c

Figure 4. Representing a multilevel entity by multiple single-level objects.

Suppose now that we have an entire collection of entities of the same
type as e (a set of entities with Unclassified attributes A and B and a Se-
cret attribute C). Let us call this type of entity X. In our model, each en-
tity of this type will be represented by two objects: one for users with the
Secret clearance and one for all others. Thus, we end up with two classes

A Multilevel Secure Object-Oriented Data Model 611

of objects for one type of entity. The distinction between the two classes
is based on security, not semantics, as would normally be the case in
object-oriented databases. Let XU be the class of the Unclassified objects
and XS the class of the Secret objects representing entities of type X.

X

A (L}
8{u}
c(s)

Xu ()

ME(8)

Figure 5. Representing a type of multilevel entity by a hierarchy of
classes of single-level objects.

It is convenient, for modeling purposes, to relate classes XU and XS in
the class hierarchy. Namely, if XS is made a child of XU, then it can in-
herit from XU attributes A and B and add to them a locally defined at-
tribute C. Figure 5 shows the relevant segment of the hierarchy. Note
that the class object XU is placed at security level U, and XS at level S.
The effect of this is that not only do the Unclassified users have no ac-
cess to the values of attribute C in entities of type X, but also they are

612 Information Security

not even aware of the existence of this Secret attribute because e access
to the class object XS is prohibited to them. It is possible to place the
class object XS at level U, while keeping instances of XS at level S. In that
case, the Unclassified users will be aware of the existence of attribute C
but not of any values of it in instance objects. Note that such a dichot-
omy between the class-object level and the level of its instances is in
conformity with security-level constraint 1. The choice of label for XS de-
pends on the policy decision.

A{U)
By

c(s)

A{L}
BiL)
C(s)

o u)

Figure 6. Conceptual schema for types Xand Y.

To carry our example a little further, suppose that there is a second
type of entity that we have to model, type Y. Type Y consists of the same
attributes at the same security levels as X, plus a new attribute D at level
U. The conceptual class hierarchy (or schema) is shown in Figure 6. In
that schema, Yis a child of X.

Let us now address the question of how this schema can be implemented
in our model. Using the idea of Figure 5, we arrive at the implementation
schema for our database, shown in Figure 7. The implementation schema

A Multilevel Secure Object-Oriented Data Model 613

takes into account security-level assignments to attributes in the con-
ceptual schema and transforms the latter into the form ready for actual
implementation in a system that uses our security paradigm. In particu-
lar, we have four classes in our implementation schema: XU, XS, YU, and
YS. Class XU represents the view of X for Unclassified users; XS, the view
of X for users with the Secret clearance; YU, the view of Y for Unclassified
users; and YS, the view of Y for users with the Secret clearance.

XS (5)

XU U}

Y5 (s}

Semantiz inhertance

——— Securily inheritance

614

Figure 7. Implementation schema.

Information Security

In Figure 7, links between classes represent inheritance relationships
among classes. It is helpful to distinguish between two kinds of inheri-
tance in the implementation schema: semantic inheritance and security
inheritance. The actual inheritance mechanism is identical in both cases,
but the motivation is different. Semantic inheritance corresponds to the
usual notion of inheritance in object-oriented databases. It is intended to
represent the semantic relationships among data types found in the con-
ceptual schema. The notion of security inheritance, on the other hand, is
introduced solely for representing multilevel entities in our security para-
digm. Thus, for instance, YU is a subclass of XU in the semantic sense
because this relationship reflects the specialization of the entity type X
into Y by adding to the former a new attribute D. On the other hand, XS
is a subclass of XU in the security sense because XS reveals a new at-
tribute of entities of type X that is not visible to Unclassified users. Note
that the notion of security inheritance is in agreement with security-level
constraint 2, which requires that the security level of a class dominate
that of its ancestors.

Instance objects, as was discussed earlier in this section, do not have
to be at the same security level as their class object. By the same token,
instance objects may sometimes be placed at different levels with one an-
other, just as it may be required that real-world entities of the same type
have different security classifications. Our model allows for this flexibil-

ity.

Review of relevant research

The object-oriented approach has been a major area of research in the
context of programming languages, knowledge representation, and data-
bases for some years now [KIM89, ZDON90]. In spite of this, there has
been relatively little work on security-related issues in object-oriented
databases, although some work does exist. Initial efforts [DITT89,
FERN89, RABI88| handle only the discretionary access controls. Mead-
ows and Landwehr [MEAD92 | were the first to model mandatory access
controls using the object-oriented approach; however, their effort is lim-
ited to considering the Military Message System. Spooner [SPOO89] takes
a preliminary look at mandatory access control and raises several im-
portant concerns.

In other approaches [KEEF88a, THUR89D], objects can be multilevel.
This means, for example, that an object’s attributes can belong to differ-
ent security levels, which in turn means that the security system must
monitor all methods within an object. As we have argued in the intro-
duction, we consider this to be contrary to the spirit of the object-
oriented paradigm. Lunt and Millen [LUNT89b] mention some problems
associated with having multilevel objects. In their model, only single-level

A Multilevel Secure Object-Oriented Data Model 615

objects are permitted. However, the notion of subjects is still retained,
and subjects are assigned security levels.

Conclusions and future work

An examination of the object-oriented data model leads one to believe
that there is much in it, particularly in the notion of encapsulation, that
makes this model naturally compatible with the notion of security. How-
ever, until now, relatively little use has been made of this apparent com-
patibility.

This essay is part of an effort to develop a better understanding of the
interactions between multilevel security and the object-oriented data
model. This interaction, in our opinion, can be very subtle, and for that
reason, we chose a formal approach. We wanted to state precisely all
critical assumptions, which is necessary if we hope to use this essay as a
departure point for further research.

We believe that there is much more interesting work to be done in the
area of object-oriented multilevel security. In particular, we presented in
this essay some ideas for representing multilevel entities using multiple
objects at different security levels and illustrated these ideas with exam-
ples. The subject clearly merits further study, and perhaps one should
address the issue of designing an algorithm for multiobject representa-
tion of multilevel entities.

Implementing the class and inheritance mechanisms by message
passing is essential to our approach to enforcing security. In a system
that follows such an implementation, all information flows are rendered
explicit, and therefore controllable uniformly by the message filter. Con-
sequently, our future work should address this issue of implementation,
as it relates to modeling security, at a more detailed level.

Acknowledgment

The work of Sushil Jajodia and Boris Kogan was partially supported by
the US Air Force, Rome Air Development Center, through the subcontract
#RI-64155X of prime contract #F30602-88-D-0028, Task B-9-3622 with
the University of Dayton. We are indebted to Joe Giordano for his sup-
port and encouragement, which made this work possible.

616 Information Security

