
The RRA97 Model for Role-Based Administration of Role Hierarchies

Ravi Sandhu and Qamar Munawer

Laboratory for Information Security Technology and ISE Department

George Mason University|Mail Stop 4A4, Fairfax, VA 22030

sandhu@isse.gmu.edu, www.list.gmu.edu

Abstract Role-based access control (RBAC) has re-
cently received a lot of attention due to its exibil-
ity, expressive power and simplicity in administra-
tion. In RBAC permissions are associated with roles
and users are made members of roles thereby ac-
quiring the associated permissions. Centralized man-
agement of RBAC in large systems is a tedious
and costly task. An appealing possibility is to use
RBAC itself to facilitate decentralized administration
of RBAC. The recently proposed ARBAC97 (adminis-
trative RBAC '97) model identi�es components called
URA97, PRA97 and RRA97 for administration of
user-role, permission-role and role-role assignments
respectively. URA97 and PRA97 have already been
described in detail in the literature, whereas RRA97
has so far not been de�ned.

The central contribution of this paper is to give
a complete and formal de�nition of RRA97, thereby
completing the ARBAC97 model. The e�ect of role-
role assignment is to construct a role hierarchy (that
is, a partial order) in which senior roles inherit per-
missions from junior roles. Modi�cations to the role
hierarchy can have drastic impact on the e�ective dis-
tribution of permissions to roles. At the same time
we would like to decentralize this aspect of RBAC ad-
ministration so that, for example, it should be pos-
sible for project security o�cers to rearrange roles
within a project without impacting other role relation-
ships within the department in which the project exists.
RRA97 shows how this goal can be achieved.

1 Introduction

Role-based access control (RBAC) has recently re-
ceived considerable attention as a promising alterna-
tive to traditional discretionary and mandatory access
controls. In RBAC permissions are associated with
roles, and users are made members of appropriate roles
thereby acquiring the roles' permissions. This greatly

simpli�es management of permissions. Roles are cre-
ated for the various job functions in an organization
and users are assigned roles based on their responsibil-
ities and quali�cations. Users can be easily reassigned
from one role to another. Roles can be granted new
permissions as new applications and systems are incor-
porated, and permissions can be revoked from roles as
needed. Role-role relationships can be established to
lay out broad policy objectives.

In large enterprise-wide systems the number of roles
can be in the hundreds or thousands, and users can
be in the tens or hundreds of thousands. Managing
these roles and users, and their interrelationships is
a formidable task that often is highly centralized in
a small team of security administrators. Because the
main advantage of RBAC is to facilitate administra-
tion, it is natural to ask how RBAC itself can be used
to manage RBAC. We believe the use of RBAC for
managing RBAC will be an important factor in the
long-term success of RBAC. Decentralizing the details
of RBAC administration without losing central con-
trol over broad policy is a challenging goal for system
designers and architects.

There are many components to RBAC [SCFY96].
RBAC administration is therefore multi-faceted. In
particular we can separate the issues of assigning users
to roles, assigning permissions to roles, and assigning
roles to roles to de�ne a role hierarchy. These activi-
ties are all required to bring users and permissions to-
gether. However, in many cases, they are best done by
di�erent administrators or administrative roles. As-
signing permissions to roles is typically the province
of application administrators. Thus a banking appli-
cation can be implemented so credit and debit opera-
tions are assigned to a teller role, whereas approval of
a loan is assigned to a managerial role. Assignment of
actual individuals to the teller and managerial roles is
a personnel management function. Assigning roles to
roles includes aspects of user-role assignment and role-
permission assignment, but more signi�cantly role-role

relationships establish broad policy. Control of these
relationships would typically be relatively centralized
in the hands of a few security administrators.

Sandhu et al [SBC+97] recently introduced a model
for role-based administration of RBAC. This model is
called ARBAC97 (administrative RBAC '97). It con-
sists of three components called URA97, PRA97 and
RRA97 for administration of user-role, permission-role
and role-role assignments respectively. URA97 and
PRA97 have already been described in detail in the lit-
erature [SB97, SBC+97, SB98], whereas RRA97 has so
far not been formally de�ned. Sandhu et al [SBC+97]
describe some of the requirements and intuitive goals
of RRA97, but leave many issues open. Modi�cations
to the role hierarchy can clearly have drastic impact on
the e�ective distribution of permissions to roles. The
intuitive idea of RRA97 is to decentralize role-role as-
signment so that, for example, project security o�cers
can rearrange roles within a project without impact-
ing other role relationships within the department in
which the project exists. A fundamental assumption
in RRA97 is that there is a single global hierarchy of
roles which is known to all administrators.

The central contribution of this paper is to give
a complete and formal de�nition of RRA97, thereby
completing the ARBAC97 model. The e�ect of role-
role assignment is to construct a role hierarchy (that
is, a partial order) in which senior roles inherit permis-
sions from junior roles. RRA97 shows how this goal
can be achieved. It is the �rst attempt in the litera-
ture to give a comprehensive model for decentralized
management of role hierarchies.

The rest of this paper is organized as follows. In
section 2 we review the ARBAC97 model and, par-
ticularly, its URA97 and PRA97 components. We
also briey discuss the RBAC96 models on which AR-
BAC97 is based. Section 3 gives a formal de�nition of
the RRA97 model and rationale for the design choices
made here. Section 4 concludes the paper.

2 RBAC96 and ARBAC97 Models

This section gives a brief review of the RBAC96
and ARBAC97 models.

2.1 The RBAC96 Model

The well-known RBAC96 model [SCFY96, San97]
is summarized in �gure 1. The top half of the �gure
shows the regular roles and permissions that regulate

access to data and resources. The bottom half shows
the administrative roles and permissions to regulate
the administration of users, roles and permissions. A
user is a human being, a role is a job function and
a permission is an approval of access to some objects
or a privilege to carry out a particular task. Sessions
are related to one user and possibly to many roles
for which the user is a member. The management
of permissions and roles is greatly simpli�ed by as-
sociating permissions to the roles and assigning the
users to roles. In this way the users acquire the as-
sociated permissions. Roles are created for various
job functions in an organization. The permissions re-
quired to carry out the job are associated to the roles.
New permissions can be granted to roles as new ap-
plications and systems are incorporated. Unnecessary
permissions can be revoked from the roles. Users are
assigned to the roles depending on the responsibilities
and quali�cations and can be reassigned from one role
to another. Role-role relationships can be established
to lay out broad policy objectives of the organizations.

2.2 The ARBAC97 Model

Sandhu et al [SBC+97] have outlined a comprehen-
sive model for administration of RBAC in context of
RBAC96. The model is called ARBAC97 and con-
sists of three components which we describe briey
below. As stated earlier the RRA97 component of
ARBAC97 is de�ned for the �rst time in this paper in
the next section. A complete de�nition of the URA97
and PRA97 components, and the intuitive motivation
for these models,is given in [SB97, SB98, SBC+97].

2.2.1 URA97 for user-role assignment

URA97 was developed by Sandhu and Bhamidi-
pati [SB97]. It is concerned with the administration of
user-role assignments. The basic idea is that adminis-
trative roles have authority to modify the UA relation
of RBAC96. For example the administrative roles in
�gure 2(b) are authorized to modify the memberships
of the roles in �gure 2(a). In these diagrams senior
roles are shown at the top and junior ones at the bot-
tom. Permissions are inherited upwards in the hierar-
chy. The power of a administrative role extends over
some range of regular roles|identi�ed by giving the
top and bottom of the range, and indicating whether
the top and bottom are themselves included in the
range. Familiar interval notation is used for this pur-
pose. Thus [E1, PL1]=fE1, PE1, QE1, PL1g and [E1,
PL1)=fE1, PE1, QE1g. A novel aspect of URA97

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR�AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative roles roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA [AUA]g (which can change with time)

session si has the permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden.

Figure 1: Summary of the RBAC96 Model

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

(a) Roles

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

(b) Administrative Roles

Figure 2: Example Role and Administrative Role Hierarchies

is that the user population that can be assigned by
an administrative role to such a range is speci�ed by
means of prerequisite conditions as follows.

De�nition 1 A prerequisite condition is a boolean
expression using the usual ^ and _ operators on terms
of the form x and x where x is a regular role (i.e.,
x 2 R). For a given set of roles R let CR de-
notes all possible prerequisite conditions that can be
formed using the roles in R. A prerequisite condi-
tion is evaluated for a user u by interpreting x to be
true if (9x0 � x)(u; x0) 2 UA and x to be true if
(8x0 � x)(u; x0) 62 UA. 2

The simplest example of a prerequisite condition is
simply a prerequisite, for example, the prerequisite
condition ED requires membership in ED. The more
complex condition ED^E2 speci�es users from the en-
gineering department who are not assigned to project
2.

De�nition 2 User-role assignment and revocation
are respectively authorized in URA97 by the fol-
lowing relations, can-assign � AR � CR � 2R and
can-revoke � AR � 2R (with subsets of R identi�ed
by the range notation). 2

For example can-assign(PSO1, ED, [E1,PL1)) autho-
rizes members of the administrative role PSO1 to as-
sign users who are already members of ED to the
roles E1, PE1, QE1. Similarly, can-revoke(PSO1,
[E1,PL1)) authorizes members of the administrative
role PSO1 to revoke users from the roles E1, PE1,
QE1. The exact semantics of revocation in this con-
text is somewhat subtle and is discussed at length
in [SB97, SB98, SBC+97].

2.2.2 PRA97 for permission-role assignments

This component of ARBAC97 deals with the assign-
ments of permissions to roles. From a role-based
, users and permissions have a similar character so
PRA97 is an exact analog of URA97. The notion of a
prerequisite condition is identical to that in URA97
except the boolean expression is now evaluated for
membership and non-membership of a permission in
speci�ed roles. Analogous to URA97 we have the fol-
lowing two relations to control permission-role assign-
ment and revocation.

De�nition 3 Permission-role assignment and revoca-
tion are respectively authorized in PRA97 by the fol-
lowing relations, can-assignp � AR � CR � 2R and
can-revokep � AR� 2R. 2

3 RRA97 Model for Role-Role Assign-

ment

In this section we develop the RRA97 model, which
is the central contribution of this paper.

3.1 Abilities, Groups and UP-Roles

For role-role assignment we distinguish three kinds
of roles, roughly speaking as follows.

� Abilities are roles that can only have permissions
and other abilities as members.

� Groups are roles that can only have users and
other groups as members.

� UP-Roles are roles that have no restriction on
membership, i.e., their membership can include
users, permissions, groups, abilities and other
UP-roles.

The term UP-roles signi�es user and permission roles.
We use the term role to mean all three kinds of roles
or to mean UP-roles only, as determined by context.
The three kinds of roles are mutually disjoint and are
identi�ed respectively as A, G, and UPR.

The main reason to distinguish these three kinds
of roles is that di�erent administrative models apply
to establishing relationships between them. The dis-
tinction was motivated in the �rst place by abilities.
An ability is a collection of permissions that should be
assigned as a single unit to a role. For example the
ability to open an account in a banking application
will encompass many di�erent individual permissions.
It does not make sense to assign only some of these
permissions to a role because the entire set is needed
to do the task properly. The idea is that application
developers package permissions into collections called
abilities which must be assigned together as a unit to
a role.

The function of an ability is to collect permissions
together so that administrators can treat these as a
single unit. Assigning abilities to roles is therefore very
much like assigning permissions to roles. For conve-
nience it is useful to organize abilities into a hierarchy
(i.e., partial order). Hence the PRA97 model can be
adapted to produce the very similar ARA97 model for
ability-role assignment.

Once the notion of abilities is introduced, by anal-
ogy there should be a similar concept on the user side.
A group is a collection of users who are assigned as a

single unit to a role. Such a group can be viewed as
a team which is a unit even though its membership
may change over time. Groups can also be organized
in a hierarchy. For group-role assignment we adapt
the URA97 model to produce the GRA97 model for
group-role assignment.

This leads to the following models.

De�nition 4 Ability-role assignment and revoca-
tion are respectively authorized in ARA97 by
can-assigna � AR � CR � 2A and can-revokea �
AR� 2A. 2

De�nition 5 Group-role assignment and revoca-
tion are respectively authorized in GRA97 by
can-assigng � AR � CR � 2G and can-revokeg �
AR� 2G. 2

For these models CR is interpreted as the collection
of prerequisite conditions formed using roles in UPR,
and the prerequisite conditions are interpreted with
respect to abilities and groups respectively. Member-
ship of an ability in a UP-role is true if the UP-role
dominates the ability and false otherwise. Conversely,
membership of a group in a UP-role is true if the UP-
role is dominated by the group and false otherwise.

Assigning an ability to an UP-role is mathemati-
cally equivalent to making the UP-role an immediate
senior of the ability in the role-role hierarchy. Abilities
can only have UP-roles or abilities as immediate se-
niors and can only have abilities as immediate juniors.
In a dual manner, assigning a group to an UP-role is
mathematically equivalent to making the UP-role an
immediate junior of the group in the role-role hier-
archy. Groups can only have UP-roles or groups as
immediate juniors and can only have groups as imme-
diate seniors. With these constraints the ARA97 and
GRA97 models are essentially identical to the PRA97
and URA97 models respectively. This leaves us with
the problem of managing relationships between UP-
roles. We use the term role to mean UP-roles in the
rest of the paper.

3.2 The can-modify relation

Decentralization of administrative authority re-
quires that members of di�erent administrative roles
should have authority over di�erent parts of the hi-
erarchy. Authority over a part of the role hierarchy
implies autonomy in modifying the internal role struc-
ture of that part. That includes the creation and dele-
tion of roles as well as the alternation of role-role re-

Administrative Role UP-Role Range

DSO (ED, DIR)
PSO1 (E1, PL1)
PSO1 (E2, PL2)

Table 1: Example of can-modify

lationships by adding or deleting the edges. For ex-
ample in �gure 2 we would like the DSO to con�gure
changes in the role hierarchy between DIR and ED.
The PSO1 would manage the hierarchy between PL1
and E1, whereas PSO2 would manage the part be-
tween PL2 and E2. This leads to the following notion
of a can-modify relation.

De�nition 6 Role creation, role deletion, edge inser-
tion and edge deletion are all authorized by the re-
lation, can-modify � AR � 2UPR (with subsets of R
identi�ed by the range notation but limited to open
ranges that do not include the endpoints). 2

Table 1 illustrates an example of can-modify rel-
ative to the hierarchies of �gure 2. The meaning of
can-modify(x, Y) is that a member of the adminis-
trative role x (or a member of an administrative role
that is senior to x) can create and delete roles in the
range Y and can modify relationships between roles
in Y. The examples in the rest of the paper are all in
context of �gure 2 and table 1. For purpose of our
example we have ignored PSO2 in this table and have
instead authorized PSO1 to manage the roles of both
projects. This illustrates how a single administrative
role can be authorized to control multiple pieces of the
role hierarchy.

The semantics of the four operations|create role,
delete role, insert edge and delete edge|are described
in subsequent subsections. Some of the important in-
tuitive ideas are mentioned here in anticipation. In
particular none of these operations is allowed to intro-
duce a cycle in the hierarchy.

Creation of a new role requires the speci�cation of
its immediate parent and child in the existing hierar-
chy. Thus PSO1 can create a new role with immedi-
ate parent PL1 and immediate child E1, or a new role
with immediate parent PL1 and immediate child PE1.
Generally the immediate parent and immediate child
must fall within the range or be one of the endpoints
as speci�ed in can-modify. Since creation of a role also
introduces two edges in the hierarchy, it is not possi-
ble to use any two roles as the immediate parent and

immediate child. Clearly we do not want this opera-
tion to introduce a cycle in this manner. As we will
see we also impose additional restrictions to prevent
undesirable side e�ects of role creation.

Deletion of a role leaves relationships between the
parents and children of the deleted role unchanged.
So if DSO deletes E1, PE1 and QE1 continue to be
senior to ED after deletion of E1. As such deletion
does not pose a problem. However, deletion of E1 will
leave dangling references in table 1, since the range
(E1, Pl1) no longer exists. In general, some roles are
referenced in various relations in URA97, PRA97 and
RRA97. If these roles are actually deleted we will
have dangling references. Our approach is to prohibit
deletion that would cause a dangling reference. Roles
that cannot be deleted due to this reason can be deac-
tivated so that they can be phased out later by adjust-
ing the references that prevent deletion. Furthermore,
when a role is deleted we need to do something about
the users and permissions that are directly assigned to
this role.

Insertion of an edge is meaningful only between in-
comparable nodes. Thus insertion of an edge from
PL1 to E1 has no meaning, whereas insertion of an
edge from PE1 to QE1 does. As well see there are
edges that should not be inserted because they can
lead to anomalous side e�ects later.

Likewise deletion of an edge is meaningful only if
that edge is not transitively implied by other edges.
For example, deletion of the edge PL1 to E1 is mean-
ingless and has no impact on the hierarchy. Deletion of
the edge QE1 to E1 will change the hierarchy. Edge
deletion only applies to a single edge and does not
carry over to implied transitive edges. For example,
deletion of the edge QE1 to E1 makes QE1 and E1
incomparable, but QE1 continues to be senior to ED.

More sophisticated forms of these operations can
be constructed out of the basic ones de�ned here. In
these basic operations roles and edges are created and
destroyed one at a time. This approach is analogous
to the de�nition of weak revocation in URA97 and
PRA97 [SBC+97] from which various forms of strong
revocation can be constructed. Similarly, in RRA97
more complex operations can be constructed in terms
of these basic ones.

3.3 Restrictions on can-modify

The relation can-modify confers authority to ad-
ministrative roles to change the role hierarchy. We
would like to restrict this authority so as to maintain

global consistency of authorization. The issue of dan-
gling references has already been raised and RRA97
will not allow dangling references to occur. But this
is not enough.

Consider the example of �gure 3. Now if PSO1 who
has authority over the range (E1, PL1) makes PE1 ju-
nior to QE1 by introducing an edge the e�ect is to indi-
rectly introduce a relationship between X and Y roles.
The role PSO1 does not have the authority to create
this relationship, so this is an anomalous side e�ect.
We should either restrict the authority of the admin-
istrative role (in our example DSO) that introduced X
and Y roles in the �rst place, or PSO1 should be pre-
vented from introducing relationships that makes PE1
junior to QE1 (and indirectly Y junior to X). In gen-
eral administrative roles are given autonomy within
a range but only so far as the global side e�ects are
acceptable.

To formally state these restrictions on the authority
of the administrative roles we introduce the concepts
of authority range, encapsulated authority range and
create range.

3.4 Concept of Range

The concept of range is very important in RRA97.
It is formally de�ned as follows.1

De�nition 7 A range of roles is de�ned by giving
lower bound x and upper bound y, where y > x. For-
mally (x; y) = fz : R j x < z < yg. We say x and y
are the end points of the range. 2

Note that a range, as de�ned here, does not include
the end points. In �gure 2, (E1, PL1), (E2, PL2) and
(ED, DIR) are di�erent ranges. The range (ED, DIR)
contains the roles which constitute ranges (E1, PL1)
and (E2, PL2). We say ranges (E1, PL1) and (E2,
PL2) are junior to range (ED, DIR).

De�nition 8 For two ranges Y and Y' if Y � Y 0,
then Y is a junior range to Y' and Y' is a senior range
to Y. 2

Here Y is a proper subset of Y'. This eliminates the
possibility of a range to be junior or senior to itself.
This makes later de�nitions more convenient.

1We understand there is existing mathematical terminology
for this concept and others to be introduced below. We have
chosen to develop our own terminology motivated by adminis-
trative RBAC.

PE1

DIR

PL1

E1

QE1

PL2

QE2

ED

E2

PE2

X

Y

E

Figure 3: Out of Range Impact

If two ranges Y and Y' in the role hierarchy are
such that one is not junior to the other then they are
either incomparable or partially overlapping. Formal
de�nitions of partially overlapping and incomparable
ranges are as follows.

De�nition 9 Ranges Y and Y' partially overlap if
Y \ Y 0 6= � and Y 6� Y 0 and Y 0 6� Y . Ranges Y1 and
Y2 are said to be incomparable if Y1 \ Y2 = �. 2

Note that incomparable ranges may have one common
end point.

3.5 Authority Range and Encapsulated
Authority Range

The members of an administrative roles are autho-
rized to modify certain range of roles in role hierarchy.
These ranges are called authority ranges.

De�nition 10 Any range referenced in the can-
modify relation is called an authority range. 2

To ensure that administrative authority over authority
ranges does not overlap, we introduce the following
restriction.

De�nition 11 In RRA97 authority ranges do not
partially overlap. 2

Note that an administrative role may have more
than one authority range. Table 1 shows that DSO
has authority over the range (ED, DIR). In �gure 2
the authority range (ED, DIR) has two junior author-
ity ranges, (E1, PL1) and (E2, PL2). Since these ju-
nior authority ranges are completely contained within
the authority range for DSO, DSO has authority over
these junior authority ranges as well. In other words
DSO has inherited the authority over the ranges (E1,
PL1) and (E2, PL2).

Our model allows an administrative role to have
authority over more than one incomparable authority
range. Table 1 shows that PSO1 has authority over
two incomparable authority ranges namely (E1, PL1)
and (E2, PL2).

Let us consider �gure 3 again. To maintain con-
sistency we observed that either DSO should not be
allowed to create roles X or Y in the role hierarchy
or PSO1 should not be allowed to make PE1 junior
to QE1. In the latter case the autonomy of PSO1 to
manage its authority range is interfered by DSO's ac-
tions. While this is a possibility we pursue the former
case here. Decentralization of authority and autonomy
requires that all inward and outgoing edges from an
authority range should only be directed to and from
the end points of the authority range. The concept of

r2
r3

y

x

y’

x’

A

B

r1

r4

Figure 4: Encapsulated Range (x, y)

r2
r3

r4

y

x

y’

x’

A

B

r1

Figure 5: Non-Encapsulated Range (x, y)

encapsulation of authority range serves this purpose.

De�nition 12 A range (x, y) is said to be encapsu-
lated if 8r1 2 (x; y) ^ 8r2 62 (x; y) we have r2 > r1,
r2 > y and r2 < r1, r2 < x. 2

Intuitively an encapsulated range is one in which all
roles have identical relation to roles outside of the
range. The intuition in RRA97 is that an encapsulated
range is the correct unit for autonomous management
of role-role relationships within the range. All author-
ity ranges in RRA97 are required to be encapsulated.
Figure 4 and 5 respectively show examples of encap-
sulated and non-encapsulated range (x, y).

r1

y

A

r2

x

B

r3

y’

r4

x’

Figure 6: Create Range

3.6 Role Creation

As discussed earlier creation of a role requires spec-
i�cation of the new role's immediate parent and child.
If the immediate parent and child are the end points
of an authority range, there is no di�culty. More gen-
erally we wish to allow creation of a new role such that
its immediate parent and child are within the author-
ity range rather than being at the end points. Thus
PSO1 can create a new role with parent PL1 and child
PE1. However if DSO exercises this power we can end
up with up the undesirable situation illustrated in �g-
ure 3. To prevent this from happening we introduce
the following notions.

De�nition 13 The immediate authority range of role
r written ARimmediate(r) is the authority range (x, y)
such that r 2 (x; y) and for all authority ranges (x',
y') junior to (x, y) we have r 62 (x0; y0). 2

De�nition 14 The range (x, y) is a create range
if ARimmediate(x) = ARimmediate(y) or x is an end
point of ARimmediate(y) or y is an end point of
ARimmediate(x). 2

Note that only comparable roles constitute a create-
range.

Consider �gure 6. Let (B, A) and (x, y) be author-
ity ranges whereas (x', y') is not an authority range.
The ranges marked by the dotted lines, i.e., (r3, A),
(x, A) and (B, y) are create ranges. However (r1, A)
or (r2, A) do not satisfy the conditions and thereby
are not create ranges.

In RRA97 we require that the immediate parent
and child of a new role must be a create range in the
hierarchy prior to creation of the new role.

Roles can be created outside the authority ranges
or without a parent or child only by the chief secu-
rity o�cer. In general the chief security o�cer can do
arbitrary modi�cations.

3.7 Role Deletion

Deletion of roles in a hierarchy is a complicated
process. Our assumption is that a role in an author-
ity range can be deleted by the administrator of that
range. It does not matter how this role got there.

ARBAC97 de�nes some authorization relations
such as can-assign, can-revoke and can-modify. If the
roles speci�ed as end points of the role ranges of these
relationships are deleted, we will leave dangling ref-
erences to non-existing roles. The ranges with these
deleted end points will become meaningless. To avoid
this problem RRA97 provides two alternatives.

1. Roles referred in can-assign, can-revoke and can-
modify relationships cannot be deleted. Though
it is a more restrictive constraint but it is required
to keep the range referential integrity intact.

2. Roles referred in 1 above can be made inactive
(explained in the next paragraph) whenever it is
needed to delete them. The advantage of deac-
tivating roles is that it avoids references to non-
existing roles and at the same time achieves the
purpose of deletion.

A role is said to be inactive if a user associated to it
cannot activate it in a session. The edges to and from
the inactive role, its associated permissions and as-
signed users remain unchanged. While a user assigned
to an inactive role cannot activate it, the permissions
associated with that role are still inherited by senior
roles. In this way the hierarchy is not changed but at
the same time a partial e�ect of deletion is achieved.

RRA97 allows both of the above alternatives. Reg-
ular users cannot invoke inactive roles, but adminis-
trators can revoke users and permissions from these
roles. These roles can be made empty but cannot be
deleted from the hierarchy until the references pre-
venting deletion are suitably adjusted. Other roles in
the role hierarchy can be deleted.

In case of deletion of a role we need to preserve the
permissions and users assigned to the role. RRA97
provides two alternatives for deletion of roles.

SQE1

JQE1

PE1

PL1

E1

DIR

PL2

PE2 QE2

E2

ED

Figure 7: Before Deletion of edge from SQE1 to JQE1

SQE1

JQE1

PE1

PL1

E1

DIR

PL2

PE2 QE2

E2

ED

Figure 8: After Edge Deletion

1. Roles can be deleted only if they are empty.

2. Delete role but at the same time take care of the
assigned permissions and associated users as fol-
lows: assign permissions to the immediate senior
roles and assign users to immediate junior roles.

3.8 Edge Insertion

Now let us explain how the model deals with the
insertion of edges in the role to role relationships. The
insertion of transitive edges has no e�ect so we only
consider edges inserted between incomparable roles.
When an edge is inserted we must ensure that encap-
sulation of authority range is not violated. We have
the following rules.

� The roles between which the edge is inserted must
have same immediate authority range, or

� if the new edge connects a role in one authority
range to a role outside the range encapsulation of
the authority range must not be violated.

For example in �gure 5 assume edges (y, r3) and
(r3, x) are initially not present, and that (x, y) and

(B, A) are authority ranges. Insertion of the edge (y,
r3) does not pose any problem. However in presence
of this edge, insertion of edge (r3, x) violates encap-
sulation of authority range (x, y), hence it must not
be allowed. Similarly in the presence of (r3, x) the
edge (y, r3) would not be allowed. This leads to the
following formal de�nition for insertion of an edge.

De�nition 15 A new edge AB can be inserted be-
tween incomparable roles A and B

� if ARimmediate(A) = ARimmediate(B) or

� if (x, y) is an authority range such that (A =
y ^ B > x) _ (B = x ^ A < y) then insertion of
AB must preserve encapsulation of (x, y). 2

3.9 Edge Deletion

The deletion of a transitive edge does not change
the hierarchy, so their deletion is meaningless. In
RRA97 we consider only those edges for deletion that
are in transitive reduction of the hierarchy. If edge AB
is not in the transitive reduction then it is not a can-
didate for deletion.2 For example in �gure 7 deletion
of the edge SQE1 to JQE1 will change the hierarchy.
Edge deletion only applies to a single edge and does
not carry over to implied transitive edges. As dis-
cussed in the general rules for edge deletion RRA97
keeps intact transitive edges after deletion. For exam-
ple, deletion of the edge SQE1 to JQE1 makes SQE1
and JQE1 incomparable, but SQE1 continues to be se-
nior to E1 and JQE1 junior to PL1 shown in �gure 8.

There is one special case that needs to be consid-
ered. If the edge being deleted is between the end
points of an authority range, deletion of the edge will
disrupt the authority range and cause inconsistency in
the model. Hence this operation is disallowed.

4 Conclusion

This paper de�nes the RRA97 model thus complet-
ing the de�nition of ARBAC97 started in [SBC+97].
RRA97 is very di�erent from the URA97 and PRA97
components of ARBAC97 which have been previously
reported in the literature. RRA97 provides for decen-
tralized administration of role hierarchies. This de-
sire is to give administrative roles autonomy within a

2Other models and applications do not have this restriction.
For example, Oracle allows insertion and deletion of transitive
edges [KL95].

range but only so far as the side e�ects of the resulting
actions are acceptable. To do so we need to disallow
some operations authorized by the authority range,
thereby tempering the administrative role's authority.
We have formally identi�ed these restrictions in the
paper and have provided their motivations. RRA97 is
the �rst model to deal with these issues.

5 Acknowledgment

This work is partially supported by grant CCR-
9503560 from the National Science Foundation at the
Laboratory for Information Security Technology at
George Mason University.

References

[KL95] George Koch and Kevin Loney. Oracle The
Complete Reference. Oracle Press, 1995.

[San97] Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-
ceedings of the 1st ACM Workshop on Role-
Based Access Control. ACM, 1997.

[SB97] Ravi Sandhu and Venkata Bhamidipati.
The URA97 model for role-based adminis-
tration of user-role assignment. In T. Y.
Lin and Xiaolei Qian, editors, Database
Security XI: Status and Prospects. North-
Holland, 1997.

[SB98] Ravi Sandhu and Venkata Bhamidipati.
Role-based administration of user-role as-
signment: The URA97 model and its Ora-
cle implementation. The Journal Of Com-
puter Security, 1998. in press.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Ed-
ward Coyne, Srinivas Ganta, and Charles
Youman. The ARBAC97 model for role-
based administration of roles: Preliminary
description and outline. In Proceedings of
2nd ACM Workshop on Role-Based Access
Control, Fairfax, VA, November 6-7 1997.
ACM.

[SCFY96] Ravi Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38{47, February 1996.

