
Safety Analysis of Usage Control Authorization Models

Xinwen Zhang
George Mason University

xzhang6@gmu.edu

Ravi Sandhu
George Mason University and TriCipher Inc.

sandhu@gmu.edu

Francesco Parisi-Presicce
George Mason University and

Univ. di Roma La Sapienza, Italy
fparisip@gmu.edu

ABSTRACT
The usage control (UCON) model was introduced as a unified ap-
proach to capture a number of extensions for traditional access con-
trol models. While the policy specification flexibility and expres-
sive power of this model have been studied in previous work, as a
related and fundamental problem, the safety analysis of UCON has
not been explored. This paper presents two fundamental safety re-
sults for UCONA, a sub-model of UCON only considering autho-
rizations. In UCONA, an access control decision is based on the
subject and/or the object attributes, which can be changed as the
side-effects of using the access right, resulting in possible changes
to future access control decisions. Hence the safety question in
UCONA is all the more pressing since every access can potentially
enable additional permissions due to the mutability of attributes
in UCON. In this paper, first we show that the safety problem is
in general undecidable. Then, we show that a restricted form of
UCONA with finite attribute value domains and acyclic attribute
creation relation has a decidable safety property. The decidable
model maintains good expressive power as shown by specifying an
RBAC system with a specific user-role assignment scheme and a
DRM application with consumable rights.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
access control, usage control, UCON, authorization, safety

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’06 March 21-24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00.

Modern information systems require fine-grained and flexible
access control policies, which need dynamic and expressive access
control models. Traditional access control models, such as access
matrix [5], mandatory access control (MAC) [1, 3], discretionary
access control (DAC), and role-based access control (RBAC) [15,
4], have been formulated to meet different application requirements.
Recently, usage control (UCON) [11] was proposed as a general
and comprehensive model to extend the underlying mechanism of
traditional access control models. In [11, 19], the policy specifi-
cation flexibility and expressive power of UCON has been shown
in access control systems, digital rights management (DRM), and
trust management applications, among others.

A different but related important problem in access control is the
leakage of permissions. In an access control system, a permission
is granted or an access is authorized depending on the current state
of the system. Also, the granting of a permission may consequently
change the state of the system, and this, in turn, may enable other
permissions. This dynamic property makes it is difficult to foresee
a system state in which a subject can have a particular right on a
particular object. This is referred to as the safety problem in access
control. The requirement of strong expressive power and that of a
tractable safety property have been conflicting since the introduc-
tion of protection models in 1970’s. It is not a surprising fact that
for a given access control model, the more expressive power it has,
the harder it is, computationally, to carry out safety analysis, if at
all possible.

Access control in UCON is made by policies of authorizations,
obligations, and conditions (also referred as UCONABC model [11]).
In UCONA, the control decision of an access is determined by one
or more predicates built from the attributes of the subject and the
object. A particularly powerful innovation of UCONA is that an
access can result in the updates of the subject’s and/or the object’s
attributes as side-effects. These updates, in turn, may result in
the changes of the permissions of future accesses. The resultant
permission propagations, because of attribute mutability, make the
safety analysis complex and untractable in general UCON models.

This paper presents two main contributions to the safety anal-
ysis of UCONA. First, we prove that the safety problem in gen-
eral UCONA is undecidable by reduction to the halting problem in
Turing machines. Second, two decidable models of UCONA are
obtained with some restrictions in the general model. Specifically,
the safety problem is decidable for a UCONA model with finite at-
tribute domains and without “creating” policies. Also, the safety
problem is decidable for a UCONA model with finite attribute do-
mains and “creating” policies, where the attribute creation graph
is acyclic. We then show that these restricted forms of UCONA

are practically useful by specifying policies for RBAC systems and
DRM applications.

The rest of the paper is organized as follows. Section 2 con-
tains an introduction to and a formal definition of UCONA. Sec-
tion 3 presents the undecidability result of the safety problem in
general UCONA systems. We then present two decidable models
with some restrictions on the general UCONA in Section 4, and
their expressive power in Section 5. Section 6 gives some related
work on safety analysis in access control models. Section 7 con-
cludes the paper and presents some further directions of research.

2. USAGE CONTROL MODEL
In this section, first we briefly review the main components of the

UCON model in [11], and then we present a policy-based formal
UCONA model.

2.1 A Brief Introduction
A UCON system consists of six components: subjects and their

attributes, objects and their attributes, generic rights, authoriza-
tions, obligations, and conditions, where authorizations, obliga-
tions and conditions are the components of usage control decisions.
An attribute is regarded as a variable with a value assigned to it in
each system state. Authorizations are predicates based on subject
and/or object attributes, such as role name, security classification
or clearance, credit amount, etc. Obligations are actions that are
performed by subjects or by the system. For example, playing a
licensed music file requires a user to click an advertisement, and
downloading a white paper requires a user to fill out a form. Con-
ditions are system and environmental restrictions such as system
clock, location, system load, system mode, etc.

In UCON, a complete usage process consists of three phases:
before-usage, ongoing-usage, and after-usage. The control deci-
sion components are checked and enforced in the first two phases,
called pre-decisions and ongoing-decisions respectively, while no
decision check is defined in the after-usage phase (since there is no
control after a subject finishes an access on an object). The pres-
ence of ongoing decisions is called the continuity of UCON.

Another important property of UCON is attribute mutability. Mu-
tability means that one or more subject or object attribute values can
be updated as the results of an access. Along with the three phases,
there are three kinds of updates: pre-updates, ongoing updates, and
post-updates. All these updates are performed and monitored by
the security system. The updating of attributes as side-effect of
subject activity is a significant extension of classic access control
where the reference monitor mainly enforces existing permissions.
Changing subject and object attributes has impact on the future us-
age of permissions involving this subject or object. This aspect of
mutability makes UCON very powerful as discussed in [11, 19] but
also makes the safety question much more important.

For each decision component (authorizations, obligations, and
conditions) in UCON, a number of core models are defined based
on the phase where usage control is checked and updates are per-
formed. For example, in authorization core models, usage con-
trol decisions are dependent on subject and object attributes, which
can be checked and determined before or during a usage process,
and are calledpreA (pre-authorizations) andonA (ongoing au-
thorizations), respectively. Based on possible updates in all three
phases, each sub-model has four core models. For example,preA0

is the core model with pre-authorizations and without updates, and
preA1, preA2, andpreA3 are core models with pre-authorizations,
and pre-updates, ongoing updates, and post-updates, respectively.
Similar core models have been defined foronA, preB (pre-obliga-
tions),onB (ongoing obligations),preC (pre-conditions), andonC

(ongoing conditions). We mention obligations and conditions for
completeness, but do not consider them any further in this paper.

In this paper we focus on the safety analysis of UCONpreA
models. Since an authorization decision is determined by subject’s
and object’s attributes, and these attribute values can be updated as
side-effects of the authorization, the safety problem in authoriza-
tion models is more pressing than that in obligation and condition
models. For UCONonA models, the system state changes non-
deterministically, depending on concurrent accesses and reasons
for attribute updates (e.g., ended access vs. revoked access). We
leave the safety analysis ofonA models for future work. For the
sake of simplicity in this paper we refer UCONA as UCONpreA
models.

2.2 A Formal Model of UCONA

A logical model of UCON is presented in [19] to capture the new
features of UCON, such as the attribute mutability and the decision
continuity, but it is not appropriate to study the safety problem. The
main reason is that the logical model focuses on the specification
of the detailed state change of the system in a single usage process,
while for safety analysis, the overall effect of a usage process and
the permission propagation as the cumulative result of a sequence
of usage processes need to be formulated. Therefore a new for-
mal model is developed in this paper to capture the global effect
of a usage process and the cumulative result of a sequence of us-
age processes. Specifically, in this model, a single usage process is
atomic, and all usage processes are serialized in a system. By seri-
alized processes we mean that there is no interference between any
two usage processes, so that the net effect is as though the individ-
ual usage processes executed serially one after another. We don’t
specify precisely how the serialization is achieved, since there are
many known standard techniques for this purpose. The details of
how to achieve serialization is an implementation-level issue as op-
posed to a model-level issue. Focusing on model-level issues, we
define a set of policies to specify the authorization predicates for us-
ages, and sequences of primitive actions as the side-effect results.
Also, policies for creating and destroying subjects and objects are
defined.

2.2.1 Subjects, Objects, and Rights
The subject, object and right abstractions are well known in ac-

cess control. Generally speaking, a subject is an active object that
can invoke some access requests or execute some permissions on
another object, such as a process that opens a file for reading. A
subject, in turn, can be accessed by another subject, e.g., a process
can be created, stopped or killed by another process. Following the
general concepts in traditional access control models, we consider
the set of subjects in UCONA to be a subset of the set of objects.
The objects that are not subjects are called pure objects. We require
that each object be specified with an identity, called name, which
is unique and cannot be changed, and cannot be reused after the
object is destroyed in the system1

Rights are a set of privileges that a subject can hold and execute
on an object, such asread, write, pause, etc. In access control
systems, a right enables the access of a subject to an object in a
particular mode, referred to as a permission. Formally, a permis-
sion is a triple(s, o, r), wheres, o, r are a subject, object, and right,
respectively. In UCONA, a permission is enabled by an authoriza-
tion rule in a policy.

1This unique name in many cases will not be the identity of a user.
For example, a process executing on behalf of a user will have a
process identity and not a user identity.

The set of subjects, objects, and rights are denoted byS, O, and
R, respectively, whereS ⊆ O.

2.2.2 Attributes, Values, and States
Each object is specified with a non-empty and finite set of at-

tributes, such as group membership, role, security clearance, credit
amount, etc, defined by the system designer. An attribute of an ob-
ject is denoted aso.a whereo is the object name (i.e., the object’s
unique identity) anda is the attribute name. Without loss of gen-
erality, we assume that in a system, each object has the same fixed
set of attribute namesATT .

Each attribute name is treated as a variable of a specific datatype,
which determines the attribute’s domain and the set of functions
that can be used with the attribute values. The domain of the at-
tributea is denoted asdom(a), and we assume that for eacha ∈
ATT , null /∈ dom(a).

EXAMPLE 1. Each subject (user) in an organization has the
same set of attribute namesATT = {adminRole, regRole},
where theadminRole’s value is an administrative role name and
theregRole’s value is a regular role name. An administrator in the
organization has no-null values for both attributes, while a regular
employee’sadminRole is null, which is set when the subject is
created and cannot be updated. 2

An assignment of an attribute maps its attribute name to a value
in its domain, denoted aso.a = v, wherev ∈ dom(a) ∪ {null}.
The set of assignments for all objects’ attributes collectively con-
stitute a state of the system.

DEFINITION 1. A system state, or state, is a pair(O, σ), where
O is a set of objects, andσ : O ×ATT → dom(ATT) ∪ {null}
is a function that assigns a value ornull to each attribute of each
object.

EXAMPLE 2. Consider an organization in which RBAC [15] is
enforced. Each subject has an attributeua, which stores all the
roles explicitly assigned to this subject by the security officer, and
whose domain consists of all possible subsets of roles in the system.
Another attributedev ua is defined to store a single role that an
employee (say Alice) can be assigned to within the development de-
partment. IfRdev = {roles within the development department},
thendom(dev ua) = Rdev ∪ {null}. For Bob, who is in the test-
ing department, thedev ua value is alwaysnull. A possible sys-
tem state (if no other objects and attributes exist in the system) is
t = {Alice.ua = {p1, p2}, Alice.dev ua = {p1, p2}, Bob.ua =
{p3}, Bob.dev ua = null}, wherep1, p2, p3 are role names, and
p1, p2 ∈ Rdev. 2

2.2.3 Predicates

DEFINITION 2. A predicatep(s, o) is a boolean-valued poly-
nomially computable function built from a set of a subjects’s and
an objecto’s attributes and constants.

The semantics of a predicate is a mapping from system states
to boolean values. A state satisfies a predicate if the attribute val-
ues assigned in this state satisfy the predicate. For example, the
predicates.credit > $100 is true in the current state of a sys-
tem if s’s credit attribute value is larger than $100 in this state.
A predicate can be defined with a number of attributes from a
single object or two objects. For examples, a unary predicate is
built from one attribute variable and constants, e.g.,s.credit ≥
$100.00, o.classification = “supersecure”. A binary pred-
icate is built from two different attribute variables and constants,

e.g., s.cleareance ≥ o.classification, s.credit ≥ o.value,
(s, r) ∈ o.acl, whereo.acl is the objecto’s access control list.
Note that the attributes in a predicate can be from a single subject
or object, or one subject and one object.

2.2.4 Primitive Actions
A protection system evolves by the activities of the subjects, such

as requesting and performing one or a sequence of accesses, which
in turn may generate new objects in the system, or update the val-
ues of attributes corresponding to a set of usage control policies
(defined shortly). Three kinds of primitive actions are defined in
UCONA.

DEFINITION 3. A primitive action(or simplyaction) is a state
transition of a system. Three primitive actions of UCONA are de-
fined as in the Figure 1, wheret = (O, σ) and t′ = (O′, σ′) are
the states before and after a single primitive action.

A createObject action introduces a new object into the sys-
tem, and requires that the new object not be in the system before
the creation. Each attribute of the newly created object has the
default value ofnull. Normally acreateObject is followed by
updateAttribute actions to assign values to its attributes. The
destroyObject removes an existing object and its attributes from
the system. For simplicity we assume that the identity of an object
is unique during the system’s life cycle, and cannot be reused even
after the object is destroyed. TheupdateAttribute action updates
the value of an attributeo.a from v to the new valuev′ which can
be a constant, or the result generated by a polynomially computable
function built from the old valuev and other attribute values of the
subject and object parameters of the policy.

Although all these primitive actions are actually performed by
the system, they are the results of the accesses performed by sub-
jects. External actions or events of a system are not directly cap-
tured in UCONA. For example, in an online reading application,
the decrease of a credit after a user reads a chapter is an update
action captured by the UCONA model, while the increase of the
user’s total credit amount with a credit card payment is an exter-
nal event, and is not regarded as an action in the system. To capture
these external events, UCONA will need to be extended with an ad-
ministrative model. The safety question investigated in this paper
is therefore in absence of an explicit administrative model.

2.2.5 UCONA Policy
Satisfied predicates on attributes in UCONA affect the system

in two ways. First, a set of satisfied predicates can authorize a
permission so that a subject can access an object with a particular
right. Second, a set of satisfied predicates may authorize the system
to move to a new state with a sequence of actions, e.g., by creating a
new object, or updating attribute values. These actions, in turn, may
make other predicates satisfied, and then enable other permissions
and system state changes. The safety analysis of UCONA focuses
on the interactions between these two aspects, e.g, the permissions
authorized by a system state and the state changes caused by the
actions.

Access authorizations and the state transitions are specified by a
set of pre-defined policies.

DEFINITION 4. A policy of UCONA consists of a name, two
parameter objects, an authorization rule, and a sequence of primi-
tive actions as follows:

policy name(s, o):
p1 ∧ p2 ∧ · · · ∧ pi → permit(s, o, r)
act1; act2; . . . ; actk

Actions Conditions New States
createObject o′ o′ /∈ O O′ = O ∪ {o′}

∀o ∈ O, a ∈ ATT, σ′(o.a) = σ(o.a)
∀a ∈ ATT, σ′(o′.a) = null

destroyObject o o ∈ O O′ = O − {o}
updateAttribute: o ∈ O, a ∈ ATT O′ = O
o.a = v′ v′ ∈ dom(a) ∪ {null} ∀ent ∈ O, att ∈ ATT , σ′(ent.att) = σ(ent.att) if ent 6= o andatt 6= a

σ′(o.a) = v′

Figure 1: Primitive actions in UCONA

wheres ando are the subject and object parameters;p1, p2, . . . , pi

are predicates based ons’s ando’s attributes and constants;
permit(s, o, r) is a predicate which indicates that a permission
(s, o, r) is authorized by the system iftrue; act1, act2, . . . , actk

are primitive actions that are performed ons or o or their at-
tributes.

We assume thats is the active object in a policy, so it is the
subject that attempts an operation requiring the rightr on the target
objecto.

A policy includes two parts. The first part is an authorization
rule consisting of a conjunction of attribute predicates, called the
conditionof the policy, followed by apermit predicate implied by
the condition. The second part is a sequence of primitive actions,
called thebodyof the policy. The first part specifies a permission
authorized by the state of the system, while the second part is the
side-effect of executing this permission, thereby changing the state
of the system. Note that there may be policies that have no actions
but only authorization rules, which cause no state transitions. In
any state, a permission that is notpermitted explicitlyby a policy
is denied by default. In general the UCONA model only considers
positive permissions.

Instead of specifying the individual state changes in a single us-
age process, the policy-based formalization specifies the overall ef-
fects on the system state for a usage process. This approach cap-
tures the essential aspect of system state transitions and permission
propagations caused by the attribute mutability of UCON, while
maintaining the simplicity of policy specifications.

Note that by the policy definition we assume that all the autho-
rization predicates in a policy are considered as pre-authorizations,
and all the updates as post-updates. That is, the UCONA model de-
fined in this section ispreA3. As all usage processes are serialized
in a UCONA system, and a policy captures the overall effects of
the system state after a usage process, the updates in a policy can
also be considered as pre-updates or ongoing updates, which would
make the modelpreA1 or preA2, respectively. All safety results in
this paper derived forpreA3 also hold forpreA1 andpreA2. For
the sake of simplicity, we assume, without loss of generality, that
the UCONA model considered in this paper is apreA3 model.

DEFINITION 5. A policy is acreating policyif it contains a
createObject action in its body; otherwise, it isnon-creating.

A policy is enforced when an access requested is generated. There-
fore, at least one of its parameters exists in the system before the
request, and a creating policy can contain onecreateObject ac-
tion at most. Without loss of generality, we assume that in a creat-
ing policy, the first parameters, which is theunique parentobject,
must exist before the actions, ando is created as achild object.

Without loss of generality, we can also assume that in a policy,
there is at most one update action for any attribute of an object,
since multiple updates on the same attribute can be reduced to a

single update with the value in the last one. Negation is not explic-
itly required since we can always define a new predicate equivalent
to a negated one. For example, instead of¬(s.credit > $1000),
we use(s.credit ≤ $1000). Similarly, disjunction of predicates is
not explicitly required since it can be expressed by a set of individ-
ual policies, one for each component of the disjunction.

A policy is enforcedby replacing the two parameters with a pair
of actual subject and object names when the subject generates an
access request on the object with a particular right. If the condi-
tion of the policy and all conditions for each primitive action are
satisfied, then the permission is granted, and all the primitive ac-
tions are performed. Otherwise, the permission is not granted, and
the system does not change state. As we assume that all accesses
are serialized, and the enforcement of each policy is atomic, either
an access is granted and all primitive actions are completed, or the
system state does not change.

EXAMPLE 3. Suppose that a document can only be issued by a
scientist(with role sci). For anonymoususers, this document can
only be read 10 times. We define the available times (readT imes)
as an object attribute. Each time an anonymous user is authorized
to read a document, this attribute is updated by decreasing it by
one. The policies in this application are:

create doc(s, doc):
(s.role = sci) → permit(s, doc, create)
createObject doc
updateAttribute: doc.readT imes = 10

read doc(s, doc):
(s.role = anonymous)∧(doc.readT imes > 0) →
permit(s, doc, read)
updateAttribute:
doc.readT imes = doc.readT imes− 1

The first creating policy specifies that a subject with role ofsci
can createa new document, and thereadT imes attribute of this
new object is set to10. In the second policy, a subject with role
anonymous can be authorized toread a document if itsreadT imes
attribute is positive; as a result of this permission,readT imes is
decreased by one. 2

2.2.6 UCONA Protection System
A formal representation of a UCONA system can be defined with

the basic components that we have introduced.

DEFINITION 6. A UCONA schemeis a 4-tuple(ATT, R, P, C),
whereATT is a finite set of attribute names,R is a finite set of
rights, P is a finite set of predicates, andC is a finite set of poli-
cies. A UCONA protection system(or simplysystem) is specified
by a UCONA scheme and an initial state(O0, σ0).

DEFINITION 7. Given a UCONA system, thepermission func-
tion of a statet = (O, σ) is ρt : O×O → 2R, and ifr ∈ ρt(s, o),
then in the statet, the subjects can access the objecto with the
right r.

The functionρt maps a pair (subject, object) to a set of generic
rights, according to their attribute-value assignments in the statet
and the set of policies in the scheme. In a particular state, the value
of ρt(s, o) can be determined by trying each policy in the scheme
with the attribute-value assignments ofs and o. With the finite
number of predicates in a policy and the finite number of policies
in a scheme, the complexity of computingρt for each pair(s, o) is
O(|P | × |C|).

DEFINITION 8. For two states(Ot, σt) and(Ot′ , σt′) of a sys-
tem:

• t �c t′ (c ∈ C) if there exist a pair of objects(o1, o2)
(o1 ∈ Ot) such that the policyc(o1, o2) can be enforced in
the statet and the system state changes tot′;

• t�C t′ if there exist ac ∈ C such that,t�c t′;

• t C t′ if there exist a sequence of statest1, t2, . . . , tn such
that t�C t1 �C t2 · · ·�C tn �C t′.

A transition historyfrom statet to statet′ is denoted ast C t′,
or simplyt t′.

3. SAFETY UNDECIDABILITY IN UCON A

In a UCONA system, the safety question asks whether or not,
from an initial state of the system, a subject can obtain a permission
on an object after a sequence of enforced policies, i.e., by updating
attributes and creating/destroying objects. In this section we show
that the safety problem for a general UCONA model is undecidable
by reducing it to the halting problem of a general Turing machine.

THEOREM 1. The safety problem of a UCONA system is unde-
cidable.

Proof Sketch. A general Turing machine with one-directional sin-
gle tape [17] can be simulated with a UCONA system, in which a
particular permission leakage corresponds to the accept state of the
Turing machine. A construction similar to the undecidability proof
of the access matrix model [5] is used. Specifically, the tape in a
Turing machine is simulated with a set of objects, and a set of ob-
ject attributes is defined to indicate the Turing machine’s state, the
content in each cell, and the cell that the head is scanning. A set of
UCONA policies is defined to simulate the state transition function
of the Turing machine. As for a Turing machine, it is undecidable
to check if its accept state can be reached from the initial state.
Therefore, with the scheme of simulating UCONA, the granting of
the particular permission of a subject to an object is also undecid-
able. This proves the safety undecidability of UCONA. The full
construction is presented in the Appendix. 2

4. SAFETY DECIDABLE UCON A MODELS
Since the safety of the general model is undecidable, in this sec-

tion we study the safety property of UCONA models with some re-
strictions. First we prove that a model with finite attribute domains
and without creating policies is safety decidable. Then we relax
this restriction by allowing restricted creating policies and obtain a
more general decidable model. Finally we illustrate the expressive
power of these decidable models.

4.1 Safety Analysis of UCONA without Cre-
ation

In a UCONA system, if the value domain for each attribute is
finite, then each object has a finite number of attribute-value as-
signments. Furthermore, if the system does not have any creating
policies, then the set of all possible objects in a system state is also
finite and fixed, and therefore the total number of possible states of
the system is finite, and the safety problem can be checked in the
finite set of system states. This leads to the following result.

THEOREM 2. The safety problem of a UCONA system is decid-
able if:

1. the value domain of each attribute is finite, and

2. there are no creating policies in the scheme.

Proof. The total number of states of the system is finite and
bounded a-priori since there are no new created objects and each
object has only a finite number of attribute-value assignments. The
safety problem is reduced to the reachability problem of a finite
state machine, which is decidable.

Let the system be specified by a scheme(ATT, R, P, C) and
an initial statet0 = (O0, σ0). We consider the safety check of a
permission(s, o, r) in the following analysis.

A system statet is characterized by a set of attribute assignments
{o.a = v|o ∈ O, a ∈ ATT, v ∈ dom(a) ∪ {null}}, where
O ⊆ O0. (Note that destroy actions are allowed, henceO is a sub-
set ofO0.) SinceO0 is finite, and all the domains for the attributes
in ATT are finite, the setQ of all possible states of the system is
finite. With this state set, we construct a deterministic finite au-
tomatonFA = (Q, Σ, δ, q0, Qf) to show that the safety problem
is decidable. TheFA consists of:

• the finite set of statesQ = {t|t = (O, σ), O ⊆ O0}.
• the alphabetΣ = C ×O0 ×O0.

• the transition functionδ : Q× Σ → Q.

• the start stateq0 = t0.

• the accept statesQf = {t|r ∈ ρt(s, o)}, a (sub)set of states
in which (s, o, r) is authorized by a policy with the corre-
sponding attribute values ofs ando.

The state transition function inFA can be constructed through
the following algorithm:

1. For a statet = (O, σ), an object pair(o1, o2), and a policy
c, if o1 ∈ O ando2 ∈ O, and the all the predicates inc are
true with the attribute-value assignments ofo1 ando2 in t
(that means, the permission inc is authorized in this state),
and all the conditions of the actions inc are satisfied, do the
following:

(a) Perform all the actions inc, if there are any. Define
a state transition fromt to t′ with input c(o1, o2) if
t�c(o1,o2) t′. That is,t′ is the state derived fromt by
enforcing the policyc with objectso1 ando2 as param-
eters. If the update actions do not change the attribute
values (i.e., the new value in a update action is the same
as the old value) and there is no destroy action, define
a state transition fromt to itself with inputc(o1, o2).

(b) If the body ofc is empty, define a state transition from
t to itself with inputc(o1, o2).

2. If any one of the predicates inc is not true with the attribute-
value assignments ofo1 ando2 in t, define a state transition
from t to itself with inputc(o1, o2).

3. If o1 /∈ O or o2 /∈ O (i.e.,o1 or o2 is destroyed in previous
states), define a state transition fromt to itself with input
c(o1, o2).

4. Repeat above steps in the initial state and every derived state
of the system with every policy and every possible pair of
objects in the initial state.

This algorithm terminates since there is only a finite number of
states, policies, and pairs of objects. Through this algorithm, all
the state transitions and accept states inFA have been defined.
The accept states are those that authorize the permission(s, o, r).

By the construction, for each historyt0 t of the UCONA

system, there is an input, the sequence of instantiated non-creating
policies in t0 t, with which theFA moves from the initial
statet0 to t. Also, for each state reachable from the initial state in
FA, we can construct a history of the UCONA system from the
initial state to this state by using the policies and object pairs in
each transition step. ThereforeFA can simulate any history of the
UCONA system.

It is a known fact that the problem of determining whether an
accept state can be reached or not is decidable in a finite state ma-
chine. This proves that the safety problem in the UCONA system
is decidable. 2

COROLLARY 1. The complexity of safety analysis for a UCONA

system without creating policies and with a finite domain of each
attribute is polynomial in the number of possible states in the sys-
tem.

Proof. Consider the finite automaton in Theorem 2 as a directed
graph. The safety check for a permission(s, o, r) is to find a path
from the initial state to an accept state, which is called as the PATH
problem. It is known that the PATH problem of a graph is poly-
nomial in the number of nodes. That means, the complexity of the
safety problem is polynomial to the size of all possible states of the
system. 2

4.2 Safety Analysis of UCONA with Creation
The decidable model introduced above does not allow the cre-

ation of new objects in a system. In this section we relax this as-
sumption and allow a restricted form of creation. Intuitively, if the
subject’s attribute values have to be updated in a creating policy,
and there is no policy that can update this subject’s attribute values
to its previous values, then there is a finite number of objects that
can be created in the system, and the safety is decidable by tracing
all possible system states. We will see in Section 5 that there are
examples of useful systems that meet this requirement. We keep
the assumption of finite value domain for each attribute.

DEFINITION 9. An attribute-value assignment tuple(or simply
attribute tuple) is a functionτ : ATT → dom(ATT) ∪ {null}
that assigns a value ornull to each attribute inATT .

For a system with a finite domain for each attribute, there is only
a finite set of attribute tuples, which is denoted asAT P . In any
system statet = (Ot, σt), for each objecto ∈ Ot, its attribute
tupleτo in this state is the attribute-value assignments in this state.
Specifically,∀a ∈ ATT, σt(o.a) = τo(a), whereτo ∈ AT P .

4.2.1 Grounding Policies
For safety analysis, we generate a set ofground policies with

a groundingprocess, for each policy in a UCONA scheme. Intu-
itively, grounding a policy is to evaluate the policy with all possible
attribute tuples of the object parameters, and only those satisfying
the predicates in the policy are considered in the safety analysis.

Consider the following generic UCONA policy

c(s, o):
p1 ∧ p2 ∧ · · · ∧ pi → permit(s, o, r)
[createObject o];
up1; . . . ; upm;
upm+1; . . . ; upn;
[destroyObject o];
[destroyObject s];

where thecreateObject anddestroyObject actions are optional,
and p1, . . . , pi are predicates ons’s and o’s attributes. Ifc is a
creating policy, these predicates are only based ons’s attributes.
Without loss of generality, we assume thatup1, . . . , upm are up-
date actions ono’s attributes, andupm+1, . . . , upn are update ac-
tions ons’s attributes, and for any attribute of an object there is at
most one update in the policy. In a real command, any of the ac-
tions can be optional. For example, for a command that includes a
destroyObject o action, all update actions ono can be removed
since they have no effect on the new system state.

The grounding process works as follows. For any two attribute
tuplesτs, τo ∈ AT P , if all the predicatesp1, . . . , pi are true with
s’s attribute tupleτs ando’s attribute tupleτo, then a ground policy
c(s : τs, o : τo) is generated with the following format:

c(s : τs, o : τo):
true → permit(s, o, r)
[createObject o];
updateAttributeTuple o : τo → τ ′o;
updateAttributeTuple s : τs → τ ′s;
[destroyObject o];
[destroyObject s];

whereτ ′o is the attribute tuple ofo after the update actionsup1, . . . ,
upm, and τ ′s is the attribute tuple ofs after the update actions
upm+1, . . . , upn. If c is a creating policy, the predicatesp1, . . . , pi

are evaluated withτs only, and we can considerτo(a) = null for
all a ∈ ATT .

This process is repeated with every possible attribute tupleτs

andτo. Since each object has a finite number of attribute tuples,
for any policy this grounding process is guaranteed to terminate,
and a finite number of ground policies is generated. The set of
ground policies is denoted asCn.

With this grounding process, the predicate evaluation in each
policy is pre-processed by considering all possible attribute tuples
in a system. This simplifies the subsequent safety analysis.

EXAMPLE 4. This example illustrates the grounding process
for a policy and does not necessarily have a practical interpre-
tation. For simplicity letATT = {a} and dom(a) = {1, 2, 3}.
The policy

c(s, o):
(s.a > o.a) → permit(s, o, r)
updateAttribute : o.a = o.a + 1;

generates the following three policies in the grounding process.

c(s : (a = 2), o : (a = 1))
true → permit(s, o, r);
updateAttributeTuple o : (a = 1) → (a = 2);

c(s : (a = 3), o : (a = 1))
true → permit(s, o, r);
updateAttributeTuple o : (a = 1) → (a = 2);

c(s : (a = 3), o : (a = 2))
true → permit(s, o, r);
updateAttributeTuple o : (a = 2) → (a = 3);

For other attribute tuplesτs and τo as attribute-value assign-
ments ofs ando respectively, ifs.a > o.a is not true (e.g.,s.a =
1, o.a = 2), no ground policy is generated. Here by definition we
assume that the predicates.a > o.a is false if eithers.a = null or
o.a = null. 2

Our goal is to use the finite set of ground policies to study the
safety property of a UCONA system. With the following result, the
change of the system state caused by enforcing an original policy
can be simulated by enforcing a ground policy.

LEMMA 1. Given two statest = (O, σ) andt′ = (O′, σ′) in a
UCONA system,

1. if t �c(s,o) t′, wherec ∈ C, then there is a ground pol-
icy cn generated fromc such thatt �cn(s:τs,o:τo) t′, where
τs, τo ∈ AT P .

2. if t �cn(s:τs,o:τo) t′, wherecn ∈ Cn, then there is a policy
c ∈ C such thatt�c(s,o) t′, whereτs, τo ∈ AT P .

Proof. For the first case, letτs(a) = σ(s.a) andτo(a) = σ(o.a)
for eacha ∈ ATT . Sincet �c(s,o) t′, all the predicates inc are
satisfied withs ando’s attribute values in the statet. According to
the grounding process, triviallycn(s : τs, o : τo) is a valid ground
policy generated fromc. Also based on the grounding process, for a
primitive action inc, if it is not an update action, then it is included
in cn; if it is an update actionupdateAttribute : s.a = v′, where
a ∈ ATT , v′ ∈ dom(a), thenupdateAttributeTuple : τs → τ ′s
is included incn(s : τs, o : τo), andτ ′s(a) = v′. Therefore with
the actions incn(s : τs, o : τo), the system state changes to the
same state as withc(s, o).

In the second case, supposet�cn(s:τs,o:τo) t′, wherecn ∈ Cn.
Sincecn can be enforced int, the attribute-value assignments ofs
ando areτs andτo in t, respectively. According to the grounding
process, this implies that all the predicates in the policyc, from
which cn is generated, are satisfied by these assignments. There-
fore the policyc can be applied int. Also, bothc and cn have
the same non-update actions, and all the update actions inc have
the same effect with theupdateAttributeTuple action(s) incn,
hencet�c(s,o) t′. 2

This lemma shows that from the same system state, a single step
by enforcing a policy can be simulated with a single step with a
ground policy, and vice versa. The following shows that a history of
the system with the original policies can be simulated by a history
with ground policies.

LEMMA 2. For a UCONA system with initial statet0,

1. if t0 C t, then there is a transition historyt0 Cn t.

2. if t0 Cn t, then there is a transition historyt0 C t.

Proof. The first case can be proved by induction on the number of
steps int0 C t.

Basis step: Supposet0 �c(s,o) t, wherec ∈ C. Accord-
ing to Lemma 1, there is a ground policycn ∈ Cn such that
t0 �cn(s:τs,o:τo) t.

Induction step: Assume that for every historyt0 C t′ with k
steps, there is a historyt0 Cn t′. Consider a historyt0 C t
of lengthk + 1 and lett′ �c(s,o) t be the last step. Sincec can
be enforced int′, according to Lemma 1, there is a ground policy
cn ∈ Cn such thatt′ �cn(s:τs,o:τo) t. By induction hypothesis,
there exists a historyt0 Cn t. This completes the induction step
and the proof of the first case. A similar approach can be used for
the proof of the second case. 2

With this lemma, we can conclude that for a UCONA system,
the set of all states reachable from the initial state using the original
policies can be reached using the ground policies, and vice verse.
Therefore we can study the safety property of the system with the
set of ground policies.

4.2.2 Attribute Creation Graph
The basic idea of our safety analysis is to allow a finite number

of creating steps from any subject in the initial state. This requires
that in a creating ground policy, the child’s attribute tuple must be
different from the parent’s attribute tuple, so that if the creating
relation is acyclic, there only can be finite steps of creating from
the original subject.

DEFINITION 10. A ground policy is acreating ground policyif
it contains acreateObject action in its body; otherwise, it is a
non-creating ground policy.

DEFINITION 11. In a creating ground policycn(s : τs, o : τo),
τs is thecreate-parent attribute tuple, andτ ′o is thecreate-child at-
tribute tuple.

This definition implicitly requires that in each creating ground
policy, the child’s attribute tuple is updated. Without loss of gener-
ality, we assume that if there is no update action for the child in a
creating policy, thenτo = τ ′o in all the ground policies generated
from this creating policy; that is, they are both null-valued attribute
assignments.

DEFINITION 12. Thegeneration valueof an objecto is defined
recursively as follows:

1. if o ∈ O0, its generation value is 0;

2. if o is created in a creating ground policyc(s : τs, o : τo),
its generation value is one more than the generation value of
its parents.

DEFINITION 13. For a UCONA system with finite attribute do-
mains, theattribute creation graph (ACG)is a directed graph with
nodes all the possible attribute tuplesAT P , and an edge fromτu

to τv if there is a creating ground policy in whichτu is the create-
parent attribute tuple andτv is the create-child attribute tuple.

LEMMA 3. In a UCONA system, if the ACG is acyclic and in
each creating ground policy the child’s attribute tuple is updated,
then the set of all possible generation values is finite, and the max-
imal generation value is|AT P|.

Proof. With an acyclic ACG, in each creating ground policy the
create-child attribute tuple is different from the create-parent at-
tribute tuple, otherwise there is a self-loop with this attribute tu-
ple and the ACG is not acyclic. If the maximal generation value
is more than|AT P|, then there exist two creating ground poli-
cies,c1(s1 : τs1, o1 : τo1) with create-child attribute tupleτ ′o1 and
c2(s2 : τs2, o2 : τo2) with create-child attribute tupleτ ′o2, andτ ′o1

is τs2 or an ancestor ofτs2 andτ ′o2 is τs1 or an ancestor ofτs1 in

ACG. Therefore there is a cycle in the ACG, which is in conflict
with the acyclic ACG property of the system. Therefore the set of
all possible generation values is finite, and the maximal generation
value is|AT P|. 2

4.2.3 Attribute Update Graph
As a subject can create an object, which in turn can create an-

other object, an acyclic ACG ensures that the “depth” of these cre-
ation chains is bounded. At the same time, a subject can have an
unbounded number of direct children, which allows the system to
have an arbitrary large number of objects. With some restrictions
on the attribute update relation, a system can allow only a finite
number of creations with a single subject as parent. Specifically, if
the subject’s attribute tuple has to be updated in a creating policy,
and there is no policy in the scheme that can update the subject’s
attribute tuple to a previous one, then the number of the subject’s
direct children is finite.

DEFINITION 14. In a ground policycn(s : τs, o : τo),

• if there is anupdateAttributeTuple s : τs → τ ′s ac-
tion, thenτs is an update-parent attribute tuple, and τ ′s is
anupdate-child attribute tuple.

• if there is anupdateAttributeTuple o : τo → τ ′o ac-
tion, thenτo is an update-parent attribute tuple, and τ ′o is
anupdate-child attribute tuple.

Note that in a creating ground policy in whichs is the parent
andτs is updated,τs is both a create-parent attribute tuple and an
update-parent attribute tuple.

DEFINITION 15. For a UCONA system with finite attribute do-
mains, theattribute update graph (AUG)is a directed graph with
nodes all possible attribute tuplesAT P , and an edge fromτu to τv

if there is a ground policy in whichτu is an update-parent attribute
tuple andτv is an update-child attribute tuple.

LEMMA 4. In a UCONA system, if the AUG has no cycle con-
taining a create-parent attribute tuple, and in each creating ground
policy the parent’s attribute tuple is updated, then the number of
children of a subject is finite, and the maximal number of children
is |AT P|.
Proof. Since AUG has no cycle containing a create-parent attribute
tuple, then in any creating ground policycn(s : τs, o : τo), τ ′s is
different fromτs, otherwise there is a self-loop on the create-parent
attribute tuple since in a creating ground policy,τs is both a create-
parent attribute tuple and an update-parent tuple. If the number of
creating ground policies which can use the same subject as the par-
ent is more than|AT P|, then there are at least two creating poli-
cies in which the update-parent attribute tuple are the same. That
means, there is a policy that updates the subject’s attribute tuple to
this create-parent tuple, which implies a cycle which contains this
create-parent attribute tuple. This is in conflict with the property
of AUG in the system. Therefore the set of all possible creating
ground polices that can use this subject as parent is finite, and the
maximal number of its children is|AT P|. 2

4.2.4 Safety Analysis
Consider a system with satisfies the requirements in Lemma 3

and 4. For a subject in the initial state of the system, the number
of direct children of this subject is finite, and the creation “depth”
from this subject is also finite. These two aspects ensure that in the
system there is a bounded number of objects that can be created,
and the safety can be checked with the finite states of the system.

DEFINITION 16. A descendantof an object is defined recur-
sively as either itself or a child of a descendant of this object.

THEOREM 3. The safety problem of a UCONA system with fi-
nite attribute domains is decidable if:

• the ACG is acyclic, and

• the AUG has no cycle containing a create-parent attribute
tuple, and

• in each creating ground policyc(s : τs, o : τo), both the
parent’s and the child’s attribute tuples are updated.

Proof. We first prove that the set of all possible objects that can
be created in the system is finite. Consider a subjects ∈ O0. If
there are any creating ground policies that can be applied withs as
parent, then, according to Lemma 4, the number of creating polices
with s as parent is finite, and the maximal number of children cre-
ated withs is |AT P|. On the other hand, according to Lemma 3,
for each object, there is only a finite number of generation values,
therefore the number of descendants ofs is finite. Since the set of
objects in the initial state is finite, and each object created in the
system is a descendant of an object in the initial state, then there is
only a finite number of objects that can be created in the system.

The safety analysis needs to check if a particular permission
(s, o, r) can be authorized in any reachable state of the system.
For this purpose we use the recursive algorithm shown in Figure 2
to search for a state that enables the permission(s, o, r) in all the
states of the system reachable from the initial state. The algorithm
starts from the initial state of the system, and checks all reachable
states with the non-creating ground policies. If there is no state
where the permission is enabled, from every state of the reachable
states, the algorithm generates a new object and recursively does a
similar check. This step is repeated with all possible sequences of
creations until all reachable states are checked.

First we prove that this algorithm terminates. Since in each call
of SafetyCheck(), there are finitely many reachable states, and
each state has a finite number of objects, then the number of loops
in each call is finite. According to the properties of the systems,
the set of all objects that can be created is finite, hence the num-
ber of callingSafetyCheck() is finite. Therefore the algorithm
terminates in a finite number of steps.

Then we show that all the reachable states of the system are vis-
ited by this algorithm if the permission(s, o, r) is not enabled in
any state. In each call ofSafetyCheck(), all possible states with-
out creating new objects are checked in the first loop (line 3-4). For
a particular subject and a particular creating ground policy, the pol-
icy can be applied with the subject at most once because the AUG
has no cycle containing any create-parent attribute tuple. In line 7
every possible creating policy is applied for a subject as parent at
least once. So in the loops of 5-6 all possible sequences of creating
policies are applied, and the reachable states with created objects
are also visited until no object can be created. Therefore the algo-
rithm checks all the possible reachable states in the system.

So if a state is reached where the permission(s, o, r) is enabled
according to a policy, the algorithm returnstrue. By checking
all possible non-creating policy sequences (line 2-4) for reachable
states and trying all possible sequence of creating policies in each
reachable state, if the algorithm reaches a state in which the permis-
sion(s, o, r) is enabled, then there is a sequence of policies leading
the system from the initial state to this state. This proves that this
algorithm can perform the safety analysis. 2

From Lemma 3 and 4, it is known that the maximum number
of all possible descendants of an object is|AT P| × |AT P|. For

Safety Check Algorithm
// input: UCONA system with initial statet0 = (O0, σ0) and a finite set of ground policies
1) SafetyCheck(O0, t0)
2) Construct a finite state automatonFA with objectsO0 and the set of non-creating ground

policies. (refer to the proof in Theorem 2.)
3) foreach t0 t in FA do
4) if r ∈ ρt(s, o), return true
5) foreach t0 t in FA, wheret = (O, σ), do
6) foreachsubjects in t do
7) foreachcreating ground policyc(s : τs, o : τo), whereτs(a) = σ(s.a) do
8) enforcec(s : τs, o : τo);
9) create objecto and update its attribute tuple toτ ′o;
10) updates’s attribute tuple toτ ′s;
11) the system state changes tot′ with new objecto and updated attributes ofs ando;
12) SafetyCheck(O0 ∪ {o}, t′);
13) return false

Figure 2: Safety check algorithm

a UCONA system with initial statet0 = (O0, σ0), the maximum
number of all possible created objects is|O0| × |AT P|2. On the
other hand, for each object, the maximum number of its attribute-
value assignments is|AT P|. According to the safety check algo-
rithm, the maximum number of steps (SafetyCheck) is

(|O0| × |AT P|) ∗ ((|O0|+ 1)× |AT P|) ∗ ((|O0|+
2)× |AT P|) ∗ · · · ∗ ((|O0|+ N)× |AT P|),

whereN = |O0| × |AT P|2. Therefore the complexity of this
safety check algorithm isO�((|O0|+ N)× |AT P|)N

�
.

5. EXPRESSIVE POWER OF DECIDABLE
UCONA MODELS

Certain restricted UCONA models have decidable safety, so the
question does arise whether or not these models can capture prac-
tically useful access control policies. In this section we use these
limited forms of decidable UCONA models to express practically
useful policies that have been discussed in the literature. We show
that UCONA without creation can simulate an RBAC96 model with
URA97 administrative scheme, and that UCONA with restricted
creation can express policies for a DRM application with consum-
able rights. These examples demonstrate that our decidable models
maintain practical expressive power.

5.1 RBAC Systems
In an RBAC system, a subject can be viewed as having a role

attribute whose value is a subset of the roles in the system. Simi-
larly, an object can have a role attribute for each right indicating the
subset of roles for which that right is authorized. In classic RBAC
[15, 4] these role attributes are fixed and changeable only by ad-
ministrative actions, which could themselves be authorized based
on roles. Thus possession of a suitable administrator role would
enable a subject to change the roles of other subjects and objects,
essentially accomplishing the user-role assignment and permission-
role assignment which are the basic operations of administrative
RBAC (ARBAC). In this section we consider the user-role assign-
ment (URA97) portion of the ARBAC97 model [16] and express it
with a decidable UCONA system.

An RBAC scheme consists of a set of regular rolesRR and a par-
tial order relation≥RH⊆ RR×RR for the role hierarchy, a set of
administrative rolesAR and a partial order relation≥ARH⊆ AR×
AR for the administrative role hierarchy, a fixed set of generic
rightsRT , and a set of rules to change user-role assignments, em-
bodied in thecan assign and can revoke relations of URA97

[16]. An RBAC system state consists of a set of subjectsSUB,
a set of permissionsPER, a set of user-role assignmentsUA ⊆
SUB×RR, a set of user-administrative role assignmentsUAA ⊆
SUB × AR, and a set of permission-role assignmentsPA ⊆
PER × RR. The permissions are defined by objects and rights,
PER ⊆ OBJ × RT , whereOBJ is a set of objects. Note that
here we simply consider a user in the original RBAC as a subject
in UCONA and do not account for role activation explicitly. The
construction can be easily extended to do this.

For each RBAC system, we construct a UCONA system with
scheme(ATT, R, P, C), whereATT = {ua, uaa, acl}, ua and
uaa are subject attributes to store the user-role assignments and
user-administrative role assignments in RBAC, respectively, and
acl is an object attribute to record the permission-role assignments.
R = RT ∪ {assign r|r ∈ RR} ∪ {revoke r|r ∈ RR}. The set
of predicatesP consists of:

• the predicatex ∈ y to indicate thatx is an element of sety;

• the predicatemember to check if a role or any of its senior
roles is assigned to a subject, andmember(r, s.ua) = true
if ∃r′ ≥RH r, r′ ∈ s.ua;

• the predicatenotmember to check that a role or all of its se-
nior roles is not assigned to a subject, andnotmember(r, s.ua) =
true if ∀r′ ≥RH r, r′ /∈ s.ua;

• the predicateadmin member checks if an administrative
role or any of its senior roles is assigned to a subject, and
admin member(r, s.uaa) = true if ∃r′ ≥ARH r, r′ ∈
s.uaa.

With fixed ≥RH and≥ARH relations, all these predicates are
polynomially computable.

The initial state of the RBAC system(SUB0,OBJ0,PER0,UA0,
UAA0,PA0) is mapped to a UCONA state(O0, σ0), whereO0 =
SUB0 ∪ OBJ0 and σ0 as a set of attribute-value assignments
shown below.

• s0.ua = {r|r ∈ RR, and (s, r) ∈ UA0} for so ∈ SUB0;

• s0.uaa = {r|r ∈ AR, and (s, r) ∈ UAA0} for so ∈
SUB0;

• o0.acl = {(r, rt)|r ∈ RR, rt ∈ RT, (o0, rt) ∈ PER0,
and (r, (o0, rt)) ∈ PA0} for oo ∈ OBJ0;

The set of policiesC is defined as follows. First, a set of policies
is needed to specify the original permissions of RBAC in a state of
the UCONA system. For a roler ∈ RR and a rightrt ∈ RT , the
policy is shown below.

policy r rt(s, o):
member(r, s.ua)∧((r, rt) ∈ o.acl) → permit(s, o, rt)

Note that roles and rights are not parameters in a policy. With the
RBAC scheme, the upper bound on the number of these policies is
|RR| × |RT | in the simulating UCONA scheme.

In URA97, a relationcan assign specifies which particular ad-
ministrative role can assign a subject, which satisfies a prerequi-
site condition, to a role in a specified role range. A prerequi-
site condition is a boolean expression generated by the grammar
cr :≡ x|x̄|cr∧cr|cr∨cr, wherex ∈ RR. For a subjects ∈ SUB
in a state,x is true if ∃x′ ≥RH x, (s, x′) ∈ UA and x̄ is true
if ∀x′ ≥RH x, (s, x′) /∈ UA. The set of the prerequisite condi-
tions in an RBAC is denoted asCR. Thereforecan assign ⊆
AR× CR× 2RR.

Consider the rulecan assign1(ar, cr, [r1, r2]), wherear ∈ AR,
cr = x ∧ ȳ, x, y ∈ RR. It can be expressed by a bounded set of
policies in UCONA, one for eachri ∈ [r1, r2]:

can assign ri(s1, s2):
admin member(ar, s1.uaa)∧member(x, s2.ua)∧
notmember(y, s2.ua) → permit(s1, s2, assign ri)
updateAttribute : s2.ua = s2.ua ∪ {ri}

This policy allows a subjects1 to assign the roleri (ri ∈ [r1, r2])
to the subjects2 whens1 is a member of the administrative role
ar, ands2 is a member of the rolex but not ofy. The number of
policies to simulatecan assign1 is bounded, since for fixedRR
and≥RH , the number of roles in[r1, r2] is bounded.

Similarly, a revocation relation in URA97 can be expressed with
policies in UCONA. A can revoke ⊆ AR×2RR relation specifies
that a subject with membership in an administrative role can revoke
a subject’s membership in the roler if r is in a particular role range.
This implies thatr is assigned to the subject before the revocation.
We can simulatecan revoke1(ar, [r1, r2]) with a set of policies,
one for each roleri ∈ [r1, r2]:

can revoke ri(s1, s2):
admin member(ar, s1.uaa) ∧ (ri ∈ s2.ua)
→ permit(s1, s2, revoke ri)
updateAttribute : s2.ua = s2.ua− {ri}

This policy states that in a particular state, a subjects1 can ex-
ecute the rightrevoke ri on the subjects2 by removingri (ri ∈
[r1, r2]) from s2’s ua attribute, ifar or one of its seniors is in the
s1’s uaa andri is in the subjects2’s ua. Again, the number of
policies to simulatecan revoke1 is bounded since the number of
roles in[r1, r2] is bounded for fixedRR,≥RH , AR, and≥ARH .

This shows that a UCONA system can be constructed to simu-
late an RBAC system with URA97 administrative scheme. In this
UCONA system, each attribute’s value domain is finite sinceRR,
AR, andRT are all fixed sets, and there is no creating policy in
the system. According to Theorem 2, this UCONA system has de-
cidable safety, which implies this RBAC system also has decidable
safety.

Based on the same processes, we can simulate an RBAC system
with PRA97 (permission-role assignment model in ARBAC97) us-
ing UCONA and show that this RBAC model also has decidable
safety. For an RBAC system with RRA97 (role-role assignment
model in ARBAC97), sinceRR and≥RH are not fixed, this ap-
proach cannot be used to prove the decidability of its safety prob-
lem.

5.2 DRM applications with Consumable Rights
Consumable access is becoming an important aspect in many

applications, especially in DRM. For example, in a pay-per-use ap-
plication, a user’s credit is reduced after an access to an object,
causing the user to lose the right on the object after a number of
accesses. For another example, if an object can only be accessed
by a fixed number of subjects concurrently, a subject’s access may
revoke the access right of another subject. Most applications with
consumable rights can be modelled by UCON with the mutability
property [12, 11].

Consider a DRM application, where a user can order a music
CD, along with a license file which specifies that the CD can only
be copied a fixed number of times (say, 10). The license file can
be embedded with the CD or distributed separately, and must be
available and respected by the CD copying software or device. A
subject (user) has an attributecredit with a numerical value of the
user’s balance. Each object (CD) has an attributecopylicense to
specify how many copies that a subject can make with this object.
The policies are defined as follows.

order(s, o):
(s.credit ≥ o.price) ∧ (o.owner = null)
→ permit(s, o, order)
updateAttribute : s.credit = s.credit− o.price
updateAttribute : o.owner = s
updateAttribute : o.copylicense = 10

allow copy(s, o):
(o.owner = s) ∧ (o.copylicense > 0)
→ permit(s, o, allowcopy)
updateAttribute : o.allowcopy = true

copy(o1, o2):
(o1.allowcopy = true) → permit(o1, o2, copy)
createObject o2

updateAttribute : o2.sn = o1.copylicense
updateAttribute :
o1.copylicense = o1.copylicense− 1
updateAttribute : o1.allowcopy = false

The first policy specifies that a user can order an object if not
ordered before (the value of attributeowner is null) and the user’s
credit is larger than the object’s price. As a result of the order,
the user’s credit is reduced, the object’sowner is updated to the
user’s ID, and the object’scopylicense is set to 10. The second
policy states that whenever the object’scopylicense is positive,
the owner of the object is allowed to make a copy of the object. In
the third policy, if an object is allowed to be copied, a new object
(CD) can be created, itssn (serial number) is set to be the original
object’scopylicense value, and the original object’scopylicense
is reduced by one. As the newly created object does not have any
license information, it cannot be copied.

In a system with a fixed number of users and objects in the ini-
tial state, the value domain ofowner is finite since no new users
can be created. The set of all possible values forcredit of a sub-
ject is finite, since the value is set after pre-payment or registra-
tion. Note that the changes of thecredit value because of admin-
istrative actions, e.g., credit card payment, are not captured in the
model. The value domains forcopylicense and allowcopy are
obviously finite. Therefore, all the attribute value domains are fi-
nite sets. Furthermore, there is only one creating policy, in which
both the child’s and the parent’s attributes are updated, and there
is no cycle with any create-parent attribute tuples since the value

of copylicense strictly decreases. According to Theorem 3, the
safety of this UCONA model is decidable.

6. RELATED WORK
Previous work in safety analysis has shown that, for some gen-

eral access control models such as the access matrix model formal-
ized by Harrison, Russo, and Ullman (HRU model) [5], safety is
an undecidable problem. That means, there is no algorithm to de-
termine, given a general access control matrix system, whether it
is possible to find a combination of commands to produce a state
where a subject has a particular permission. HRU did provide
decidability results for special cases with either mono-operational
commands (only one primitive operation allowed in a command) or
mono-conditional (only one presence check in the condition part of
a command) monotonic (no “destroy subject” or “destroy object”
or “remove right” operations) commands. These restricted models
are very limited in expressive power. The take-grant model has a
linear time algorithm to check the safety property, but it also has
limited expressive power [2, 9].

Sandhu’s Schematic Protection Model (SPM) has sufficient ex-
pressive power to simulate many protection models, while provides
efficient safety analysis [13]. SPM introduces the notion of strong
security type for subjects and objects: each subject and object is as-
sociated with a security type when created, and this type does not
change after creation. Sandhu [14] introduces a typed access matrix
model (TAM) model which generalizes the HRU model by intro-
ducing strong-typed subjects and objects. The monotonic form of
TAM with acyclic scheme is decidable, and the decision procedure
is NP-hard. Extending TAM, Soshi [18] presents a dynamic-typed
access matrix model (DTAM), which allows the type of an object
to change dynamically within a fixed domain. The decidable model
of DTAM allows non-monotonic operations.

Motwani et al. [10] present an accessibility decidable model in
a capability-based system, which is a generalized take-grant model
and a restricted form of HRU model. The approach to the safety
problem is based on its relationship to the membership problem in
languages generated by certain classes of string grammars. Jaeger
and Tidswell [6] provide a safety analysis approach which uses a
basic set of constraints on a system. More recently, Koch et al.
[7] report on results that use a graph transformation model to spec-
ify access control policies. The state is represented by a typed la-
belled graph and state transitions by graph transformations. Under
some restrictions on the form of the rules (e.g., rules that add or
delete elements), the model has a decidable accessibility problem,
and the rules can model restrictive forms of DAC and a simplified
decentralized RBAC. Very recently, Li and Tripunitara [8] use a
trust management approach to study the safety problem in RBAC
and derive the decidability of safety with a user-role administration
scheme (URA97). The first safety decidable model obtained in this
paper has the capability to simulate an RBAC system with URA97.

7. CONCLUSION AND FUTURE WORK
In this paper we investigate the safety property of UCON. First

the safety problem in general UCONA models is shown to be un-
decidable by simulating a Turing machine. Then we prove that
a UCONA model with finite attribute domains and without cre-
ating policies is decidable. By relaxing the creation restriction,
we also prove that the safety problem is decidable for a UCONA

model with acyclic attribute creation graph and no cycles that in-
clude create-parent tuple in attribute update graph. The decidable
models are shown to be useful by simulating RBAC96 model with
URA97 scheme, and a DRM application with consumable rights.

These two results lay the groundwork for considerable future work
on these topics, and hold out the promise for discovery of practi-
cally useful and efficiently decidable cases of UCON.

In this paper we focus only on the safety analysis with pre-authorization
policies in UCON. For condition core models of UCON, as system
state changes caused by environmental information are not cap-
tured in UCON core models, safety is a function of the system
environment. For obligation core models, as specified in [19], an
obligation of an access is an action that can be related to the sub-
ject requesting the access, or to some other subjects and, therefore,
a usage policy may include more than two parameters. Analysis of
the safety problem with obligations is for future work.

8. REFERENCES
[1] D. E. Bell and L. J. Lapadula, Secure Computer Systems:

Mathematical Foundations and Model. Mitre Corp. Report
No.M74-244, Bedford, Mass., 1975.

[2] M. Bishop, Theft of Information in the Take-Grant
Protection Model, In Proc. of IEEE Computer Security
Foundation Workshop, 1988.

[3] D. E. Denning, A lattice model of secure information flow,
Communications of the ACM, vol. 19, no. 5, 1976.

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard Kuhn and
R. Chandramouli, Proposed NIST Standard for Role-Based
Access Control, ACM Transactions on Information and
System Security, Volume 4, Number 3, August 2001.

[5] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman, Protection in
Operating Systems, Communication of ACM, Vol 19, No. 8,
1976.

[6] T. Jaeger and J. E. Tidswell, Practical Safey in Flexible
Access Control Models, ACM Transactions on Information
and Systems Security, Vol. 4, No. 2, May 2001.

[7] M. Koch, L. V. Mancini, and F. Parisi-Presicce,Decidability
of Safety in Graph-Based Models for Access Control, In
Proc. of the 7th European Symposium on Research in
Computer Security, LNCS 2502, 2002.

[8] N. Li and M. V. Tripunitara. Security analysis in role-based
access control. InProceedings of the Ninth ACM Symposium
on Access Control Models and Techniques, 2004.

[9] R. J. Lipton and L. Snyder, A Linear Time Algorithm for
Deciding Subject Security, Journal of ACM, 24(3), 1977.

[10] R. Motwani, R. Panigrahy, V. Saraswat, and S.
Venkatasubramanian, On the Decidability of Accessibility
Problem (Extended Abstract), In Proc. of the 32th Annual
ACM Symposium on Theory of Computing, 2000.

[11] J. Park and R. Sandhu, The UCONABC Usage Control
Model, ACM Transactions on Information and Systems
Security, Feb., 2004.

[12] J. Park, X. Zhang, and R. Sandhu, Attribute Mutability in
Usage Control, In Proc. of the Annual IFIP WG 11.3
Working Conference on Data and Applications Security,
2004.

[13] R. Sandhu, The Schematic Protection Model: Its Definition
and Analysis for Acyclic Attenuating Schemes, Journal of
ACM, 35(2), 1988.

[14] R. Sandhu, The Typed Access Matrix Model, In Proc. of the
IEEE Symposium on Research in Security and Privacy, 1992.

[15] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,
Role-Based Access Control Models, IEEE Computer,
Volume 29, Number 2, February 1996.

[16] R. Sandhu, V. Bhamidipati, and Q. Munawer, The ARBAC97
Model for Role-Based Administration of Roles, ACM

Transactions on Information and Systems Security, Volume
2, Number, February 1999.

[17] M. Sipser, Introduction to the Theory of Computation, PWS
Publishing 1997.

[18] M. Soshi, Safety Analysis of the Dynamic-Typed Access
Matrix Model, In Proc. of the 6th European Symposium on
Research in Computer Security, LNCS 1895, 2000.

[19] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu, A
Logical Specification for Usage Control, In Proc. of the 9th
ACM Symposium on Access Control Models and
Technologies, 2004.

APPENDIX
The proof of Theorem 1:
We show that a general Turing machine with one-directional sin-
gle tape [17] can be simulated with a UCONA system, in which a
particular permission leakage corresponds to the accept state of the
Turing machine. A Turing machineM is a 7-tuple:{Q, Σ, Γ, δ, q0,
qaccept, qreject}, where:

• Q is a finite set of states,

• Σ is a finite set, the input alphabet not containing the special
blank symbol,

• Γ is a finite set, the tape alphabet, withblank ∈ Γ andΣ ⊆ Γ,

• δ : Q× Γ → Q× Γ× {L, R} is the transition function,

• q0, qaccept, qreject ∈ Q are the start state, accept state, and
reject state, respectively, whereqaccept 6= qreject.

Initially, M is in the stateq0. Each cell on the tape holdsblank.
The movement ofM is determined byδ: if δ(q, x) = (p, y, L),
M is in the stateq with the tape head scanning a cell holdingx,
the head writesy on this cell, moves one cell to the left on the tape,
andM enters the statep. If the head is at the left end, there is no
movement. Similarly forδ(q, x) = (p, y, R), but the head moves
one cell to the right.

We construct a UCONA system to simulate a Turing machineM
introduced above, where the set of objects in a state of the UCONA

system is used to simulate the cells in the tape ofM. The UCONA

scheme is(ATT, R, P, C), whereR = Q∪{moveleft, moveright,
create} andATT = {state, cell, parent, end}. For an object,
the value ofstate is eithernull or the state ofM if its head is po-
sitioned on this cell, the value ofcell is the content in the cell that
the head is scanning, theparent attribute stores an object identity,
andend is a boolean value to show whether the head is on the right
most cell of the part of the tape used so far. The set of predicatesP
and policiesC are shown in the simulation process.

The initial state(O0, σ0) of the UCONA system includes a sin-
gle objecto0 and its attribute assignments:

• o0.state = q0

• o0.cell = blank

• o0.parent = null

• o0.end = true

For the state transitionδ(q, x) = (p, y, L), the following policy
is defined to simulate it:

policy moveleft(o1, o2):
(o2.parent = o1)∧(o2.state = q)∧(o2.cell = x) →
permit(o1, o2, moveleft)
updateAttribute : o2.state = null;
updateAttribute : o2.cell = y;
updateAttribute : o1.state = p;

In this policy, the two objects are connected by theparent at-
tribute. When the Turing machine is inq0, sinceo0’s parent value
is null, the left movement cannot happen. In a state when the Tur-
ing machine’s state isq and the cell containsx, the left movement
is simulated with a policy with parameterso1 ando2, whereo2’s
parent value iso1, and the policy updates their attributes to simu-
late the movement.

If the head is not scanning the right most cell, the state transition
δ(q, x) = (p, y, R) can be simulated with thepolicy moveright,
which is similar to thepolicy moveleft; otherwise it is simulated
with thepolicy create, in which a new object is created.

policy moveright(o1, o2):
(o1.end = false) ∧ (o2.parent = o1) ∧ (o1.state =
q) ∧ (o1.cell = x) → permit(o1, o2, moveright)
updateAttribute : o1.state = null;
updateAttribute : o1.cell = y;
updateAttribute : o2.state = p;

policy create(o1, o2):
(o1.end = true) ∧ (o1.state = q) ∧ (o1.cell = x) →
permit(o1, o2, create)
updateAttribute : o1.state = null;
updateAttribute : o1.cell = y;
updateAttribute : o1.end = false;
createSubject o2;
updateAttribute : o2.parent = o1;
updateAttribute : o2.state = p;
updateAttribute : o2.end = true;
updateAttribute : o2.cell = blank;

In a particular state of the UCONA system, only one of the three
rights (moveleft, moveright, andcreate) is authorized accord-
ing to one of the above policies, since thestate attribute is non-
null only for one object. Each policy assigns a non-null value to
an object’sstate, and sets another one tonull. The attributeend
is true only for one object. Therefore, this UCONA system with
these policies can simulate the operations ofM.

We need another policy to authorize a particular permission de-
pending on thestate attribute of an object.

policy q(o1, o2):
(o1.state = qf) → permit(o1, o2, qf)

For a Turing machine, it is undecidable to check if the stateqf

can be reached from the initial state. Therefore, with the scheme of
UCONA, the granting of the permissionqf of a subject to an object
is also undecidable. This completes our undecidability proof.2

