
 1

Rule-Based RBAC with Negative Authorization

Mohammad A. Al-Kahtani
Computer Department of Saudi Air Defense

mohammad_abdulla@yahoo.com

Ravi Sandhu
George Mason University & NSD Security

sandhu@gmu.edu

Abstract

RBAC has proven to be a flexible and useful access
control model in practice. Rule-Based RBAC family of
models was developed based on RBAC to overcome some
of its limitations. One particular model of this family,
which we call RB-RBAC-ve, introduces the concept of
negative authorization to the RBAC arena. This paper
provides a more detailed analysis of RB-RBAC-ve. The
analysis includes user authorization, conflict among rules,
conflict resolution polices, the impact of negative
authorization on role hierarchies and enforcement
architecture.

1. Introduction.

Role-based access control (RBAC) has emerged as a

widely deployed alternative to classical discretionary and
mandatory access controls [1, 2 and 3]. Since roles in an
organization are relatively persistent with respect to user
turnover and task re-assignment, RBAC provides a
powerful mechanism for reducing the complexity, cost,
and potential for error of assigning users permissions
within the organization. Conventional RBAC was
designed with a closed-enterprise environment in mind
where a team of security officers manually assign users to
roles. However, the landscape of business and information
technologies has changed dramatically in recent years. An
increasing number of service-providing enterprises make
their services available to their users via the Internet.
There has been some work to extend present RBAC
models so they can be used to manage users’ access to the
enterprise services and resources over the Internet [4,5,
and 6].

Also, many enterprises have users (i.e. workers and/or
clients) whose numbers can be in the hundreds of
thousands or millions [7]. Typical examples are banks,
utility companies, insurance companies and popular Web
sites, to name a few. For such enterprises, manually
assigning users to roles may not be feasible, especially in

case of external users, i.e. the enterprise customers and
business partners.

Moreover, RBAC is being supported by software
products designed to serve large number of clients, such as
popular commercial database management systems, e.g.
Oracle, Informix, and Sybase [8].

All of these factors mentioned above render the
manual user-to-role assignment a formidable task because
maintaining user-role assignment up-to-date is both costly
and error-prone. Besides, automated assignment gives the
enterprise an edge by extending its user-consumer
business partnership.

In fact, some enterprises with large customer bases
have already implemented systems that assign and revoke
users automatically [7], and many of them have achieved
90-95% automation of administration [9]. Rule-Based
RBAC (RB-RBAC) Family of models was suggested to
provide a sound conceptual basis for the automation
process and sets a benchmark for software
implementations of the process [10, 11 and 16]. RB-
RBAC provides the specification needed to automatically
assign users to roles based on a finite set of authorization
rules defined by the enterprise, hence the name Rule-
Based RBAC or RB-RBAC for short. The RB-RBAC
family introduces negative authorization, represented by
negative roles, to the RBAC world. The central
contribution of this paper is to explore and analyze
different aspects of negative authorization in RB-RBAC
context.

This paper is organized as follows. Section 2 provides
an overview of related research. In section 3, RB-RBAC is
revisited. In section 4, we introduce the RB-RBAC-ve
model i.e. RB-RBAC with negative authorization. Section
5 concludes the paper including a discussion of issues that
we have not explored in this paper, though they are closely
related to the topic discussed.

2. Related Work.

In the real world of access control, there are two well-
known decision policies [12]:

 2

a. Closed policy: This policy allows access if there
exists a corresponding positive authorization and
denies it otherwise.

b. Open policy: This policy denies access if there exists
a corresponding negative authorization and allows it
otherwise.
Bertino et al. contends that the closed policy approach

has a major problem in that the lack of a given
authorization for a given user does not prevent this user
from receiving this authorization later on. They therefore
proposed an explicit negative authorization as blocking
authorizations. Whenever a user receives a negative
authorization, his positive authorizations become blocked
[13].

Negative authorization is typically discussed in the
context of access control systems that adopt open policy.
There is an extensive amount of work in this regard, see
for example [14] and [13]. The introduction of negative
authorization brings with it the possibility of conflict in
authorization, an issue that needs to be resolved in order
for the access control model to give a conclusive result.
The types of conflicts brought about by the negative
authorization and conflict resolution polices are discussed
in abundance outside RBAC literature. For example,
Jajodia et al. suggest a model that is based on a logical
authorization language that allows users to specify,
together with the authorizations, the policy according to
which access control decisions are to be made [15]. The
key components of the model are objects, subjects,
actions, and rules. Subjects who may be authorized to
perform actions on objects include user, roles and groups.
The unit of authorization is an action on an object. The
authorization language expresses the policy by means of
rules of different types. One type of rule is used to
explicitly authorize users, roles or group. Another type of
rule is used to derive further authorization based on those
provided by the first type of rule. Any conflict that might
arise with respect to authorization derivation is resolved
using a third type of rule. Several types of conflicts and
conflict resolution policies are suggested. RB-RBAC
utilizes some of these policies as well as some new
conflict resolution policies specified in this paper for the
first time. In another work, Jajodia et al. provide formal
definitions for several policies for authorization
propagation and conflict resolution [12].

Negative authorization is rarely mentioned in RBAC
literature, mainly because RBAC Models such as
RBAC96 and the proposed NIST standard model are
based on positive permissions that confer the ability to do
something on holders of the permissions [2]. This is
different from the semantics given to this concept in RB-
RBAC, as will be discussed in section 4.

Al-Kahtani has proposed a family of models which
can be used to dynamically assign users to roles based on a
set of authorization rules defined by the enterprise. These

rules take into consideration users’ attributes and any
constraints set forth by the enterprise’s security policy.
The Rule-Based RBAC (RB-RBAC) models provide a
family of languages (Authorization Specification
Languages or ASL for short) to express these rules. The
models also define relations among rules, provide
specification for derived induced hierarchies among the
roles, and allow constraints specification. Figure 1 shows
members of the RB-RBAC family. Model A is the most
basic among the family. This model allows the
specification of a set of authorization rules that can be
used to assign users to roles based on users’ attributes.
Model B extends Model A to allow the specification of
negative authorization (Model B1) and mutual exclusion
(Model B2) by extending the ASLA language. The extended
language is called ASLB1 and ASLB2, respectively. Model C
extends Model A to allow constraints specification. In the
following two sections we will briefly discuss model A
which is the basic model and then we introduce negative
authorization to RB-RBAC which yields model B1 which
we name RB-RBAC-ve in this paper.

Figure 1 :RB-RBAC Family

3. RB-RBAC Model A.

3.1 Model A Basic Concepts.

This model is discussed in [10,11 and 16]. The main

components of the RB-RBAC model A are the sets U, AE,
R, and P which represent users, attribute expressions,
roles, and permissions respectively (Figure 1).

Figure 2: RB-RBAC Main Components

The U, R, and P sets are imported from RBAC96. In
RB-RBAC, the security policy of the enterprise is
expressed in the form of a set of authorization rules. Each
rule takes as an input the attributes expression (a member
of AE set) that is satisfied by a user (a member of U set)
and produces one or more roles (a member of R set). An
attribute expression is a well-formed formula in

U A R P

Model C
(Model A +
Constraints

Specification)

Model B
(Model A + Negative
Authorization/Mutual

Exclusion)

Model A
(Monotonic
Language)

 3

propositional logic that specifies what combination of
attributes values a user must satisfy in order to be
authorized to roles specified in the rule. The attributes
expressions can be stated using the language provided by
the model. Syntactically, a rule has two parts:
a. The left hand side (LHS) of a rule is an attribute

expression.
b. One or more role(s) in the right hand side (RHS).
If u satisfies the attribute expression, u is authorized to the
role(s) specified in RHS of the rule. The following is an
example of a rulei:

aei ⇒ rg
where aei is the attribute expression and rg is the produced
role. If user u satisfies aei, then u is authorized to all the
roles in the right hand side of rulei. To maintain user-role
authorization the set URAuth is defined as follows:

URAuth = {(u,r)| (∃rulei)[u satisfies aei ∧ r
∈RHS(aei)}
If (u,r) ∈ URAuth then this means that u is authorized

to role r. This set is the key component of RB-RBAC
since it captures the semantics of user-role assignment in
the models. Only a user who has authorization on roles
that are specified in RHS can activate these roles.
Activating a role enables the user to execute the
permissions assigned to that role. A user can activate one
or more of his authorized roles in a session. Different
sessions belonging to the same user can have different
roles.

There is an implicit “OR” among the rules. If u
satisfies one or more rules that produce different roles,
then he is authorized to activate any combination of these
roles. Upon receiving a user request of a role, the system
that implements RB-RBAC searches the authorization
rules set to find a rule which the user satisfies such that the
rule yields that requested role. As a user satisfies more
rules, the set of roles that he is authorized to assume does
not diminish. Thus Model A is monotonic.

3.2 User States.

A user can be in any of several states wrt a specific

role. For a given role r, we distinguish the following user’s
states:

a. Potential (P): user u is authorized to role r but has not
activated it yet.

b. Revoked (R): user u has activated role r at least once
but is not currently authorized to activate it.

c. Not-candidate (N): user u has not activated role r and
is not currently authorized to activate it because he
does not have the required attributes for assuming r,
i.e. u is not authorized to r.

d. Deleted (Del): user u has been deleted from the
system by an authorized individual such as the System
Security Officer (SSO).

e. Active (Act): refers to the state where the user is
currently active in the role.

f. Dormant (D): After deactivating a role, the user
becomes dormant with respect to that specific role, i.e.
in “D” state.
The importance of this distinction among different

states of users becomes clear when specifying constraints
and enforcing policies like the Chinese Wall. Figure 2
shows the state diagram of a user with respect to a single
role.

To express authorization rules, RB-RBAC provides
ASLA a language based on a context-free grammar. The
language syntax and semantics are detailed in [10].

Figure 3: User's State Diagram with Sessions

3.3 Seniority Among Authorization Rules.

Seniority can be determined among the rules based on

attributes expressions on their left hand sides. The “≥”
symbol, read “is senior to”, represents seniority relation
among rules:

rulei ≥ rulej ↔ (aei → aej)
where aei and aej are the LHS of rulei and rulej
respectively. This implies that users who satisfy rulei also
satisfy rulej and, hence, are authorized to the roles
produced by rulej. The seniority relation on authorization
rules, i.e. among attributes expressions forming the LHS
of the rules, induces a hierarchy among the roles forming
the RHS of these rules. This induced role hierarchy (IRH)
captures inheritance of user-role assignment. If ri is senior
to rj then the users who satisfy the LHS of the rule that
yields ri will also satisfy the rules that yield rj. As a result,
the set of ri users is a subset of rj users. In other words,
user inheritance flows downwards in the IRH graph, that
is, a junior role in IRH inherits all the users assigned to its
seniors. In general IRH is a quasi-order, i.e., it is reflexive
and transitive.

P Act

N
R

start

start

ae/r
ae/r

ae/r

ae/r

D

ae/r

deact

act

act

Del

d

d

d

d

Legend:
ae : Change in attributes expressions
r : Change in authorization rules set
act : Role activation by a user
deact: Role deactivation by a user

d

 4

3.4 Alternative Ways to Gain Authorization.

There are three approaches to assign roles to users:

1. Implicit Assignment: Based on certain criteria, users are
automatically assigned to roles. This is what Model A
does thus far.

2. Hybrid Assignment: Besides the automatic assignment,
the SSO can manually assign users to roles.

3. Explicit Assignment: In this approach a person with
proper authority such as the SSO manually assigns users
to roles. This is what traditional RBAC follows.

In [16] Al-Kahtani argues that there are situations
where pure implicit assignment is not flexible enough.
Thus, to provide flexibility, the concept of can_assume
was introduced. The SSO may use can_assume relation to
explicitly authorize users who are authorized to a role, say
rg, to another role, rh, for a certain duration d starting at a
specific time t. The SSO specifies the duration and the
starting time. As a result, the user(s) in role rg is authorized
to activate role rh at time t for duration of d. The
motivation and specification of can_assume relation is
detailed in [16]. Appendix A provides a summary of
relevant definitions extracted from RB-RBAC model.

4. RB-RBAC-ve Model.

4.1 Introduction.

RB-RBAC-ve extends Model A to allow the

specification of negative authorization (called Model B1 in
[16]). This extension has an impact on user authorization,
formally represented by URAuth set and it may cause
conflict among rules. RB-RBAC-ve is the first RBAC
model that provides detailed analysis of different aspects
of negative authorization in an RBAC context. In this
section, we analyze this conflict and present several novel
conflict resolution polices. The definition of URAuth is
modified to accommodate the semantics of negative
authorization. The new definition takes into consideration
conflict resolution policies in effect. We also discuss the
impact of negative authorization on URAuth, IRH, and
RB-RBAC enforcement architecture.

To specify a negative authorization we use the ASLB1
language which imports the syntactic constructs of ASLA
(Appendix B) but it modifies the syntax of Roles as
follows [16]:

Roles ::= [┐] Role
role-set ::= Role | Role||,||role-set

The syntax above allows specifying negative
authorization on roles such as the following:

aek ⇒ ¬ ri
The rule above states that once a user satisfies aek the
system that implements RB-RBAC prohibits that user
from assuming ri.

4.2 Motivation.

The motivations to use negative authorization are not

immediately apparent in environments where RBAC is
applied. Even though user-role assignment could be
decentralized [17], it is not left to users’ discretion to
assign other users to roles. Instead a small number of
individuals (e.g. SSOs) are entrusted with applying the
enterprise security policy regarding user-role assignment.
However, since RB-RBAC automates this process,
negative authorization provides an extra safeguard, since it
is not always easy to foresee all possible combinations of
roles a user can assume based on his attributes, which
change over time. Negative authorization helps in
blocking any user whosoever satisfies certain criteria
(expressed as attributes expression) from assuming certain
roles. Also, it can be used to block receiving authorization
of certain roles via can_assume and can_delegate
relations. The SSO can use can_assume relation to
explicitly authorize users who are authorized to a role, say
rg, to another role, rh, for a certain duration d starting at a
specific time t. As a result, the user(s) in role rg is
authorized to activate role rh at time t for duration of d.
Also, he may use can_delegate relation to permit regular
users to delegate their memberships in specific roles to
other users. To motivate the use of negative authorization
in the context of RBAC, consider the example of a
military unit that has a Commander and four staff officers,
usually known as G1 through G4 as depicted in Figure 3.

Figure 4 : RBAC Hierarchy for a Battalion

The commander can delegate his authority to any of
his staff officers as long as the staff officer meets certain
criteria specified by the military regulations.

Table 1

Attributes in the System:
a1: rank-type = officer
a2: Staff course = T
a3: Leadership course = T
a4: Rank ≥ Lt. Colonel
a5: Assignment Order = T
Authorization Rules:
a1∧ a2 ⇒ {G1, G2, G3, G4}

a1∧ a2∧ a3 ∧a4 ∧ a5 ⇒ Commander

¬a4 ⇒ ¬Commander
can_delegate(Commander, G1, d, t)

Commander

G1 G4 G2 G3

 5

In Table 1, we show a security policy that specifies a
possible real world situation. The policy uses negative
authorization to prevent a Commander from delegating his
role to a staff officer whose rank is lower than a Lt.
Colonel.

4.3 Analysis of RB-RBAC-ve .

4.3.1 Conflict Due to Negative Authorization.

Introducing “┐” to the RHS may lead to conflict in
the state of a single user wrt a single role. The conflict is
due to simultaneous positive and negative authorizations.
In Figure 5, the symbol “⇒” in a rule means that attribute
expression aei produces the roles listed to the right of the
arrow. Using the set of authorization rules shown in the
figure, the following are several variations of conflict:
a. Case 1: Conflict among unrelated rules like the one

between rule2 and rule3. If u satisfies rule2 and rule3
simultaneously then u should be authorized to activate
r1 (i.e. u is in P state wrt r1) and denied r1 at the same
time (i.e. u is in N state wrt r1). This case is
represented by the following:
(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r ∈RHS(aei) ∧

¬r ∈RHS(aej)
Where U_AE is defined such that U_AE = {(u, aei)| (u,
aei) ∈U×AE ∧ u satisfies aei}. (u, aei) ∈U_AE means
that u is authorized to RHS(aei).

b. Case 2: Conflict among related rules: rule3 and rule5
are conflicting because if u satisfies rule3 then he is
denied r1 (i.e. u is in N state wrt r1), but at the same
time, authorized to assume r1 (i.e. u is in P state wrt r1)
because rule3 ≥ rule5. This case is represented by the
following:

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r
∈RHS(aei) ∧ ¬r ∈RHS(aej)
∧ ((aei → aej)∨ (aej → aei))

c. Case 3: Conflict between implicit assignment i.e. via
an authorization rule and explicit assignment i.e. via
can_assume or can_delegate. Suppose that the SSO
issued the following:

can_assume(r4, r3, t, d)
This allows users who are authorized to r4 to activate
r3. If u satisfies ae1, i.e. u is in N state wrt r3, and at
the same time is authorized to r4. Nonetheless, the
can_assume relation above authorizes u to r3, which
leads to a conflict.

Figure 5

4.3.2 Conflict Resolution Policies. Conflict resolution
policies have been discussed extensively in the literature,
see for example, [13, 15 and 12]. Most notable among
them are:
a. Denial Takes Precedence (DTP): Negative

authorizations are always adopted when conflict exists.
b. Permission Takes Precedence (PTP): Positive

authorizations are always adopted when conflict exists.
These two policies in their original form suffer the
following deficiencies:
a. They are very rigid in the sense that they do not allow

specification of special cases that violate the policy
enforced. Suppose a hospital has a policy that has the
following authorization rules:
rule1: No. of years in residency ≤ 1 ⇒ intern
rule2: No. of years in residency ≤ 1 ⇒ ¬ ER_doctor
Naturally, during the holiday seasons large numbers
of the medical staff take their yearly vacation.
However, this period of the year witnesses a surge in
the number of people admitted to the emergency
room. Clearly, additional medical staff is needed to
handle this surge in demand of medical care. The
administration may allow interns to work in the ER,
and hence authorizes them to role ER-doctor.
One way to handle this is to change the hospital
policy by deleting rule2. This course of action is not
preferred because it might lead to unseen side effects.
Also, it might lead to a breach in the security policy if
the SSO forgets to add it back after the holiday season
is over. A better solution is to use can_assume
relation as follows:
can_assume(intern, ER_doctor, t, d)
This authorizes interns to activate the role ER_doctor,
i.e. to work in the emergency room. can_assume
conflicts with rule2. However, if DTP is enforced, the

rule1: ae1 ⇒ ¬r3, r4

rule2: (ae2) ⇒ r1

rule3: (ae3) ⇒ ¬r1, r2

rule4: (ae4) ⇒ r2

rule5: (ae5) ⇒ r1

such that:
rule1 ≥ rule2,
rule1 ≥ rule3≥ rule5,
rule1 ≥ rule4≥ rule5

rule2:

RHS = r1

rule3:

RHS = ¬r1, r2

rule5:

RHS = r1

rule4:

RHS = r2

rule1:

RHS = ¬r3, r4

 6

interns will not be able to work in the ER unless rule2
is deleted. What is needed in this situation is a relaxed
version of DTP that allows the stating of this
exception in the security policy.

b. DTP with negative authorization is useful in a closed
policy environment. However, PTP renders negative
authorization meaningless in such environments. This
is so because wrt any role that is associated with
negative authorization, there could be only one of the
following possibilities:
i. Conflict may arise: Since PTP is enforced, the

negative authorization is ignored.
ii. No conflict may arise: There is no need for the

negative authorization since we are assuming a
closed policy.

Based on that, we argue that there is a need for more
flexible conflict resolution policies. The following section
discusses newly formulated conflict resolution policies;
some of them specify DTP policy with varying degrees of
flexibility.

4.3.2.1 Localized DTP (LDTP). DTP policy resolves any
conflict in favor of denial. This is rather restrictive since it
means the more rules a user satisfies, the higher is the risk
that he might be denied access to a role due to a conflict in
authorization which is counter-intuitive. We propose
modifying the DTP policy such that the conflict among
unrelated rules is resolved in favor of permission. In other
words, the denial is localized to conflict among
comparable rules. We name the modified policy: the
Localized DTP, or LDTP for short. Based on this,
applying the LDTP policy on the three cases of conflict
mentioned in the previous section results in the following
authorizations:

Case 1: (u,r) ∈ URAuth i.e. u is authorized to activate
role r.
Case 2: (u,r) ∉ URAuth
Case 3: (u,r) ∉ URAuth

4.3.2.2 Flexible DTP (FDTP). This policy enforces DTP
in cases where conflict occurs among authorization rules
but it enforces PTP if conflict occurs between the implicit
assignment and explicit assignment. Thus, when FDTP is
enforced, in the example of the hospital discussed above,
an intern can work as an ER doctor via can_assume
relation without the need to remove rule2 from the
authorization rules set. In other words, FDTP policy
authorizes u to role r if there is no conflict wrt role r, or if
there is a can_assume relation which authorizes u to role r
even if u receives a negative authorization wrt to r.
Applying the FDTP policy on the three cases of conflict
mentioned in the previous section results in the following
authorizations:

Case 1: (u,r) ∉ URAuth
Case 2: (u,r) ∉ URAuth

Case 3: (u,r) ∈ URAuth

In Table 2 we summary how the afore-discussed
policies compare and contrast.

Table 2

Conflicting Parties

Policy
↓

Comparable
Rules

Non-
comparable

Rules

Rules and SSO-
initiated

authorization
(can_assume and

can_delegate)
DTP Denial Denial Denial
PTP Permission Permission Permission

LDTP Denial Permission Denial
FDTP Denial Denial Permission

The entry at the intersection of the fourth row with the
third column, for example, means that under LDTP if the
conflicting parties are non-comparable rules, then
permission prevails.

4.3.2.3 Weighted Rules. Authorization rules are assigned
weights according to criteria determined by the enterprise
such as:
a. The seniority of the rule, so rule3 has higher weight

than rule5 in Figure 4 and, thus, the negative
authorization is enforced.

b. When rules administration is decentralized, the SSO
may authorize a junior security officer (JSO) to
administer a specific group of rules. Conflict may
arise among rules specified by SSO and JSO. One
way to resolve this is by considering the seniority of
the rule issuer. Based on this, an SSO-issued rule has
higher weight than a rule issued by a junior security
officer and, thus, the authorization obtained via the
higher rule prevails.

4.3.2.4 Labeled Roles. This policy requires assigning
label to each role. This label could be either one of the
following values: DTP or PTP. If rg and rh are roles such
that they are respectively labeled DTP and PTP, then in
case of conflict wrt rg, DTP is always enforced, while PTP
is enforced in case of rh. The notion and notation of role
ranges [17] could be utilized in this context. An
assign_label relation can be defined as follows:

 assign_label ⊆ {DTP, PTP}× 2IR
So, assign_label(DTP, [rg, rh]) assigns DTP label to all
roles in the range [rg, rh].

4.3.3 Users' Authorization. We have discussed several
policies that can be deployed to resolve conflicts that may
arise among authorization appointed to a specific user. In
this section, we modify the definition of the set "URAuth"
under selected policies to reflect the impact of conflict, if
it exists, on user’s authorization. While it is possible to do

 7

this with respect to all the conflict resolution policies that
we have discussed, for the sake of brevity, we choose to
focus on PTP, DTP, LDTP and FDTP.

Definition 1

1. URAuth, A, and B are imported from Model A, and are
mentioned here for convenience:
URAuth= {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r
 ∈RHS(aei)}
A= RHS of URAuth above.
B= (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d) ∧ can_assume has not expired]

2. Let C = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]
which means that user u has a negative authorization wrt
r via satisfying a rule rulej .

3. Let C’= ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ (
(aej → aei) ∨ (aei → aej)] which means that user u has a
negative authorization wrt r via satisfying another rule
rulej that is comparable to a rule that positively
authorizes u to r.

4. URAuth varies according to the policy enforced:
a. PTP: URAtuh in PTP with/without can_assume is

similar to the corresponding URAtuh in Model A.
b. DTP : URAuthDTP = A ∧ C , or

URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r
∈RHS(aei) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r
∈RHS(aej)]}

c. DTP with can_assume: URAuthDTP with can_assume = (A
∨ B) ∧ C , or
URAuthDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei)
∈U_AE ∧ r ∈RHS(aei)]
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d) ∧ can_assume has not expired
]) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]}

d. LDTP: We modify the term C to require the
conflicting rules to be comparable. Call the modified
term C', thus URAuthLDTP = A ∧ C'
URAuthLDTP = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r
∈RHS(aei)] ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r
∈RHS(aej) ∧ ((aej → aei) ∨ (aei → aej)])

e. LDTP with can_assume: URAuthLDTP with can_assume =
(A ∨ B) ∧ C'
URAuthLDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei)
∈U_AE ∧ r ∈RHS(aei)]
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d) ∧ can_assume has not expired
])
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ((aej
→ aei) ∨ (aei → aej)] }

f. FDTP: URAuthFDTP = URAuthDTP
g. FDTP with can_assume: URAuthFDTP with can_assume = (A

∧ C) ∨ B

URAuthFDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei)
∈U_AE ∧ r ∈RHS(aei)]
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)])
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume (r’, r, t, d) ∧ can_assume has not expired
]}

Table 3 summaries the definition of URAuth under
different policies.

Table 3

4.3.4 Impact on Roles Hierarchies. The concept of a
given role hierarchy (GRH) that represents the current
business practice of the enterprise is discussed in [11] and
[16]. The GRH is identical to role hierarchies defined in
RBAC96, that is, it is permission-driven:

(ri ≥GRH rj) → rj permissions ⊆ r j permissions
where ≥GRH has the same semantics as in RBAC96. As
such, inheritance of permissions flows upward in the
GRH. When a GRH is present, rulei such that aei ⇒ ┐rg
may have one of the following two possible semantics:

a. Propagation prohibited: Users who satisfy aei should
be prohibited from assuming rg. This is the
interpretation given previously.

b. Propagation allowed: Negative authorization
propagates upward in GRH such that users who
satisfy aei should be prohibited not only from
assuming rg, but also from assuming any role rk such
that rk ≥GRH rg. This ensures that the user cannot
circumvent the system by assuming rk, whose
permissions are a superset of rg’s. From a functional
perspective, this may not be desirable since it is
usually the case that the prohibition is targeting users
who merely satisfy rulei, but not those who can
assume roles higher in the hierarchy by virtue of
satisfying rules senior to rulei, which usually means
that they meet higher security requirement. Allowing
the negative authorization to propagate upward
requires modification of the definition of URAuth.
For a user to be authorized to a role r, not only do we
require that u has positive authorization wrt r and
does not have negative authorization wrt r, but we
also require that u does not have negative
authorization wrt any role r' such that r ≥ GRH r' i.e. r is
senior to r' in GRH.

Policy URAuth
 Without

can_assume
With can_assume

PTP A (A ∨ B)
DTP A ∧ C (A ∨ B) ∧ C
LDTP A ∧ C' (A ∨ B) ∧ C'
FDTP A ∧ C (A ∧ C) ∨ B

 8

Definition 2

URAuth definition is modified to take propagation of
negative authorization into account. We need to modify
term C as follows:
Term C becomes: Cmodified = ¬ (∃rulej)[(u, aej) ∈U_AE ∧
¬r' ∈RHS(aej) ∧ r ≥GRH r']

Notice that we can replace the term C' in Definition 8
with Cmodified since r ≥GRH r' implies that the rules that
generate r and r' are comparable.

4.3.5 User State Diagram. Suppose that the system that
implements RB-RBAC has the following set of rules only:

rulei: aei ⇒ rg

rulej: aej ⇒ rh

rulek: aek ⇒ ┐rh
Let’s consider the following scenarios assuming DTP

is in effect and using Figure 2:
Scenario 1: Assume that u satisfies rulej only and, thus,
(u, rh) ∈URAuth. In other words, u could be in any of the
following states wrt rh: P, D, or Act. A change in u’s
attributes or in the authorization rules may cause the
system that implements RB-RBAC to invoke rulek
assigning negative authorization to u wrt rh. Accordingly,
(u, rh) ∉URAuth and u’s state will be changed from P to N
or from D or Act to R. The arrows labeled ae/r represent
this.
Scenario 2: Assume that u satisfies rulei only. Hence, (u,
rg) ∈URAuth. As a result, u could be in any of the
following states wrt rg: P, D, or Act. A change in u’s
attributes or in the authorization rules that cause the
system that implements RB-RBAC to invoke rulek
assigning negative authorization to u wrt rh. If rg ≥ rh and
propagation is allowed, u’s state will be changed as in
scenario 1.

A change in u’s attributes or in the authorization rules
may make u no more able to satisfy rulek, and thus, u is no
more authorized to ¬rh. Also, u could become unable to
satisfy rulek either because it was modified or deleted.
This results in changing his state from N back to P, or
from R to D.

4.3.6 Enforcement Requirements. Enforcing the
negative authorization requires that the system which
implements RB-RBAC has access to all relevant
attributes. This requirement affects the architectural
options that can be used to enforce RB-RBAC-ve since the
system must either have these attributes under its control
or be granted access to them when needed. If this is not the
case, then users may evade the model. Consider rules rule2
and rule3 in Figure 4. If these rules were in public domain
or were somehow unconcealed, then users whose
attributes satisfy both ae2 and ae3 can avoid rule3 simply
by not providing the attributes necessary to satisfy ae3.
Though this may not be a problem under PTP policy, it

amounts to a security breach under DTP policy. If RB-
RBAC has access to users’ attributes, DTP policy can be
enforced.

4.3.7 Monotonicity. RB-RBAC-ve permits specifying the
rules such that the set of roles that a user is authorized to
decreases as the number of rules he satisfies increases.
Suppose that we have (┐rg) ∈ RHS(aei) and {rg , rh} ⊆
RHS(aej). If a user u satisfies rulej, then he is authorized to
rg and rh. In case of DTP, if u satisfies both rules, he is
authorized to rh only. The above shows that RB-RBAC-ve
is non-monotonic.

5. Discussion and Future Work

We have shown how to modify RB-RBAC so that it

allows negative authorization. Negative authorization in
the context of RBAC is a novel concept. RB-RBAC-ve is
the first RBAC model that provides detailed analysis of
different aspects of negative authorization in an RBAC
context. This analysis includes providing semantics for the
negative authorization in this new territory, identifying
cases of conflict, suggesting several new conflict
resolution policies and analyzing the impact of negative
authorization on IRH, GRH and any RB-RBAC
enforcement architecture.

The conflict resolution policies presented requires
further analysis. For example, in the Labeled Roles
resolution policy, there are some subtle issues that need to
be analyzed further. Suppose we have two roles rg and rh
such that rg ≥ rh. Suppose also that we assign the labels
DTP and PTP to rg and rh respectively. If u satisfies
authorization rules such that he has conflict in both roles,
then based on the labels assigned to the roles, u is
authorized to rh but not to rg. This reduces the privileges
available to u, which is not problematic since senior roles
are naturally assigned more permission and, as thus, it is
wise to err on the side of denial in case of conflict.
However, assume that the labels were reversed and that u
has conflict in both roles. The resolution will be such that
u is authorized to rg but not to rh, which is very
problematic since rh’s permissions are a subset of rg’s
permissions. To follow this policy strictly, we need to
suspend this subset of permissions, which may render rg
deficient or even meaningless. We have not found any
practical example in which this scenario is applicable. So,
when assigning labels to roles, we require that the roles
higher in the hierarchy receive labels of equal or higher
level than their juniors. We assume that DTP label is
higher than PTP. We believe this requirement is
reasonable since senior roles are naturally assigned more
permission, so they need more protection.

Another candidate for future work is introducing the
concept of parameterized roles to RB-RBAC family and

 9

analyzing its impact on different aspects of the models
such as user authorization, IRH.

6. References

[1] R. Sandhu, E. Coyne, H. Feinstein and C. Youman, “Role-

Based Access Control Model”, IEEE Computer, 29(2),
Feb. 1996.

 [2] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for
Role-Based Access Control: Towards a Unified
Standard”, In Proceedings of the fifth ACM workshop
on Role-based access control table of contents, Berlin,
Germany, 2000, Pages: 47 - 63.

[3] D. Ferraiolo, R. Sandhu, S. Gavrila , and R. Kuhn, “Proposed
NIST Standard for role-based access control: towards a
unified standard”, In ACM Transaction on Information
and System Security (TISSEC), Vol. 4, Number 3,
August 2001.

 [4] D. Ferraiolo, J. Barkley, and R. Kuhn, “A Role Based Access
Control Model and Reference Implementation Within a
Corporate Intranet”, ACM Transactions on Information
and Systems Security, 2(1):34-64, February 1999.

[5] J. Park, R. Sandhu and G. Ahn, “Role-based Access Control
on the Web”, In ACM Transactions on Information
and System Security, Vol. 4, No 1, 2001.

[6] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. “RBAC
on the Web by Secure Cookies” In Proceedings of the
IFIP WG11.3 Workshop on Database Security,
Chapman & Hall, July, 1999.

 [7] A. Kern, A. Schaad and J. Moffett, “An Administration
Concept for the Enterprise Role-Based Access Control
Model”, SACMAT’03, June 1-4, Como, Italy.

 [8] C. Ramaswamy and R. Sandhu, “Role-Based Access Control
Features in Commercial Database Management
Systems”, NISSC 1998.

[9] A. Kern, “Advanced Features for Enterprise-Wide Role-
Based Access Control”, In Proceedings of the 18th
Annual Computer Security Applications Conference,

Las Vegas, Nevada, USA, December, 2002, pages 333-
342.

 [10] M. Al-Kahtani and R. Sandhu, “A Model for Attribute-
Based User-Role Assignment”, In Proceedings of the
18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, December 9-13,
2002.

[11] M. Al-Kahtani and R. Sandhu, “Induced Role Hierarchies
with Attribute-Based RBAC”, In Proceedings of the
8th ACM Symposium on Access Control Models and
Technologies (SACMAT), Villa Gallia, Como, Italy,
June 2-3, 2003.

[12] S. Jajodia, P. Samarati, M. Sapino and V.
Subrahmanian, ‘‘Flexible support for Multiple
Access Control Policies’’ , In ACM Transactions on
Database Systems, Vol. 26, No. 2, June 2001.

 [13] E. Bertino, P. Samarati, and S. Jajodia, ‘‘An Extended
Authorization Model for Relational Databases”, In
IEEE Transactions On Knowledge and Data
Engineering, Vol. 9, No. 1, January-February 1997.

 [14] E. Bertino, P. Samarati, and S. Jajodia,
‘‘Authorizations in Relational Database
Management Systems’’, In Proceedings of the 1st
ACM Conference on Computer and
Communications Security (Fairfax, VA.Nov. 3---5).
ACM, New York, pp. 130---139.

 [15] S. Jajodia, P. Samarati and V.S. Subrahmanian, “A logical
Language for Expressing Authorizations”, In
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, 1997.

 [16] M. Al-Kahtani, “A Family of Models for Rule-Based User-
Role assignment”, A Ph.D. dissertation submitted to
George Mason University, 2004.

 [17] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The
ARBAC97 Model for Role-based Administration of
Roles”, ACM Transactions on Information and
System Security. Vol.2, No.1, Feb. 1999, pages 105-
135.

 10

Appendix A: Relevant Definitions from RB-RBAC

U, R, and P, imported from RBAC96, are the sets of users, roles, and permissions respectively. In addition RB-RBAC
Model A has the following components.

2. A set of attribute expressions AE. Elements of AE are denoted as ae ∈ AE (See the language in section
3.2.5.1).

3. A set of authorization rules where each rule rulei is written as: aei ⇒RHS where ⇒ is read “generates” or
“yields” and RHS ⊆ R.

4. Function RHS(aei) = RHS returns the set of roles that user u who satisfies aei is authorized to activate.
5. U_AE = {(u, aei)| (u, aei) ∈U×AE ∧ u satisfies aei}, (u, aei) ∈U_AE means that u is authorized to RHS(aei).
6. IR is the set of roles produced by all authorization rules:

IR = { rg | (∃aei) [aei ∈ AE ∧ rg∈ RHS(aei)}
7. URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)}. For the sake of convenience, we will call the right

hand side of this definition as "A". We will refer to it in future definitions to simplify the relation of different
models to each other.

The concept of session and the functions sessions and user are imported from RBAC96:
8. sessions : U →2S, a function mapping each user ui to a set of sessions
9. user : S → U, a function mapping each session si to the single user user(si) (constant for the session's lifetime)
10. URA ⊆ URAuth, URA = {(u,r)| (u, r) ∈ URAuth ∧ u is currently activate wrt r }
11. URD ⊆ URAuth, URD = {(u,r)| (u, r) ∈ URAuth, ∧ u has activated r at least once but is not currently active

wrt r }
12. URP ⊆ URAuth, URP = {(u,r)| (u, r) ∈ URAuth ∧ u has never activated r}

URAuth = URA ∪ URD ∪ URP
URA ∩ URD = ∅
URA ∩ URP = ∅
URD ∩ URP = ∅

13. URN ⊆ U×AE, URN = {(u,r)| (u, r) ∉ URAuth ∧ u has not activated r in the past}
14. URR ⊆ U×AE, URR = {(u,r)| (u, r) ∉ URAuth ∧ u had activated r at least once in the past }
15. User_State(u, r) =

Case:
a. (u, r) ∈ URP: User_State(u, r) = P.
b. (u, r) ∈ URA: User_State(u, r) = Act
c. (u, r) ∈ URD: User_State(u, r) = D.
d. (u, r) ∈ URR: User_State(u, r) = R.
e. (u, r) ∈ URN: User_State(u, r) = N.
f. Del: u is deleted by SSO.
These states are mutually exclusive. The state Del is a terminal state.

16. roles : S → 2R, a function mapping each session si to a set of roles roles(si) ⊆ {r | (user(si), r) ∈ URAuth}
(which can change with time)

17. can_assume relation: Specification is provided in [16]
18. URAuthwith can_assume = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d) ∧ can_assume has not
expired])}
Let's call the second term in the right hand side B, and hence we say:
URAuthwith can_assume = A ∨ B

19. (rulei ≥ rulej) ↔ (aei → aej).
20. IRH ⊆ IR x IR is a relation such that rg is senior to rh ((rg, rh) ∈ IRH is also written as rg ≥ rh):

IRH= {(rg ,rh) | (∀rulei) [(aei⇒ rg) → (∃rulej) [rulei ≥ rulej Λ aej⇒ rh]]}
Intuitively, this means rg is senior to rh in IRH if every rule that produces rg is senior to a rule that produces rh.

21. IRH = {(rg ,rh) | (u, rg) ∈URAuth → (u, rh) ∈URAuth}
22. IR is the set of equivalence classes that results from defining relation “mutually senior to one another” on IR
such that:

[ri] = { rj | ri and rj are mutually senior to one another}
23. IRH = {([rg] ,[rh]) | ∀u∀rg∈[rg]∀rh∈[rh] [((u,rg) ∈ URAuth → (u,rh) ∈ URAuth)

∧ ((u,rh) ∈ URAuth → (u,rg) ∈ URAuth)]}
24. IRH and GRH are the sets of roles in IRH and GRH respectively.

 11

Appendix B: Syntax Diagrams of ASLA Language

Attribute Expression Role
Rule

{

Roles
Role

Role }

,

Attribute_Expression

Attribute Expression

Attribute_Expression

Term

(Attribute_Expression Attribute_Expression)

∧

∧

Attribute_Expression¬

Term
Attribute

Enumerated_SetIN

Attribute_ValueRelation_Operator

