
 1

  
 

Rule-Based RBAC with Negative Authorization 
 
 

Mohammad A. Al-Kahtani 
Computer Department of Saudi Air Defense 

mohammad_abdulla@yahoo.com 
 
 

Ravi Sandhu 
George Mason University & NSD Security  

sandhu@gmu.edu 
 

Abstract 
 

RBAC has proven to be a flexible and useful access 
control model in practice. Rule-Based RBAC family of 
models was developed based on RBAC to overcome some 
of its limitations. One particular model of this family, 
which we call RB-RBAC-ve, introduces the concept of 
negative authorization to the RBAC arena. This paper 
provides a more detailed analysis of RB-RBAC-ve. The 
analysis includes user authorization, conflict among rules, 
conflict resolution polices, the impact of negative 
authorization on role hierarchies and enforcement 
architecture. 
 
 
1. Introduction. 

 
Role-based access control (RBAC) has emerged as a 

widely deployed alternative to classical discretionary and 
mandatory access controls [1, 2 and 3]. Since roles in an 
organization are relatively persistent with respect to user 
turnover and task re-assignment, RBAC provides a 
powerful mechanism for reducing the complexity, cost, 
and potential for error of assigning users permissions 
within the organization. Conventional RBAC was 
designed with a closed-enterprise environment in mind 
where a team of security officers manually assign users to 
roles. However, the landscape of business and information 
technologies has changed dramatically in recent years. An 
increasing number of service-providing enterprises make 
their services available to their users via the Internet. 
There has been some work to extend present RBAC 
models so they can be used to manage users’ access to the 
enterprise services and resources over the Internet [4,5, 
and 6].  

Also, many enterprises have users (i.e. workers and/or 
clients) whose numbers can be in the hundreds of 
thousands or millions [7]. Typical examples are banks, 
utility companies, insurance companies and popular Web 
sites, to name a few. For such enterprises, manually 
assigning users to roles may  not be feasible, especially in 

case of external users, i.e. the enterprise customers and 
business partners.  

Moreover, RBAC is being supported by software 
products designed to serve large number of clients, such as 
popular commercial database management systems, e.g. 
Oracle, Informix, and Sybase [8].  

All of these factors mentioned above render the 
manual user-to-role assignment a formidable task because 
maintaining user-role assignment up-to-date is both costly 
and error-prone. Besides, automated assignment gives the 
enterprise an edge by extending its user-consumer 
business partnership. 

In fact, some enterprises with large customer bases 
have already implemented systems that assign and revoke 
users automatically [7], and many of them have achieved 
90-95% automation of administration [9]. Rule-Based 
RBAC (RB-RBAC) Family of models was suggested to 
provide a sound conceptual basis for the automation 
process and sets a benchmark for software 
implementations of the process [10, 11 and 16]. RB-
RBAC provides the specification needed to automatically 
assign users to roles based on a finite set of authorization 
rules defined by the enterprise, hence the name Rule-
Based RBAC or RB-RBAC for short. The  RB-RBAC 
family introduces negative authorization, represented by 
negative roles, to the RBAC world. The central 
contribution of this paper is to explore and analyze 
different aspects of negative authorization in RB-RBAC 
context. 

This paper is organized as follows. Section 2 provides 
an overview of related research. In section 3, RB-RBAC is 
revisited. In section 4, we introduce the RB-RBAC-ve 
model i.e. RB-RBAC with negative authorization. Section 
5 concludes the paper including a discussion of issues that 
we have not explored in this paper, though they are closely 
related to the topic discussed.  
 
2. Related Work. 
 

In the real world of access control, there are two well-
known decision policies [12]:  
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a. Closed policy: This policy allows access if there 
exists a corresponding positive authorization and 
denies it otherwise. 

b. Open policy: This policy denies access if there exists 
a corresponding negative authorization and allows it 
otherwise. 
Bertino et al. contends that the closed policy approach 

has a major problem in that the lack of a given 
authorization for a given user does not prevent this user 
from receiving this authorization later on. They therefore 
proposed an explicit negative authorization as blocking 
authorizations. Whenever a user receives a negative 
authorization, his positive authorizations become blocked 
[13]. 

Negative authorization is typically discussed in the 
context of access control systems that adopt open policy. 
There is an extensive amount of work in this regard, see 
for example [14] and [13]. The introduction of negative 
authorization brings with it the possibility of conflict in 
authorization, an issue that needs to be resolved in order 
for the access control model to give a conclusive result. 
The types of conflicts brought about by the negative 
authorization and conflict resolution polices are discussed 
in abundance outside RBAC literature. For example, 
Jajodia et al. suggest a model that is based on a logical 
authorization language that allows users to specify, 
together with the authorizations, the policy according to 
which access control decisions are to be made [15]. The 
key components of the model are objects, subjects, 
actions, and rules. Subjects who may be authorized to 
perform actions on objects include user, roles and groups. 
The unit of authorization is an action on an object. The 
authorization language expresses the policy by means of 
rules of different types. One type of rule is used to 
explicitly authorize users, roles or group. Another type of 
rule is used to derive further authorization based on those 
provided by the first type of rule. Any conflict that might 
arise with respect to authorization derivation is resolved 
using a third type of rule. Several types of conflicts and 
conflict resolution policies are suggested. RB-RBAC 
utilizes some of these policies as well as some new 
conflict resolution policies specified in this paper for the 
first time. In another work, Jajodia et al. provide formal 
definitions for several policies for authorization 
propagation and conflict resolution [12]. 

Negative authorization is rarely mentioned in RBAC 
literature, mainly because RBAC Models such as 
RBAC96 and the proposed NIST standard model are 
based on positive permissions that confer the ability to do 
something on holders of the permissions [2]. This is 
different from the semantics given to this concept in RB-
RBAC, as will be discussed in section 4. 

Al-Kahtani has proposed a family of models which 
can be used to dynamically assign users to roles based on a 
set of authorization rules defined by the enterprise. These 

rules take into consideration users’ attributes and any 
constraints set forth by the enterprise’s security policy. 
The Rule-Based RBAC (RB-RBAC) models provide a 
family of languages (Authorization Specification 
Languages or ASL for short) to express these rules. The 
models also define relations among rules, provide 
specification for derived induced hierarchies among the 
roles, and allow constraints specification. Figure 1 shows 
members of the RB-RBAC family. Model A is the most 
basic among the family. This model allows the 
specification of a set of authorization rules that can be 
used to assign users to roles based on users’ attributes. 
Model B extends Model A to allow the specification of 
negative authorization (Model B1) and mutual exclusion 
(Model B2) by extending the ASLA language. The extended 
language is called ASLB1 and ASLB2, respectively. Model C 
extends Model A to allow constraints specification. In the 
following two sections we will briefly discuss model A 
which is the basic model and then we introduce negative 
authorization to RB-RBAC which yields model B1 which 
we name RB-RBAC-ve in this paper. 
 
 
 
 
 
 
 
 
 

Figure 1 :RB-RBAC Family 

 
3. RB-RBAC Model A. 
 
3.1 Model A Basic Concepts. 

 
This model is discussed in [10,11 and 16]. The main 

components of the RB-RBAC model A are the sets U, AE, 
R, and P which represent users, attribute expressions,  
roles, and  permissions respectively (Figure 1). 
 

 
Figure 2: RB-RBAC Main Components 

The U, R, and P sets are imported from RBAC96. In 
RB-RBAC, the security policy of the enterprise is 
expressed in the form of a set of authorization rules. Each 
rule takes as an input the attributes expression (a member 
of AE set) that is satisfied by a user (a member of U set) 
and produces one or more roles (a member of R set). An 
attribute expression is a well-formed formula in 

U A R P
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Language) 
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propositional logic that specifies what combination of 
attributes values a user must satisfy in order to be 
authorized to roles specified in the rule. The attributes 
expressions can be stated using the language provided by 
the model. Syntactically, a rule has two parts: 
a. The left hand side (LHS) of a rule is an attribute 

expression.  
b. One or more role(s) in the right hand side (RHS). 
If u satisfies the attribute expression, u is authorized to the 
role(s) specified in RHS of the rule. The following is an 
example of a rulei:  

aei ⇒ rg 
where aei is the attribute expression and rg is the produced 
role. If user u satisfies aei, then u is authorized to all the 
roles in the right hand side of rulei. To maintain user-role 
authorization the set URAuth is defined as follows:  

URAuth = {(u,r)| (∃rulei)[u satisfies aei ∧ r 
∈RHS(aei)} 
If (u,r) ∈ URAuth then this means that u is authorized 

to role r. This set is the key component of RB-RBAC 
since it captures the semantics of user-role assignment in 
the models. Only a user who has authorization on roles 
that are specified in RHS can activate these roles. 
Activating a role enables the user to execute the 
permissions assigned to that role. A user can activate one 
or more of his authorized roles in a session. Different 
sessions belonging to the same user can have different 
roles.  

There is an implicit “OR” among the rules. If u 
satisfies one or more rules that produce different roles, 
then he is authorized to activate any combination of these 
roles. Upon receiving a user request of a role, the system 
that implements RB-RBAC searches the authorization 
rules set to find a rule which the user satisfies such that the 
rule yields that requested role. As a user satisfies more 
rules, the set of roles that he is authorized to assume does 
not diminish. Thus Model A is monotonic.  
 
3.2 User States. 

 
A user can be in any of several states wrt a specific 

role. For a given role r, we distinguish the following user’s 
states:  

a. Potential (P): user u is authorized to role r but has not 
activated it yet. 

b. Revoked (R): user u has activated role r at least once 
but is not currently authorized to activate it. 

c. Not-candidate (N): user u has not activated role r and 
is not currently authorized to activate it because he 
does not have the required attributes for assuming r, 
i.e. u is not authorized to r. 

d. Deleted (Del): user u has been deleted from the 
system by an authorized individual such as the System 
Security Officer (SSO). 

e. Active (Act): refers to the state where the user is 
currently active in the role. 

f. Dormant (D): After deactivating a role, the user 
becomes dormant with respect to that specific role, i.e. 
in “D” state. 
The importance of this distinction among different 

states of users becomes clear when specifying constraints 
and enforcing policies like the Chinese Wall.  Figure 2 
shows the state diagram of a user with respect to a single 
role.  

To express authorization rules, RB-RBAC provides 
ASLA a language based on a context-free grammar. The 
language syntax and semantics are detailed in [10]. 

 
Figure 3: User's State Diagram with Sessions 

    
3.3  Seniority Among Authorization Rules. 

 
Seniority can be determined among the rules based on 

attributes expressions on their left hand sides. The “≥” 
symbol, read “is senior to”, represents seniority relation 
among rules:  

rulei ≥ rulej ↔ (aei → aej) 
where aei and aej are the LHS of rulei and rulej 
respectively. This implies that users who satisfy rulei also 
satisfy rulej and, hence, are authorized to the roles 
produced by rulej. The seniority relation on authorization 
rules, i.e. among attributes expressions forming the LHS 
of the rules, induces a hierarchy among the roles forming 
the RHS of these rules. This induced role hierarchy (IRH) 
captures inheritance of user-role assignment. If ri is senior 
to rj then the users who satisfy the LHS of the rule that 
yields ri will also satisfy the rules that yield rj. As a result, 
the set of ri users is a subset of rj users. In other words, 
user inheritance flows downwards in the IRH graph, that 
is, a junior role in IRH inherits all the users assigned to its 
seniors.  In general IRH is a quasi-order, i.e., it is reflexive 
and transitive.   
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3.4 Alternative Ways to Gain Authorization.  
 
There are three approaches to assign roles to users: 

1. Implicit Assignment: Based on certain criteria, users are 
automatically assigned to roles. This is what Model A 
does thus far.  

2. Hybrid Assignment: Besides the automatic assignment, 
the SSO can manually assign users to roles. 

3. Explicit Assignment: In this approach a person with 
proper authority such as the SSO manually assigns users 
to roles. This is what traditional RBAC follows. 

In [16] Al-Kahtani argues that there are situations 
where pure implicit assignment is not flexible enough. 
Thus, to provide flexibility, the concept of can_assume 
was introduced. The SSO may use can_assume relation to 
explicitly authorize users who are authorized to a role, say 
rg, to another role, rh, for a certain duration d starting at a 
specific time t. The SSO specifies the duration and the 
starting time. As a result, the user(s) in role rg is authorized 
to activate role rh at time t for duration of d. The 
motivation and specification of can_assume relation is 
detailed in [16]. Appendix A provides a summary of 
relevant definitions extracted from RB-RBAC model.  
 
4. RB-RBAC-ve Model. 
 
4.1 Introduction.   

 
RB-RBAC-ve extends Model A to allow the 

specification of negative authorization (called Model B1 in 
[16]). This extension has an impact on user authorization, 
formally represented by URAuth set and it may cause 
conflict among rules. RB-RBAC-ve is the first RBAC 
model that provides detailed analysis of different aspects 
of negative authorization in an RBAC context. In this 
section, we analyze this conflict and present several novel 
conflict resolution polices. The definition of URAuth is 
modified to accommodate the semantics of negative 
authorization. The new definition takes into consideration 
conflict resolution policies in effect. We also discuss the 
impact of negative authorization on URAuth, IRH, and 
RB-RBAC enforcement architecture. 

To specify a negative authorization we use the ASLB1 
language which imports the syntactic constructs of ASLA 
(Appendix B) but it modifies the syntax of Roles as 
follows [16]:  

Roles ::= [┐] Role  
role-set ::= Role | Role||,||role-set 

The syntax above allows specifying negative 
authorization on roles such as the following: 

aek ⇒ ¬ ri 
The rule above states that once a user satisfies aek the 
system that implements RB-RBAC prohibits that user 
from assuming ri.  

4.2 Motivation. 
 
The motivations to use negative authorization are not 

immediately apparent in environments where RBAC is 
applied. Even though user-role assignment could be 
decentralized [17], it is not left to users’ discretion to 
assign other users to roles. Instead a small number of 
individuals (e.g. SSOs) are entrusted with applying the 
enterprise security policy regarding user-role assignment. 
However, since RB-RBAC automates this process, 
negative authorization provides an extra safeguard, since it 
is not always easy to foresee all possible combinations of 
roles a user can assume based on his attributes, which 
change over time. Negative authorization helps in 
blocking any user whosoever satisfies certain criteria 
(expressed as attributes expression) from assuming certain 
roles. Also, it can be used to block receiving authorization 
of certain roles via can_assume and can_delegate 
relations. The SSO can use can_assume relation to 
explicitly authorize users who are authorized to a role, say 
rg, to another role, rh, for a certain duration d starting at a 
specific time t. As a result, the user(s) in role rg is 
authorized to activate role rh at time t for duration of d. 
Also, he may use can_delegate relation to permit regular 
users to delegate their memberships in specific roles to 
other users. To motivate the use of negative authorization 
in the context of RBAC, consider the example of a 
military unit that has a Commander and four staff officers, 
usually known as G1 through G4 as depicted in Figure 3. 
 

 
Figure 4 : RBAC Hierarchy for a Battalion 

The commander can delegate his authority to any of 
his staff officers as long as the staff officer meets certain 
criteria specified by the military regulations.  

Table 1 

Attributes in the System: 
a1: rank-type = officer 
a2: Staff course = T 
a3:  Leadership  course = T 
a4:  Rank ≥ Lt. Colonel 
a5: Assignment Order = T 
Authorization Rules: 
a1∧ a2 ⇒ {G1, G2, G3, G4} 

a1∧ a2∧ a3 ∧a4 ∧ a5 ⇒ Commander 

¬a4 ⇒ ¬Commander 
can_delegate(Commander,  G1, d, t) 

 

Commander 

G1 G4 G2 G3 
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In Table 1, we show a security policy that specifies a 
possible real world situation. The policy uses negative 
authorization to prevent a Commander from delegating his 
role to a staff officer whose rank is lower than a Lt. 
Colonel. 
 
4.3 Analysis of RB-RBAC-ve . 
 
4.3.1 Conflict Due to Negative Authorization.      

Introducing “┐” to the RHS may lead to conflict in 
the state of a single user wrt a single role. The conflict is 
due to simultaneous positive and negative authorizations. 
In Figure 5, the symbol  “⇒” in a  rule means that attribute 
expression aei produces the roles listed to the right of the 
arrow. Using the set of authorization rules shown in the 
figure, the following are several variations of conflict:   
a. Case 1: Conflict among unrelated rules like the one 

between rule2 and rule3. If u satisfies rule2 and rule3 
simultaneously then u should be authorized to activate 
r1 (i.e. u is in P state wrt r1) and denied r1 at the same 
time (i.e. u is in N state wrt r1). This case is 
represented by the following: 
(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r ∈RHS(aei) ∧ 

¬r ∈RHS(aej) 
Where U_AE is defined such that U_AE = {(u, aei)| (u, 
aei) ∈U×AE ∧ u satisfies aei}. (u, aei) ∈U_AE means 
that u is authorized to RHS(aei). 

b. Case 2: Conflict among related rules: rule3 and rule5 
are conflicting because if u satisfies rule3 then he is 
denied r1 (i.e. u is in N state wrt r1), but at the same 
time, authorized to assume r1 (i.e. u is in P state wrt r1) 
because rule3 ≥ rule5. This case is represented by the 
following: 

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r 
∈RHS(aei) ∧ ¬r ∈RHS(aej)  
∧ ((aei → aej)∨ (aej → aei)) 

c. Case 3: Conflict between implicit assignment i.e. via 
an authorization rule and explicit assignment i.e. via 
can_assume or can_delegate. Suppose that the SSO 
issued the following: 

can_assume(r4, r3, t, d) 
This allows users who are authorized to r4 to activate 
r3. If u satisfies ae1, i.e. u is in N state wrt r3, and at 
the same time is authorized to r4. Nonetheless, the 
can_assume relation above authorizes u to r3, which 
leads to a conflict.     

 

 
Figure 5 

 
4.3.2 Conflict Resolution Policies. Conflict resolution 
policies have been discussed extensively in the literature, 
see for example, [13, 15 and 12]. Most notable among 
them are:  
a. Denial Takes Precedence (DTP): Negative 

authorizations are always adopted when conflict exists.  
b. Permission Takes Precedence (PTP): Positive 

authorizations are always adopted when conflict exists. 
These two policies in their original form suffer the 
following deficiencies: 
a. They are very rigid in the sense that they do not allow 

specification of special cases that violate the policy 
enforced. Suppose a hospital has a policy that has the 
following authorization rules: 
rule1: No. of years in residency ≤ 1 ⇒ intern  
rule2: No. of years in residency ≤ 1 ⇒ ¬ ER_doctor  
Naturally, during the holiday seasons large numbers 
of the medical staff take their yearly vacation. 
However, this period of the year witnesses a surge in 
the number of people admitted to the emergency 
room. Clearly, additional medical staff is needed to 
handle this surge in demand of medical care. The 
administration may allow interns to work in the ER, 
and hence authorizes them to role ER-doctor. 
One way to handle this is to change the hospital 
policy by deleting rule2. This course of action is not 
preferred because it might lead to unseen side effects. 
Also, it might lead to a breach in the security policy if 
the SSO forgets to add it back after the holiday season 
is over. A better solution is to use can_assume 
relation as follows: 
can_assume(intern, ER_doctor, t, d) 
This authorizes interns to activate the role ER_doctor, 
i.e. to work in the emergency room. can_assume 
conflicts with rule2. However, if DTP is enforced, the 

rule1:  ae1  ⇒ ¬r3, r4 

rule2: (ae2) ⇒ r1

rule3: (ae3) ⇒ ¬r1, r2 

rule4: (ae4) ⇒ r2

rule5: (ae5) ⇒ r1

 

 
such that: 
rule1 ≥ rule2, 
rule1 ≥ rule3≥ rule5, 
rule1 ≥ rule4≥ rule5 

rule2: 
 

RHS = r1

rule3: 
 

RHS = ¬r1, r2 

rule5: 
 

RHS = r1

rule4: 
 

RHS = r2 

rule1: 

RHS = ¬r3, r4 
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interns will not be able to work in the ER unless rule2 
is deleted. What is needed in this situation is a relaxed 
version of DTP that allows the stating of this 
exception in the security policy. 

b. DTP with negative authorization is useful in a closed 
policy environment. However, PTP renders negative 
authorization meaningless in such environments. This 
is so because wrt any role that is associated with 
negative authorization, there could be only one of the 
following possibilities: 
i. Conflict may arise: Since PTP is enforced, the 

negative authorization is ignored. 
ii. No conflict may arise: There is no need for the 

negative authorization since we are assuming a 
closed policy. 

Based on that, we argue that there is a need for more 
flexible conflict resolution policies. The following section 
discusses newly formulated conflict resolution policies; 
some of them specify DTP policy with varying degrees of 
flexibility. 

 
4.3.2.1 Localized DTP (LDTP). DTP policy resolves any 
conflict in favor of denial. This is rather restrictive since it 
means the more rules a user satisfies, the higher is the risk 
that he might be denied access to a role due to a conflict in 
authorization which is counter-intuitive. We propose 
modifying the DTP policy such that the conflict among 
unrelated rules is resolved in favor of permission. In other 
words, the denial is localized to conflict among 
comparable rules. We name the modified policy: the 
Localized DTP, or LDTP for short. Based on this, 
applying the LDTP policy on the three cases of conflict 
mentioned in the previous section results in the following 
authorizations: 

Case 1: (u,r) ∈ URAuth i.e. u is authorized to activate 
role r. 
Case 2: (u,r) ∉ URAuth 
Case 3: (u,r) ∉ URAuth 
 

4.3.2.2 Flexible DTP (FDTP). This policy enforces DTP 
in cases where conflict occurs among authorization rules 
but it enforces PTP if conflict occurs between the implicit 
assignment and explicit assignment. Thus, when FDTP is 
enforced, in the example of the hospital discussed above, 
an intern can work as an ER doctor via can_assume 
relation without the need to remove rule2 from the 
authorization rules set. In other words, FDTP policy 
authorizes u to role r if there is no conflict wrt role r, or if 
there is a can_assume relation which authorizes u to role r 
even if u receives a negative authorization wrt to r. 
Applying the FDTP policy on the three cases of conflict 
mentioned in the previous section results in the following 
authorizations: 

Case 1: (u,r) ∉ URAuth 
Case 2: (u,r) ∉ URAuth 

Case 3: (u,r) ∈ URAuth 
 

In Table 2 we summary how the afore-discussed 
policies compare and contrast.  

Table 2 

Conflicting Parties 

Policy 
↓ 

Comparable 
Rules 

Non-
comparable 

Rules 

Rules and SSO-
initiated 

authorization 
(can_assume and 

can_delegate)  
DTP Denial Denial Denial 
PTP Permission Permission Permission 

LDTP Denial Permission Denial 
FDTP Denial Denial Permission  
 

The entry at the intersection of the fourth row with the 
third column, for example, means that under LDTP if the 
conflicting parties are non-comparable rules, then 
permission prevails.  

 
4.3.2.3 Weighted Rules. Authorization rules are assigned 
weights according to criteria determined by the enterprise 
such as: 
a. The seniority of the rule, so rule3 has higher weight 

than rule5 in Figure 4 and, thus, the negative 
authorization is enforced.  

b. When rules administration is decentralized, the SSO 
may authorize a junior security officer (JSO) to 
administer a specific group of rules. Conflict may 
arise among rules specified by SSO and JSO. One 
way to resolve this is by considering the seniority of 
the rule issuer. Based on this, an SSO-issued rule has 
higher weight than a rule issued by a junior security 
officer and, thus, the authorization obtained via the 
higher rule prevails. 

 
4.3.2.4 Labeled Roles. This policy requires assigning 
label to each role. This label could be either one of the 
following values: DTP or PTP. If rg and rh are roles such 
that they are respectively labeled DTP and PTP, then in 
case of conflict wrt rg, DTP is always enforced, while PTP 
is enforced in case of rh. The notion and notation of role 
ranges [17] could be utilized in this context. An 
assign_label relation can be defined as follows: 

 assign_label ⊆ {DTP, PTP}× 2IR 
So, assign_label(DTP, [rg, rh]) assigns DTP label to all 
roles in the range [rg, rh].  
 
4.3.3 Users' Authorization. We have discussed several 
policies that can be deployed to resolve conflicts that may 
arise among authorization appointed to a specific user. In 
this section, we modify the definition of the set "URAuth" 
under selected policies to reflect the impact of conflict, if 
it exists, on user’s authorization. While it is possible to do 
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this with respect to all the conflict resolution policies that 
we have discussed, for the sake of brevity, we choose to 
focus on PTP, DTP, LDTP and FDTP.  

Definition 1 

1. URAuth, A, and B are imported from Model A, and are 
mentioned here for convenience:  
URAuth= {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r  
        ∈RHS(aei)} 
A= RHS of URAuth above. 
B= (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume(r’, r, t, d ) ∧ can_assume has not expired ] 

2. Let C = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)] 
which means that user u has a negative authorization wrt 
r via satisfying a rule rulej . 

3. Let C’= ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( 
(aej → aei) ∨ (aei → aej)] which means that user u has a 
negative authorization wrt r via satisfying another rule 
rulej that is comparable to a rule that positively 
authorizes u to r. 

4. URAuth  varies according to the policy enforced: 
a. PTP: URAtuh in PTP with/without can_assume is 

similar to the corresponding URAtuh in Model A. 
b. DTP : URAuthDTP = A ∧ C , or 

URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r 
∈RHS(aei) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r 
∈RHS(aej)]} 

c.  DTP with can_assume: URAuthDTP with can_assume =  (A 
∨ B) ∧ C , or 
URAuthDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) 
∈U_AE ∧ r ∈RHS(aei)]   
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ 
can_assume(r’, r, t, d ) ∧ can_assume has not expired 
]) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]} 

d. LDTP: We modify the term C to require the 
conflicting rules to be comparable. Call the modified 
term C', thus URAuthLDTP = A ∧ C' 
URAuthLDTP = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r 
∈RHS(aei)] ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r 
∈RHS(aej) ∧ ( (aej → aei) ∨ (aei → aej)] )  

e. LDTP with can_assume: URAuthLDTP with can_assume = 
(A ∨ B) ∧ C'  
URAuthLDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) 
∈U_AE ∧ r ∈RHS(aei)] 
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume(r’, r, t, d ) ∧ can_assume has not expired 
]) 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( (aej 
→ aei) ∨ (aei → aej)] } 

f. FDTP: URAuthFDTP = URAuthDTP 
g. FDTP with can_assume: URAuthFDTP with can_assume = (A 

∧ C ) ∨ B 

URAuthFDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) 
∈U_AE ∧ r ∈RHS(aei)] 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ] ) 
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume (r’, r, t, d ) ∧ can_assume has not expired 
]} 

Table 3 summaries the definition of URAuth under 
different policies. 
 

Table 3 

 

 
 
 
 
 

 
4.3.4 Impact on Roles Hierarchies.  The concept of a 
given role hierarchy (GRH) that represents the current 
business practice of the enterprise is discussed in [11] and 
[16]. The GRH is identical to role hierarchies defined in 
RBAC96, that is, it is permission-driven: 

(ri ≥GRH rj)  → rj permissions ⊆ r j permissions 
where ≥GRH has the same semantics as in RBAC96. As 
such, inheritance of permissions flows upward in the 
GRH. When a GRH is present, rulei such that aei ⇒ ┐rg 
may have one of the following two possible semantics: 

a. Propagation prohibited: Users who satisfy aei should 
be prohibited from assuming rg. This is the 
interpretation given previously. 

b. Propagation allowed: Negative authorization 
propagates upward in GRH such that users who 
satisfy aei should be prohibited not only from 
assuming rg, but also from assuming any role rk such 
that rk ≥GRH rg. This ensures that the user cannot 
circumvent the system by assuming rk, whose 
permissions are a superset of rg’s. From a functional 
perspective, this may not be desirable since it is 
usually the case that the prohibition is targeting users 
who merely satisfy rulei, but not those who can 
assume roles higher in the hierarchy by virtue of 
satisfying rules senior to rulei, which usually means 
that they meet higher security requirement. Allowing 
the negative authorization to propagate upward 
requires modification of the definition of URAuth. 
For a user to be authorized to a role r, not only do we 
require that u has positive authorization wrt r and 
does not have negative authorization wrt r, but we 
also require that u does not have negative 
authorization wrt any role r' such that r ≥ GRH r' i.e. r is 
senior to r' in GRH. 

Policy URAuth 
 Without 

can_assume 
With can_assume 

PTP A ( A ∨ B) 
DTP A ∧ C ( A ∨ B) ∧ C 
LDTP A ∧ C' (A ∨ B) ∧ C' 
FDTP A ∧ C (A ∧ C ) ∨ B 



 8

Definition 2 

URAuth definition is modified to take propagation of 
negative authorization into account. We need to modify 
term C as follows: 
Term C becomes: Cmodified = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ 
¬r' ∈RHS(aej) ∧ r ≥GRH r'] 

Notice that we can replace the term C' in Definition 8 
with Cmodified  since r ≥GRH r' implies that the rules that 
generate r  and r' are comparable.  
 
4.3.5 User State Diagram. Suppose that the system that 
implements RB-RBAC has the following set of rules only: 

rulei: aei ⇒  rg 

rulej: aej ⇒ rh 

rulek: aek ⇒ ┐rh 
Let’s consider the following scenarios assuming DTP 

is in effect and using Figure 2: 
Scenario 1: Assume that u satisfies rulej only and, thus, 
(u, rh) ∈URAuth. In other words, u could be in any of the 
following states wrt rh: P, D, or Act. A change in u’s 
attributes or in the authorization rules may cause the 
system that implements RB-RBAC to invoke rulek 
assigning negative authorization to u wrt rh. Accordingly, 
(u, rh) ∉URAuth and u’s state will be changed from P to N 
or from D or Act to R. The arrows labeled ae/r represent 
this.  
Scenario 2: Assume that u satisfies rulei only. Hence, (u, 
rg) ∈URAuth. As a result, u could be in any of the 
following states wrt rg: P, D, or Act. A change in u’s 
attributes or in the authorization rules that cause the 
system that implements RB-RBAC to invoke rulek 
assigning negative authorization to u wrt rh. If rg ≥ rh and 
propagation is allowed, u’s state will be changed as in 
scenario 1.   

A change in u’s attributes or in the authorization rules 
may make u no more able to satisfy rulek, and thus, u is no 
more authorized to ¬rh. Also, u could become unable to 
satisfy rulek either because it was modified or deleted. 
This results in changing his state from N back to P, or 
from R to D. 
 
4.3.6  Enforcement Requirements. Enforcing the 
negative authorization requires that the system which 
implements RB-RBAC has access to all relevant 
attributes. This requirement affects the architectural 
options that can be used to enforce RB-RBAC-ve since the 
system must either have these attributes under its control 
or be granted access to them when needed. If this is not the 
case, then users may evade the model. Consider rules rule2 
and rule3 in Figure 4. If these rules were in public domain 
or were somehow unconcealed, then users whose 
attributes satisfy both ae2 and ae3 can avoid rule3 simply 
by not providing the attributes necessary to satisfy ae3. 
Though this may not be a problem under PTP policy, it 

amounts to a security breach under DTP policy. If RB-
RBAC has access to users’ attributes, DTP policy can be 
enforced.  
 
4.3.7 Monotonicity. RB-RBAC-ve permits specifying the 
rules such that the set of roles that a user is authorized to 
decreases as the number of rules he satisfies increases. 
Suppose that we have (┐rg) ∈ RHS(aei) and {rg , rh} ⊆ 
RHS(aej). If a user u satisfies rulej, then he is authorized to 
rg and rh. In case of DTP, if u satisfies both rules, he is 
authorized to rh only. The above shows that RB-RBAC-ve 
is non-monotonic.  
   
5. Discussion and Future Work 

 
We have shown how to modify RB-RBAC so that it 

allows negative authorization. Negative authorization in 
the context of RBAC is a novel concept. RB-RBAC-ve is 
the first RBAC model that provides detailed analysis of 
different aspects of negative authorization in an RBAC 
context. This analysis includes providing semantics for the 
negative authorization in this new territory, identifying 
cases of conflict, suggesting several new conflict 
resolution policies and analyzing the impact of negative 
authorization on IRH, GRH and any RB-RBAC 
enforcement architecture.  

The conflict resolution policies presented requires 
further analysis. For example, in the Labeled Roles 
resolution policy, there are some subtle issues that need to 
be analyzed further. Suppose we have two roles rg and rh 
such that rg ≥ rh. Suppose also that we assign the labels 
DTP and PTP to rg and rh respectively. If u satisfies 
authorization rules such that he has conflict in both roles, 
then based on the labels assigned to the roles, u is 
authorized to rh but not to rg. This reduces the privileges 
available to u, which is not problematic since senior roles 
are naturally assigned more permission and, as thus, it is 
wise to err on the side of denial in case of conflict. 
However, assume that the labels were reversed and that u 
has conflict in both roles. The resolution will be such that 
u is authorized to rg but not to rh, which is very 
problematic since rh’s permissions are a subset of rg’s 
permissions. To follow this policy strictly, we need to 
suspend this subset of permissions, which may render rg 
deficient or even meaningless. We have not found any 
practical example in which this scenario is applicable. So, 
when assigning labels to roles, we require that the roles 
higher in the hierarchy receive labels of equal or higher 
level than their juniors. We assume that DTP label is 
higher than PTP. We believe this requirement is 
reasonable since senior roles are naturally assigned more 
permission, so they need more protection. 

Another candidate for future work is introducing the 
concept of parameterized roles to RB-RBAC family and 
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analyzing its impact on different aspects of the models 
such as user authorization, IRH. 
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Appendix A: Relevant Definitions from RB-RBAC 
 
U, R, and P, imported from RBAC96, are the sets of users, roles, and permissions respectively.  In addition RB-RBAC 
Model A has the following components.  

2. A set of attribute expressions AE.  Elements of AE are denoted as ae ∈ AE (See the language in section 
3.2.5.1). 

3. A set of authorization rules where each rule rulei is written as: aei ⇒RHS where ⇒ is read “generates” or 
“yields” and RHS ⊆ R. 

4. Function RHS(aei) = RHS returns the set of roles that user u who satisfies aei is authorized to activate. 
5. U_AE = {(u, aei)| (u, aei) ∈U×AE ∧ u satisfies aei}, (u, aei) ∈U_AE means that u is authorized to RHS(aei). 
6. IR is the set of roles produced by all authorization rules:  

IR = { rg | (∃aei) [aei ∈ AE ∧ rg∈ RHS(aei)} 
7. URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)}. For the sake of convenience, we will call the right 

hand side of this definition as "A". We will refer to it in future definitions to simplify the relation of different 
models to each other. 

The concept of session and the functions sessions and user are imported from RBAC96:   
8. sessions : U →2S, a function mapping each user ui to a set of sessions  
9. user : S → U, a function mapping each session si to the single user user(si) (constant for the session's lifetime)  
10. URA ⊆ URAuth, URA = {(u,r)| (u, r) ∈ URAuth ∧ u is currently activate wrt r } 
11. URD ⊆ URAuth, URD = {(u,r)| (u, r) ∈ URAuth, ∧ u has activated r at least once but is not currently active 

wrt r } 
12. URP ⊆ URAuth, URP = {(u,r)| (u, r) ∈ URAuth ∧ u has never activated r} 

URAuth = URA ∪ URD ∪ URP 
URA ∩ URD = ∅  
URA ∩ URP = ∅  
URD ∩ URP = ∅ 

13. URN ⊆ U×AE, URN = {(u,r)| (u, r) ∉ URAuth ∧  u has not activated r in the past} 
14. URR ⊆ U×AE, URR = {(u,r)| (u, r) ∉ URAuth ∧ u had activated r at least once in the past } 
15. User_State(u, r) = 

Case: 
a. (u, r) ∈ URP: User_State(u, r) = P. 
b. (u, r) ∈ URA: User_State(u, r) = Act 
c. (u, r) ∈ URD: User_State(u, r) = D. 
d. (u, r) ∈ URR: User_State(u, r) = R. 
e. (u, r) ∈ URN: User_State(u, r) = N. 
f. Del: u is deleted by SSO. 
These states are mutually exclusive.  The state Del is a terminal state. 

16. roles : S → 2R, a function mapping each session si to a set of roles roles(si) ⊆ {r | (user(si), r) ∈ URAuth} 
(which can change with time) 

17. can_assume relation: Specification is provided in [16] 
18. URAuthwith can_assume = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)   

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ can_assume has not 
expired ] )} 
Let's call the second term in the right hand side B, and hence we say: 
URAuthwith can_assume = A ∨ B 

19. (rulei ≥ rulej) ↔ (aei → aej).  
20.  IRH ⊆ IR x IR is a relation such that rg is senior to rh ( (rg, rh) ∈ IRH is also written as rg ≥ rh ):  

IRH= {(rg ,rh) | (∀rulei) [(aei⇒ rg) → (∃rulej) [rulei ≥ rulej Λ aej⇒ rh]]} 
Intuitively, this means rg is senior to rh in IRH if every rule that produces rg is senior to a rule that produces rh. 

21. IRH = {(rg ,rh) | (u, rg) ∈URAuth  → (u, rh) ∈URAuth} 
22. IR  is the set of  equivalence classes that results from defining relation “mutually senior to one another” on IR 
such that:  

[ri] = { rj | ri and rj are mutually senior to one another} 
23. IRH  = {([rg] ,[rh]) | ∀u∀rg∈[rg]∀rh∈[rh] [((u,rg)  ∈ URAuth → (u,rh)  ∈ URAuth)  

∧ ((u,rh)  ∈ URAuth → (u,rg)  ∈ URAuth)]} 
24. IRH and GRH are the sets of roles in IRH and GRH respectively.  
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Appendix B: Syntax Diagrams of ASLA Language  
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