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ABSTRACT
Attribute staleness arises due to the physical distribution of
authorization information, decision and enforcement points.
This is a fundamental problem in virtually any secure dis-
tributed system in which the management and representa-
tion of authorization state is not centralized. This problem
is so intrinsic, it is inevitable that access control will be
based on attribute values that are stale. While it may not
be practical to eliminate staleness, we can limit unsafe access
decisions made based on stale subject and object attributes.
In this paper, we propose and formally specify four stale-
safe security properties of varying strength which limit such
incorrect access decisions. We use Linear Temporal Logic
(LTL) to formalize these properties making them suitable
to be verified by using model checking. We show how these
properties can be applied in the specific context of group-
based Secure Information Sharing (g-SIS) as defined in this
paper. We specify the authorization decision/enforcement
points of the g-SIS system as a Finite State Machine (FSM)
and show how this FSM can be modified so as to satisfy
one of the stale-safe properties. We formally verify that this
FSM satisfies the stale-safe property using a mature model
checker called Symbolic Model Verifier (SMV).

Keywords
Attribute Staleness, Security Properties, Model Checking,
Secure Information Sharing, Trusted Computing

.

1. INTRODUCTION

The concept of a stale-safe security property is based on
the following intuition. In a distributed system authorita-
tive information about subject and object attributes used for
access control is maintained at one or more secure authoriza-
tion information points. Access control decisions are made
by collecting relevant subject and object attributes at one or
more authorization decision points, and are enforced at one
or more authorization enforcement points. Because of the
physical distribution of authorization information, decision
and enforcement points, and consequent inherent network
latencies, it is inevitable that access control will be based on
attributes values that are stale (i.e., not the latest and fresh-
est values). In a highly connected high-speed network these
latencies may be in milliseconds, so security issues arising
out of use of stale attributes can be effectively ignored. In
a practical real-world network however, these latencies will
more typically be in the range of seconds, minutes and even
days and weeks. For example, consider a virtual private
overlay network on the internet which may have intermit-
tently disconnected components that remain disconnected
for sizable time periods. In such cases, use of stale attributes
for access control decisions is a real possibility and has se-
curity implications.

We believe that, in general, it is not practical to eliminate
the use of stale attributes for access control decisions.1 In
a theoretical sense, some staleness is inherent in the intrin-
sic limit of network latencies, of the order of milliseconds

1Staleness of attributes as known to the authoritative infor-
mation points due to delays in entry of real-world data is
beyond the scope of this paper. For example, if an employee
is dismissed there may be a lag between the time that action
takes effect and when it is recorded in cyberspace. The lag
we are concerned with arises when the authoritative informa-
tion point knows that the employee has been dismissed but
at some decision point the employee’s status is still showing
as active.
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in modern networks. We are more interested in situations
where staleness is at a humanly meaningful scale, say min-
utes, hours or days. In principle, with some degree of clock
synchronization amongst the authorization information, de-
cision and enforcement points, it should be possible to deter-
mine and bound the staleness of attribute values and access
control decisions. For example, a SAML assertion produced
by an authorization decision point includes a statement of
timeliness, i.e., start time and duration for the validity of
the assertion. It is upto the access enforcement point to
decide whether or not to rely on this assertion or seek a
more timely one. Likewise a signed attribute certificate will
have an expiry time and an access decision point can decide
whether or not to seek updated revocation status from an
authorization information point.

Given that the use of stale attributes is inevitable, the
question is how do we safely use stale attributes for access
control decisions and enforcement? The central contribution
of this paper is to formalize this notion of “safe use of a stale
property” in the specific context of group-based secure in-
formation sharing (g-SIS) as defined in this paper. We also
demonstrate specifications of systems that provably do and
do not satisfy this requirement as revealed by model check-
ing of the specifications. We believe this formalism can be
extended to more general contexts beyond the group-based
secure information sharing considered in this paper, but this
is beyond the current scope. We believe that the require-
ments for “safe use of a stale property” identified in this pa-
per represent fundamental security properties the need for
which arises in virtually any secure distributed systems in
which the management and representation of authorization
state is not centralized. In this sense, we suggest that we
have identified and formalized a basic security property, in
the same sense that non-interference [21] and safety [11] are
basic security properties that are desirable in a wide range
of secure systems.2

Specifically, we present formal specifications of four“stale-
safe” properties. The most basic and fundamental require-
ment we consider deals with ensuring that while authoriza-
tion data cannot be propagated instantaneously throughout
the system, it is highly desirable to ensure that a requested
action was definitely authorized at some point in the recent
past. With staleness we may allow the authorization to hold
for longer than it should have, but there is no doubt that the
access was authorized in the past. Two additional require-
ments can be added to obtain properties that are stronger
with respect to when it is required that the action be au-
thorized. The first is that, to be permitted, it must be con-
firmed that a requested action is authorized at a point in
time after the request and before the action is performed.
The second requirement bounds the elapsed time between
the point at which the authorization is confirmed and the

2The work of Lee et al [15, 16] is the closest to ours that we
have seen in the literature, but focuses exclusively on the use
of attribute certificates, called credentials, for assertion of
attribute values. Lee et al focus on the need to obtain fresh
information about the revocation status of credentials to
avoid staleness. As we will see our formalism is based on the
notion of a“refresh time,” that is the time when an attribute
value was known to be accurate. We believe the notion of
refresh time is central to formulation of stale-safe properties.
Because Lee et al admit only attribute certificates as carriers
of attribute information there is no notion of refresh time in
their framework.

point at which the action is performed. Because both of
these requirements can be added singly or in combination,
we obtain four different stale-safe properties.

We formalize these four properties in Linear Temporal
Logic (LTL), making them suitable to be verified by us-
ing model checking. We show how these properties can be
applied in the specific application domain of group-based
secure information sharing (g-SIS). We specify one compo-
nent of a g-SIS system as a finite state machine (FSM). We
present two FSM’s—one that does not and one that does
satisfy the weakest of our state-safe properties. We formally
verify the correct specification using model checking. We
also use the model checker to obtain an execution trace of
the incorrect FSM, which could be used by a designer to
correct that FSM.

In section 2, we discuss the group-based Secure Informa-
tion Sharing problem which will be used throughout the
paper to illustrate the stale-safe properties. In section 3,
we formalize the stale-safe security properties using Linear
Temporal Logic. We specify a weak and strong version of the
properties each of which is further restricted with a notion
of elapsed time between the time at the which the opera-
tion is authorized and performed. In section 4, we construct
a Finite State Machine (FSM) that enforces a specific pol-
icy for g-SIS. We formally verify the FSM against the weak
property stated in section 3 using Model Checking. We also
specify an FSM that appears to be a natural candidate for
g-SIS but fails this property. In section 5, we list related
work and we conclude in section 6.

2. GROUP-BASED SECURE INFORMATION
SHARING (g-SIS)

Secure Information Sharing (SIS) or sharing information
while protecting it is one of the earliest problems to be rec-
ognized in computer security, and yet remains a challenging
problem to solve. A detailed discussion of SIS problem mo-
tivation and solution approaches can be found in [14]. The
central problem is that copies of digital information are eas-
ily made and controls on the original typically do not carry
over to the copies. One approach tried in the past has been
to tie access control to each copy also so that copies are as
tightly controlled as the original. The most common form
of this approach is so-called mandatory or lattice-based ac-
cess control [28] where copies are also labeled to reflect se-
curity sensitivity of the original. More recently, an alter-
nate approach has emerged wherein plaintext unprotected
copies are prohibited, while encrypted protected copies can
be freely made. This implies that access controls need to
be enforced on the client machines where the content is de-
crypted and displayed, so as to ensure that only authorized
users get to see the content and that they are unable to make
plaintext unprotected copies. There has been considerable
interest in this approach, initially driven by the forces of
digital rights management for entertainment content seek-
ing to protect revenue but more generally seeking to protect
content for its sensitivity.

2.1 Objectives
The group-based SIS (g-SIS) problem [14] is motivated by

the need to share sensitive information amongst a group of
authorized users. For simplicity we only consider the case
of read access to the objects in the group. Every member of
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Subject join/Object add Subject leave/Object remove
Subject rejoin/Object re-addNever group subject/object Past group subject/objectCurrent group subject/object

Figure 1: Subject and object membership states.

the group is authorized to read group objects. For purpose
of this paper, we specify the following objectives for the g-
SIS problem. For brevity, the terms subjects and objects
refer to subjects and objects that belong to the group.

1. Objects are always protected (encrypted) and never
exists in plain text except when viewed.

2. Objects are assumed to be available via super-distribution.
This simply means that the objects are protected once
and subjects may access them when authorized—objects
are not individually prepared for each subject. We
limit super-distribution to occur within a group.

3. Subjects can access objects off-line without involving
the server using trusted access machines. The degree
of trust required on the access machines may vary de-
pending on the application and policy. In one case, the
access machines may be implicitly trusted because of
its physical location (e.g. access machines in an organi-
zation). In a completely distributed setting, a Trusted
Reference Monitor (TRM) needs to be present on the
access machines that can verify the integrity of the sys-
tem and enforce the authorization policies in a trust-
worthy manner [27, 20]. This can be achieved using
integrity measurements, remote attestation and other
features enabled by Trusted Computing Technology [2]
or software analogs of this technology.3

4. Each group has a Group Administrator (GA) who con-
trols group membership and policies. The GA can add
or remove subjects and objects from the group. We
do not specify how an admin is appointed. The admin
may or may not be a member of the group. Each group
also has a Control Center (CC), a server that main-
tains authoritative subject and object attributes and
provides group credentials to new members. Changes
in subject and object attributes or group policies are
updated by the GA at the CC and this change will
eventually be propagated to the subject’s access ma-
chines (discussed later in detail).

We now digress briefly to compare g-SIS with a related
problem –broadcast/multicast encryption. Member man-
agement in g-SIS scenario sharply differs from Secure Inter-
net Multicast. In multicast, as users join and leave a group,

3It is generally accepted that software-only solutions will
provide a lower degree of assurance than solutions with a
hardware root of trust. The issues discussed in this paper
are orthogonal to assurance so will apply to both software
and hardware based solutions.

remaining members go through a re-key process thereby re-
freshing the group key [24]. However, for secure information
sharing, such a requirement is extremely un-friendly because
members need not be always connected to a server to access
the objects. Thus, continuing our list of objectives, we have
the following.

5. When a subject joins or leaves the group, remaining
members should not be affected. In other words, join
and leave of a subject should be completely oblivious
to other subjects. Remaining subjects should not be
forced to be online or go through a re-key process4.

6. Secure multicast focuses on maintaining forward and
backward secrecy of data [24]. Forward-secrecy re-
quires that a leaving subject should not be able to read
data that will subsequently be exchanged in the fu-
ture. Backward-secrecy requires that a joining subject
should not be able to read data exchanged amongst
the remaining subjects in the past. However, informa-
tion sharing may not be limited to forward and back-
ward secrecy. For g-SIS flexible membership policies
may be required. When a new user joins the group,
whether he can access any group objects created prior
to his membership is policy-dependant. Objects cre-
ated after he joins the group are accessible. When a
member leaves the group, whether he can continue to
access objects created during his membership period
is policy-dependant. However, he cannot access any
object exchanged in the future within the group.

2.2 Group Management and Policy Enforce-
ment

Subjects and objects in a group go through various states
as shown in figure 1. Different access policies are possible
depending on the relative state of subjects and objects . For
example, a current subject could be allowed access only to
current objects or also to objects created before the subject
joined the group. Similarly, a past subject may lose ac-
cess to all objects or retain access to objects created during
his membership period. When a subject rejoins the group,
he may either gain access to objects created during his past
membership or simply join the group as a new subject. Sim-
ilarly, many different object policies are possible. Detailed
discussions can be found in [14]. Each group may thus pick
a specific set of group-level access policies for subjects and
objects.

Figure 2 shows one possible enforcement model for the g-
SIS problem and illustrates the interaction of various com-
ponents in g-SIS. The Group Administrator (GA) controls
group membership and policies. The Control Center (CC) is
responsible for maintaining authoritative group credentials
and attributes of group subjects and objects on behalf of the
GA.

4Members should not be asked to re-key or contact a server
to get a new key. Note that re-keying is not an efficient solu-
tion in SIS as the member needs to keep track of which docu-
ment was encrypted with which key. As users join and leave
a group, the remaining members will need to go through a
re-key process resulting in encrypting documents with differ-
ent keys along the time line. One cannot discard the old key
(as done in multicast) as disseminated documents encrypted
with the old key continue to persist.
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• Subject Join: Joining a group involves obtaining au-
thorization from the GA followed by obtaining group
credentials from the CC. In step 1.1, the subject con-
tacts the GA using an access machine and requests
authorization to join a group. The GA verifies that
the subject is not already a member and authorizes
the subject in step 1.2 (by setting AUTH to TRUE).
The subject furnishes the authorization to join the
group and the evidence that the access machine is in
a good software state to the CC in step 1.3. The CC
remotely verifies GA’s authorization, if the subject’s
access machine is trustworthy (using the evidence) and
has a known Trusted Reference Monitor (TRM) that
is responsible for enforcing policies. In step 1.4, the
CC provisions the attributes. sid is the Subject Id,
Join TS is the time-stamp of subject join (set to a non-
NULL value), Leave TS is the time at which a subject
leaves the group (initially set to NULL), gKey is the
group key using which group objects can be decrypted,
Policy is the group’s access policy, ORL is the Object
Revocation List which lists the objects removed from
the group.

• Policy Enforcement : From here on, the subject is con-
sidered a group member and may start accessing group
objects (encrypted using the group key) as per the
group policy and using the credentials obtained from
the CC. This is locally mediated and enforced by the
TRM. Note that the objects are available via super-
distribution and because of the presence of a TRM on
subject’s access machines, objects may be accessed of-
fline conforming to the policy. For example, the TRM
on an access machine may allow the subject to ac-
cess objects added after subject joined the group and
disallow access to objects added before he/she joined
the group. Such decisions can be made by using the
join and leave time-stamps of subject, add and remove
time-stamps of object and comparing their relative val-
ues. Objects may be added to the group by subjects by
obtaining an add time-stamp (setting an Add TS at-
tribute for the object) from the CC. We assume object
attributes are embedded in the object itself. Note that
due to super-distribution, the remove time-stamps for
objects cannot be embedded in the object (since there
could be many copies of the same object). Instead, an
Object Revocation List (with the remove time-stamps
of object ids) is provisioned on the access machine.

• Attribute Refresh: Since subjects may access objects
offline, the access machines need to connect to the CC
and refresh subject attributes periodically. How this
is done is a matter of policy and/or practicality. For
example, a refresh could take effect in an access ma-
chine based on time or a usage count. Offline access
to secure clock may be impractical in many circum-
stances. Usage count is a practical approach when us-
ing Trusted Computing Technology. A discussion on
using the monotonic counters in the Trusted Platform
Module can be found in [30]. The usage count limits
the number of times the credentials may be used to
access group objects (like consumable rights). Thus
objects may be accessed until the usage count is ex-
hausted and the access machine will be required to re-
fresh attributes in step 3.1 and 3.2 before any further

CCNon-group Subjects {AUTH = TRUE}1.3 Subject Join 3.1 Request Refresh4.1 Remove Subject sid5.1 Update PolicyGA Group Subjects. . . 2. Access Objects1.2 Authz Join1.1 Request Join{AUTH}{AUTH = TRUE}, Access Machine Integrity Evidence 1.4 Provision Credentials{sid, AUTH, Join_TS, Leave_TS, gKey, Policy, ORL} 3.2 Update Attributes
4.2 Set Leave_TS of Subject sid5.2 Update Policy for all Subjects

Figure 2: g-SIS System.

access can be granted. Attributes RT and N represent
the refresh time-stamp and usage count of the subject
respectively.

• Administrative Actions: The GA may have to remove
a subject or object from the group or update group
policy. In step 4.1, the GA instructs the CC to remove
a subject. The CC in turn marks the subject for re-
moval by setting the subject’s Leave TS attribute in
step 4.2. This attribute update is communicated to
the subject’s access machine during the refresh step
3.1 and 3.2. In the case of object removal, the ORL
is updated with the object’s id and Remove TS. Pol-
icy updates (or any other update for that matter) are
handled in a similar manner as shown in step 5.1 and
5.2.

As you can see, there is a delay in attribute update in
the access machine that is defined by the refresh window.
Although a subject may be removed from the group at the
CC, the access machines will let subjects access group ob-
jects until the subject attributes are refreshed at the next
refresh step. This access violation is due to attribute stale-
ness that is inherent to any distributed system however short
the refresh window is. We discuss this topic in detail in the
subsequent sections. This paper does not focus on building
trusted systems to realize the architecture in figure 2 and it
is a work in progress. This is an area of active work and we
direct interested readers to [27] and [20], to cite a few.

3. STALE SAFE SECURITY PROPERTIES
FOR g-SIS

As discussed earlier, in distributed systems access deci-
sions are almost always based on stale-attributes and stale-
attributes lead to critical access violations. In this section we
propose Stale-safe Security Properties that limit such access
violations. Note that it is impossible to completely elimi-
nate staleness in practice and thus our intension here is best
effort. We first discuss a few scenarios were stale attributes
lead to access violations using the g-SIS example and infor-
mally discuss the stale-safe properties. We formalize them
next.

3.1 System Characterization
The g-SIS system consists of subjects and objects, trusted

access machines (using which objects are accessed), a GA
and a CC. Access machines maintain a local copy of sub-
ject attributes which they refresh periodically with the CC.
Object attributes are part of the object itself. A removed
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Figure 3: Super-distribution.

object is listed in the Object Revocation List (ORL), which
are provided to access machines as part of refresh. To eas-
ily illustrate the properties, we assume that each subject is
tied to an access machine from which objects are accessed
and there is a single GA and single CC per group. Also,
we assume that the refresh is based on usage count. Sup-
pose a policy that a subject is allowed to access an object as
long as both the subject and object are current members of
the group and the object was added after the subject joined
the group. Thus the g-SIS system can be characterized as
follows:

Subject attributes {id, Join TS, Leave TS,
ORL, gKey, RT, N}

Object attributes {id, Add TS}.
Refresh Time (RT) Access machine contacts CC to

refresh subject attributes and ORL.
Refresh Window (RW) Time interval between two RT’s

(depends on how quick the usage
count is exhausted).

Access Policy AuthzP(S, O, OP ) → O /∈ ORL(S)∧
Leave TS(S) = NULL∧
Join TS(S) ≤ Add TS(O).

Figure 3 illustrates super-distribution. An Author (a group
subject) creates an object, encrypts the object using the
group key (mediated by TRM) and sends it to the CC for
approval and distribution. The CC (or possibly a GA) ap-
proves the object, time-stamps object add and releases this
protected object for distribution. Since the object is pro-
tected, it is not necessarily guarded by the CC. Instead it is
made available to subjects by distribution through networks
such as WWW, email, etc. This infospace is called the Ob-
ject Cloud in figure 3. The User (another group subject)
can obtain these encrypted objects and store them locally
in his/her access machine. The sequence diagram in Fig-
ure 4 illustrates the staleness problem. The User and the
TRM interacts with the GA and CC in steps 1 to 5 to join
the group. The TRM refreshes attributes with the CC in
steps 6 and 7. Briefly after the refresh, the GA removes this
subject by setting his/her Leave TS attribute at the CC (a
non-null value). Note that this step is not visible to the TRM
until the next refresh steps 11 and 12. In the mean time,
the User may request access to objects the were obtained via
super-distribution (step 9). “Create and Propagate” refers
to the scenario in figure 3. At this point, the TRM evaluates
the policy based on the attributes that it maintains. This

should be successful and the object is displayed to the user
in step 10. Note the difference in Leave TS values between
the CC and TRM. Only after the following refresh (steps
11 and 12) does the TRM notice that the subject has been
removed from the group and denies any further access (steps
13 and 14).

Figure 5 shows a timeline of events involving a single
group. Subject S1 joins the group and the attributes are
refreshed with the CC periodically. RT represents the time
at which refreshes happen. The time period between any two
RT’s is a Refresh Window, denoted RWi. After join, RW0

is the first window, RW1 is the next and so on. Suppose
RW4 is the current Refresh Window. Objects O1 and O2
were added to the group by some group subject (or the GA)
during RW2 and RW4 respectively and they are available to
S1 via super-distribution. In RW4, S1 requests access to
O1 and O2. An access decision will be made by the TRM
in the access machine as per the attributes obtained at the
latest RT.

As you can see, our access policy will allow access to both
O1 and O2. However it is possible that S1 was removed by
the GA right after the last RT and before Request(S1, O1, access)
in RW4 (see figure 4). Ideally, S1 should not be allowed to
access both O1 and O2.

From a confidentiality perspective in information sharing,
granting S1 access to O1 is relatively less of a problem than
granting access to O2. This is because the CC or the GA
can assume that S1 was always authorized access to O1 and
hence information has already been released to S1. In the
worst case, S1 continues to access the same information (O1)
until the next RT. However, S1 never had an authorization
to access O2 and letting S1 access O2 means that S1 has
gained knowledge of new information. This is a critical vi-
olation and should not be allowed. Such scenarios are what
our stale-safe security properties address. A subject cannot
access an object if it was added to the group after the last
refresh time even if the authorization policy allows access.
This can be achieved by comparing the Add TS (O) with
the most recent refresh time-stamp (RTrecent). Thus the ac-
cess decision for a stale-safe g-SIS system should be made
as follows:

Access Policy AuthzP(S, O, OP ) → O /∈ ORL(S)∧
Leave TS(S) = NULL∧
Join TS(S) ≤ Add TS(O).

Stale-safe Property SafeP (S, O) → Add TS (O) < RTrecent

Stale-safe Access AuthzP(S, O, OP ) ∧ SafeP(S, O)
Policy

The property we discussed considers attributes to be stale
if it is time-stamped later than the last refresh time-stamp
of the access machine. A more strict property may require
the access machine to refresh attributes before granting any
access. That is, when S1 requests access to O1, the stricter
version of the stale-safe property mandates that the access
machine refreshes the subject attributes before making an
authorization decision. Further, it is natural to consider
elapsed time since the last refresh to be an important issue
in limiting staleness of authorization data. We formalize
these notions in the following subsection.

3.2 Formal Property Specification
In this section we use Linear Temporal Logic (LTL) [18] to
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Figure 4: Staleness Illustration. TRT RTJoin (S1) Add (O1)RT Request (S1, O2, access)Add (O2)RT RTRequest (S1, O1, access)RW0 RW1 RW2 RW3 RW4
Figure 5: Events on a time line to illustrate stale-
safe properties in g-SIS.

specify four different formal stale-safety properties of vary-
ing strength. Temporal logic is a specification language for
expressing properties related to a sequence of states in terms
of temporal logic operators and logic connectives (e.g., ∧ and
∨). Temporal logic operators are of two types: Past and Fu-
ture. The past operators -© and Since (read previous and
since respectively) have the following semantics. -© p means
that the formula p was true in the previous state. Note that
-© p is false in the very first state. p Since q means that

q has happened sometime in the past and p has held con-
tinuously following the last occurrence of q to the present.
The future operators ©, ¦, and 2 represent next state, some
future state, and all future states respectively. For example,
2p means that formula p is true in all future states. Also,
the formula p until q (read p until q) means that q will occur
sometime in the future and p will remain true at least until
the first occurrence of q.

Our formalization uses the following predicates:

request (S, O, OP ) The subject requests to perform
an action OP on an object.

AuthzP (S, O, OP ) S is authorized to perform
an action OP on O.

Join (S) and Leave (S) Subject Join and Leave events.
Add (O) and Remove (O) Object Add and Remove events.
perform (S, O, OP ) S performs an action OP

on O in the current state.
RT (S) The TRM contacts the CC to

update subject attributes.

In the forthcoming formulae (ϕ0, ϕ1 and ϕ2) and through-
out this paper, we drop the corresponding parameters S, O
and OP in these predicates for clarity. They should how-

Figure 6: Access Policy (AuthzP).

Figure 7: Formula ϕ0.

ever be interpreted with the respective semantics described
above.

3.2.1 Stale-unsafe Access Decision
We first formalize a stale-unsafe access decision using the

access policy discussed in section 3.1 as an example. AuthzP

below is the same policy represented using LTL. Formula ϕ0

formalizes an access decision that is stale-unsafe.

AuthzP ≡ (¬Remove ∧ ¬Leave) Since ((Add∧
¬Leave) Since Join)

ϕ0 ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧AuthzP)))

Since (request ∧AuthzP)

Figure 6 illustrates AuthzP. AuthzP says that S is allowed
to perform an action OP on O if prior to the current state
the object was added to the group and both the subject
and object have not left the group since. Also, the subject
joined the group prior to the time the at which the object
was added to the group and has not left the group ever since.

Figure 7 illustrates formula ϕ0. ϕ0 says that the operation
was authorized at the time of request. Prior to the current
state, the operation has not been performed since it was re-
quested. Also since it was requested, any refreshes that may
have occurred indicated that the operation was authorized
(¬RT ∨ (RT ∧AuthzP)).

Definition 3.1 (Staleness Unaware). A Finite State
Machine (FSM) is staleness unaware if it satisfies the fol-
lowing LTL formula:

2(perform → ϕ0)

Observe that in a Staleness Unaware FSM, verifying that
AuthzP holds at the time of request will allow the subject
access objects that were added during the time between RT
and (request∧AuthzP) in figure 7. This can be clearly seen
by converging AuthzP in figure 6 with that in figure 7. As
discussed earlier, it is unsafe to let group subjects access
these objects before a refresh can confirm the validity of
their group membership.

We now specify stale-safe security properties of varying
strength. The weakest of the properties we specify requires
that a requested action be performed only if a refresh of
subject attributes and ORLs has shown that the action was
authorized at that time. This refresh is permitted to have
taken place either before or after the request was made. The
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Figure 8: Formula ϕ1.

Figure 9: Formula ϕ2.

last refresh must have indicated that the action was autho-
rized and all refreshes performed since the request, if any,
must also have indicated the action was authorized. This is
the weak stale-safe security property. By contrast, the strong
stale-safe security property requires that the confirmation of
authorization occur after the request and before the action
is performed.

3.2.2 Weak Stale-safe Security Property
Let us introduce two formulas formalizing pieces of stale-

safe security properties. Intuitively, ϕ1 can be satisfied only
if authorization was confirmed prior to the request being
made. On the other hand, ϕ2 can be satisfied only if au-
thorization was confirmed after the request. Note that weak
stale safety is satisfied if either of these is satisfied prior to
a requested action being performed.

ϕ1 ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧AuthzP)))

Since (request ∧ (¬RT Since (RT ∧AuthzP)))

ϕ2 ≡ -© (¬perform ∧ ¬RT) Since (RT ∧AuthzP ∧
((¬perform ∧ (¬RT ∨ (RT ∧AuthzP))) Since request))

Figure 8 illustrates formula ϕ1. ϕ1 says that prior to the
current state, the operation has not been performed since
it was requested. Also since it was requested, any refreshes
that may have occurred indicated that the operation was
authorized (¬RT ∨ (RT ∧AuthzP)). Finally, a refresh must
have occurred prior to the request and the last time a re-
fresh was performed prior to the request, the operation was
authorized.

Observe that formula ϕ1 mainly differs from ϕ0 on the
point at which AuthzP is evaluated. Referring to figure 8,
evaluating AuthzP at the latest RT guarantees that requests
to access any object that may be added during the following
refresh window will be denied.

Note that ϕ1 is satisfied if there is no refresh between
the request and the perform. It requires that any refresh
that happens to occur during that interval indicate that the
action remains authorized. In our g-SIS application, this
could preclude an action being performed, for instance, if
the subject leaves the group, a refresh occurs, indicating
that the action is not authorized, the subject rejoins the
group, and another refresh indicates that the action is again
authorized. For some applications, this might be considered
unnecessarily strict.

Figure 9 illustrates formula ϕ2. ϕ2 does not require that
there was a refresh prior to the request. Instead it requires

that a refresh occurred between the request and now. It
further requires that the operation has not been performed
since it was requested and that every time a refresh has
occurred since the request, the operation was authorized.

Note that ϕ2 can be satisfied without an authorizing re-
fresh having occurred prior to the request, whereas ϕ1 can-
not. Thus, though ϕ2 ensures fresher information is used to
make access decisions, it does not logically entail ϕ1 as it is
satisfied by traces that do not satisfy ϕ1.

We call perform → ϕ1 backward-looking stale safety, as it
does not require that a confirmation of authorization occur
after the request has been received. We call perform → ϕ2

forward-looking stale safety, as it requires that confirmation
of authorization is obtained after the request, before the
action is performed.

Definition 3.2 (Weak stale safety). An FSM has
the weak stale-safe security property if it satisfies the fol-
lowing LTL formula:

2(perform → (ϕ1 ∨ ϕ2))

3.2.3 Strong Stale-safe Security Property
Forward-looking stale safety is strictly stronger than weak

stale safety. For this reason, and because, unlike backward-
looking stale safety, it is a reasonable requirement for con-
trolling many operations, we give it a second name.

Definition 3.3 (Strong stale safety). An FSM has
the strong stale-safe security property if it satisfies the fol-
lowing LTL formula:

2(perform → ϕ2)

3.2.4 Quantifying “Freshness" of Authorization
Let us now consider how to model requirements that con-

strain the actual time at which actions such as attribute re-
fresh occur. For this we introduce a sequence of propositions
{Pi}0≤i≤n that model n time intervals (owing to the propo-
sitional nature of LTL, we can model only a finite number
of time intervals.). These propositions partition each trace
into contiguous state subsequences that lie within a single
time interval, with each proposition becoming true imme-
diately when its predecessor becomes false. They can be
axiomatized as follows:

P1 Until (2¬P1∧
(P2 Until (2¬P2∧
(P3 Until (...

Until (2¬Pn−1 ∧ 2Pn)...)))))

We now formulate variants of ϕ1 and ϕ2 that take a pa-
rameter k indexing the current time interval. These formu-
las use two constants, `1 and `2 which represent the number
of time intervals since the authorization and the request,
respectively, that is considered acceptable to elapse prior
to performing the requested action. The formulas prohibit
performing the action if either the authorization or the re-
quest occurred further in the past than permitted by these
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constants.

ϕ1(k) ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧AuthzP))) Since

(request ∧
_

max(0,k−`2)≤i≤k

Pi∧

(¬RT Since (RT ∧AuthzP ∧
_

max(0,k−`1)≤i≤k

Pi))))

ϕ2(k) ≡ -© (¬perform ∧ ¬RT) Since

(RT ∧AuthzP ∧
_

max(0,k−`1)≤i≤k

Pi ∧

((¬perform ∧ (¬RT ∨ (RT ∧AuthzP))) Since

(request ∧
_

max(0,k−`2)≤i≤k

Pi))

With these formulas, we are now able to state variants
of weak and strong stale safety that require timeliness, as
defined by the parameters `1 and `2.

Definition 3.4 (Timely, weak stale safety). An
FSM has the timely, weak stale-safe security property if it
satisfies the following LTL formula:

2(
^

0≤k≤n

(perform ∧ Pk) → (ϕ1(k) ∨ ϕ2(k)))

Definition 3.5 (Timely, strong stale safety). An
FSM has the timely, strong stale-safe security property if it
satisfies the following LTL formula:

2(
^

0≤k≤n

(perform ∧ Pk) → ϕ2(k))

3.3 Stale-safe Systems
We discuss the significance of the weak and strong stale-

safe properties in the context of stale-safe systems designed
for confidentiality or integrity. Confidentiality is concerned
about information release while integrity is concerned about
information modification. Both weak and strong properties
are applicable to confidentiality –the main trade-off between
weak and strong here is usability. Weak allows subjects to
read objects when they are off-line while strong forces sub-
jects to refresh attributes with the server before access can
be granted. Depending on the security and functional re-
quirements of the system under consideration, the designer
has the flexibility to choose between weak and strong to
achieve stale-safety. In the case of integrity, the weak prop-
erty can be risky in many circumstances –the strong prop-
erty is more desirable. This is because objects modified by
unauthorized subjects may be used/consumed by other sub-
jects before the modification can be undone by the server.
For instance, in g-SIS, a malicious unauthorized subject (i.e.
a malicious subject who has been revoked group membership
but is still allowed to modify objects for a time period due to
stale attributes) may inject bad code and share it with the
group. Other unsuspecting subjects who may have the priv-
ilege to execute this code may do so and cause significant
damage. In another scenario, a malicious subject may inject
incorrect information into the group and other subjects may
perform certain critical actions based on faulty information.
Thus, although both weak and strong properties may be ap-
plicable to confidentiality and integrity, the weak property
should be used with a caveat in the case of integrity.

3.4 Extensions
In the earlier section, we discussed the most fundamental

stale-safe properties. We now consider stale-safety in the
context of a truly distributed system with multiple access
machines for a subject, multiple CC’S and GA’s and mul-
tiple group memberships of subjects and objects. As you
can see, this is a broad and complex problem that requires
in-depth research and is beyond the scope of this paper.
However, we informally articulate the staleness problem and
desirable properties in such a scenario.

• Multiple Access Machines: Consider a scenario where a
group subject may access group objects from multiple
access machines. Each machine maintains a local set of
attributes and they are not only stale with respect to
the CC but also with respect to other access machines.
If not careful, a subject may maintain various mem-
bership states across multiple access machines. For
example, the same subject could be current member
in one machine, but could leave the group and rejoin
from another machine. As per our access policy ear-
lier, the subject ends up accessing two sets of objects
from two different machines –one as a current mem-
ber and the other as a rejoined member at the same
time5. Such violations may be serious in the context
of mutual exclusion. Thus the stale-safe property for
multiple access machines should make sure that the
subject’s membership state is consistent across all the
machines. When a subject attempts to rejoin a group
from one access machine, the CC should instruct the
TRM’s on subject’s other access machines to revoke
all access until the subject leaves and rejoins on all
machines.

• Multiple CCs: Recall that the GA updates subject at-
tributes at the CC which in turn is updated at the sub-
ject’s access machine during a refresh. This property
deals with attribute staleness with respect to GA’s up-
dates in the case of multiple CCs. A GA may update
attributes at one CC and the attributes at other CCs
remain stale until this update is propagated across all
the CCs. In such a scenario, a refresh from one of
the CCs by the access machine may turn out to be
stale. The stale-safe property for multiple CCs should
make sure that the access machine will be allowed to
update attributes only if the attributes at the CC are
more recent than that of the access machine. Suppose
the CC maintains a subject attribute LU TS that is
the time-stamp of the last update received from the
GA for that subject. And the access machine main-
tains an attribute LSR TS that is the time-stamp of
the lastest refresh when that refresh actually resulted
in a real attribute update. Then an access machine
can refresh subject attributes only if the LU TS (S) >
LSR TS (S).

• Multiple Groups (non-hierarchical): In the case of mul-
tiple groups, an object from one group could be shared
with another. We call the group that owns the object
source group. If the object is removed from the source
group, attribute staleness could let other group sub-
jects retain access.

5Note that this may not be a problem if the policy lets
subjects retain access to past objects.
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A. If an object is removed from the source group, it
should also be removed from other groups with which
the object is shared.
B. If a subject is revoked access to an object from one
group, he should also be revoked access to that ob-
ject from any other membership group with which it
is shared.

• Multiple Groups (hierarchical): Consider hierarchical
groups where subjects in higher level groups have ac-
cess to objects at or below its hierarchical level. Thus
the subjects in the leaf groups have access only to a sin-
gle group and subjects at the root groups have access
to objects of all group in the hierarchy. Suppose that
each level has its own CC. In order to limit staleness,
an access policy should use the appropriate subject and
object attributes from respective groups in question:
A. An access decision for the subject should be made
based on the object attributes from the source group
and subject attributes from the subject’s highest hier-
archical membership group.
B. When a subject leaves a group and joins any group
at the lower level of the hierarchy, he/she should be re-
voked access to any object that he/she retains access
from past group6.

4. MODEL CHECKING g-SIS
Model checking [6, 7] is an automated verification tech-

nique that analyzes a finite model of a system (i.e., a fi-
nite state machine (FSM) that produces computation traces
consisting of infinite sequences of states) and exhaustively
explores the state space of the model to determine whether
desired properties hold in the model. In the case that a
property is false, a model checker produces a counterexam-
ple consisting of a trace that violates the property, which
can be used to correct the model or modify the property
specification.

SMV [22, 5] is a family of model checking tools based on
binary decision diagrams (BDDs). BDDs represent states
very compactly. In SMV, models are represented by using
variables that are assigned values in each step of the FSM.
Properties to be checked are specified by temporal logic [23]
formulas. SMV provides built-in finite data types, such as
boolean, enumerated type, integer range, arrays, and bit
vectors. In SMV, the initial state is defined by assigning ini-
tial values to state variables. State transitions are specified
by assigning values to be assumed by each state variable x
in the next state, which is denoted by next(x). Each such
value is given by an expression over variables in either the
current or the next state. The assignments are effectively
performed simultaneously to obtain the subsequent state.
SMV allows nondeterministic assignment, i.e., the value of
variable is chosen arbitrarily from the set of possible values.

The set of next assignments execute concurrently in a step
to determine the next state of the model. SMV allows non-
deterministic assignment, i.e., the value of variable is chosen
arbitrarily from the set of possible values. SMV supports
macros, which are replaced by their definitions, so they do
not increase the system’s state space.

The model checker we use in this work supports only fu-
ture temporal operators (“in the next state,” “in all future

6Note that this property may not be applicable to all group
policies.

states,”“in some future state,” and “until”), so the formulas
expressing stale safety in section 3.2 have to be reformulated
in this restricted form.

In this section, we use model checking (with SMV) to ver-
ify the weak stale-safe property for g-SIS. Model checking
the entire g-SIS system with CCs, GAs and multiple groups
is out of scope for this paper (please see discussions in Fu-
ture Work). Instead, we model check the Trusted Reference
Monitor (TRM) that is responsible for enforcing the access
policies in the subject’s access machine. Please see the Ap-
pendix for code, the properties that are verified and the
results obtained from SMV.

4.1 Formal Verification of the Trusted Refer-
ence Monitor

In modeling the TRM, one of the first things to decide
is how a refresh of subject attributes is forced so that the
TRM periodically updates attributes with CC. Recall that
we discussed various approaches: refresh based on timeout,
usage count, etc. We could further use rate limits or a com-
bination of these approaches. The TRM we consider models
refresh based on usage count7. The CC/GA determines a
usage count for each subject that specifies the number of
times the group credentials (e.g. group key) may be used
by the TRM to access objects off-line before a refresh is re-
quired. Suppose N is the usage count. Every time a subject
accesses an object, N is decremented by the TRM. Once
N reaches zero for that subject, the TRM denies access to
any object until the attributes are refreshed by the access
machine with the CC. As part of this refresh, N is reset to
the initial value.

The TRM includes one FSM for each object available at
the access machine. We discuss the formal verification of an
object machine, FSMobject, against the Weak Stale Safety
property (Definition 3.2). Figure 10 shows one possible de-
sign of FSMobject to enforce an authorization policy given by
AuthzE. Staleness is not considered in this machine. The
predicate AuthzE is (¬Remove TS(O) ∧ ¬Leave TS(S) ∧
(Join TS(S) ≤ Add TS(O))), indicating that the object O
has not been removed from the group, subject S has not left
the group, and the subject S joined the group before the
object O was added. This is the same as the LTL formula
AuthzP discussed in section 3 except that we now use at-
tributes that can be directly coded in SMV8. We label state
transitions using the format e[C]/A, in which e is the event,
C is the condition that has to be satisfied to enable the tran-
sition, and A represents actions that need to be performed
when the transition is taken.

The FSMobject is responsible for mediating request from
the subject to access the object to which it corresponds.
It remains in the idle state until a request to access the
object arrives from the subject. At this point, FSMobject

checks the authorization policy (AuthzE) to decide whether
the subject can access the requested object. There are then

7This is chosen due to the lack of availability of any practi-
cal solution for a secure off-line source of time today. The
Trusted Platform Module [2] provides a monotonic counter
and hence we choose to develop and model check a usage
count based TRM that can be later implemented. Our dis-
cussions remain valid irrespective of the approach we take.
8Note that the check for the presence of the object in ORL
is simplified and simulated as an event in SMV. This event
results in setting the boolean attribute Remove TS(O) to
TRUE.
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three possible paths the FSM can take, depending on which
condition is satisfied:

Request[¬AuthzE]: If AuthzE fails, FSMobject rejects the
request and remains in the idle state. This is the request
transition that starts and ends at the idle state. The Refresh
transition captures attribute updates received from the CC
triggered by other instances of FSMobject running on behalf
of the same subject.

Request[AuthzE ∧ N = 0]: If AuthzE succeeds, but the
usage count is exhausted, the machine is required to refresh
attributes before any access can be granted. A refresh re-
quest action (RefreshREQ) is initiated in this case. This cre-
ates a synchronizing event (transitions labeled Refresh in the
idle, authorized and refreshed states) for all the FSMobject

instances in the local TRM, which has the effect of updating
all subject attributes, as well as the ORL, with the values
that are current at the CC. The synchronous event simply
ensures that the update is atomic with respect to transitions
at every FSMobject. After the refresh, the FSMobject then
enters the refreshed state. It again checks the authoriza-
tion policy to see whether the subject is now allowed the
requested access in light of the updated attribute values. If
AuthzE holds, the FSM directly enters the authorized state
from which it transitions to idle while decrementing the us-
age count. If AuthzE does not hold, the FSM denies access
and immediately returns to idle.

Request[AuthzE ∧ N > 0]: If AuthzE succeeds and the
usage count N is not exhausted, the machine enters the au-
thorized state and waits for the subject to access the object.
The requested action is performed only after re-checking
the policy AuthzE and decrementing the usage count. This
re-checking is critical because AuthzE checked earlier may
no more hold due to updated attributes received from the
Refresh transition which could possibly be triggered by an-
other instance of FSMobject. We discuss this in more detail
in the following paragraph. FSMobject thereafter returns to
the idle state.

Consider the self-transitions labeled Refresh in idle, authorized
and refreshed states. It is needed to allow refreshes initiated
by other FSMobject’s to occur atomically with respect to
other transitions. A subject could request access to multiple
objects; a separate instance of FSMobject runs for each such
object. A problem may arise due to a possible lag between
the time at which the access was authorized (after which the
FSMobject is in the authorized state) and the time at which
the subject actually performs the access. Suppose S1 is al-
lowed to access object O1 and that O1’s FSMobject enters
and remains in the authorized state until S1 performs the
action. In the meantime, S1 requests and performs access on
multiple objects and exhausts the usage count. Finally when
an access request for an object O2 is initiated, the FSMobject

of which forces a refresh because the usage count ran out.
This illustrates that fact that multiple refreshes can occur
when FSMobject is in the authorized state for O1. When S1
actually performs the access of O1, it may no longer be au-
thorized due to updated attributes. Such refreshes are per-
mitted by the self-transition from the authorized state back
to itself. When a refresh response is received by any instance
of FSMobject, it is broadcasted to all other instances, and the
attributes are updated in every machine. In this way, when
a perform is generated, AuthzE uses the latest attributes to
verify policy. Thus when the FSMobject instance for O2 has
updated attributes, it sends those updated attribute values

Figure 10: Stale-unsafe FSMobject.

to all running instances of FSMobject. Consequently, when
S1 performs the action, it may not be correct to allow access
to O1, due to updated attributes and failed AuthzE. Thus
checking the policy AuthzE at both request and perform
time is critical for the correctness of FSMobject.

Code listing B in appendix A.2 shows the construction
of FSMobject using SMV and properties that are verified
against it. As shown, the backward-looking stale safety
property (formula ϕ1, section 3.2) does not hold. The model
checker immediately detects and reports the problem with
a counter example. Note that the property is re-formulated
using future temporal operators only which can be model
checked using SMV. The FSMobject in figure 10 is not stale-
safe because it allows access to objects that were added after
the last refresh time. This problem is fixed in figure 11 which
we discuss in the following subsection.

4.1.1 Stale-safe TRM
Figure 11 is one of many approaches to build a stale-safe

FSMobject. As you can see, the only difference from fig-
ure 10 is the extra check for stale attributes (in our case
Stale is RT TS ≤ Add TS(O)). The transition from idle
to authorized is enabled if the authorization policy suc-
ceeds, the usage count is still available and the attributes
are not stale (i.e., Add TS(O) < RT TS). The transition
from idle to refreshed is enabled if the authorization policy
is successful but either the attributes are stale or the off-
line usage limit is reached. From refreshed, FSMobject en-
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Figure 11: Stale-safe FSMobject.

ters authorized state if AuthzE still holds with the refreshed
attributes else it returns to idle. Thus this machine sat-
isfies formula ϕ1 (backward-looking stale-safety) when the
attributes are not stale, and it satisfies formula ϕ2 (forward-
looking stale-safety) when the attributes are stale.

Code Listing A in appendix A.2 shows an SMV implemen-
tation of this machine. The result for this machine, which
we have verified by using the model checker, is discussed in
appendix A.1. It is also possible to construct machines that
will satisfy the other properties we discussed earlier.

5. RELATED WORK
Security requirements express the goals for protecting the

confidentiality, integrity, and availability of cyber systems.
There has been substantial work on developing models and
policy languages for addressing these security concerns. Ac-
cess control lies at the heart of system security [29]. Formal
specification and verification techniques and tools, such as
model checking, have been increasingly leveraged to verify
security properties of access control systems [8, 13, 32, 3, 9,
19, 31, 34]

Zhang et. al. [34] developed a model checking approach
to examine the access right of a group of principles. The
access control is modeled in the RW language, which is a
propositional logic-based policy language to express reading
and writing access [10]. May et. al. [19] formalize the rules
of Health Insurance Portability and Accountability Act into
an extended access control matrix, which can be analyzed
by model checker SPIN.

Security analysts of access control systems and policies

have increasingly leveraged automated tool support to ver-
ify properties in support of security objectives. Jha et al. [13]
verify such properties as authorization, availability, and shared
access of the SPKI/SDSI policy language through the use of
a language containment type of model checking.

Sistla et. al. [32] provides a framework for reasoning about
security analysis of dynamic RT policies. Of significant value
is their proof of a tight EXPTIME complexity for role con-
tainment queries. Additionally, they describe a structure to
verify security properties using an explicit model checking
approach.

Fisler et al. [8] analyzes the impact of policy changes on
role-based access control (RBAC) systems using their Mar-
grave tool. Such policies are represented as multi-terminal
BDD’s for efficient storage and manipulation. They suc-
cessfully verify the separation of duty properties in RBAC
system.

Schaad et al. [31] also verifies separation of duty properties
in RBAC systems, but uses a mature model checking tool
called NuSMV.

In addition, security analysis that answers the question
whether security stake-holders can cause the authorization
system to enter a state, in which certain queries (e.g., safety
or liveness properties) hold or fail to hold, has been auto-
matically performed [12, 17, 33, 25, 26], via the SMV family
of model checkers.

6. CONCLUSIONS AND FUTURE WORK
Attribute staleness is inherent to any distributed system

and can result in serious access violations. In this paper,
we proposed stale-safe security properties using the group-
based Secure Information Sharing problem as an example.
We formalized four stale-safe properties of varying strengths
using Linear Temporal Logic amenable to formal verification
using Model Checking. Model Checking is a powerful and
flexible approach to verify security properties of large and
complex systems such as g-SIS. We designed and verified
the Trusted Reference Monitor resident in access machines
that satisfies the weak stale-safe property. We believe that
these properties can be generalized to any distributed ap-
plications using Attribute-based Access Control with minor
extensions/modifications if any. Our next steps are along
three exciting areas:

In section 3, we identified staleness problem in the con-
text of multiple CCs, multiple groups and multiple access
machines and proposed extensions. We believe studying
and formalizing these extensions is valuable to build systems
with flexible stale-safe properties.

Verifying the complete g-SIS system is a major future
work. This is a complex problem which is composed of mul-
tiple FSMs for TRM, CC and GA. All these machines need
to handle various operations such as membership manage-
ment of subjects and objects, provisioning group credentials,
multiple group memberships, etc.

Implementation of g-SIS is a work in progress and many
approaches are possible. The access machines need to have
a Trusted Computing Base (TCB) that has a hardware and
software component. The TPM (although not the only trusted
hardware infrastructure required) provides the hardware root
of trust. The software component comprises of a trustwor-
thy kernel (possibly a microkernel like L4 [1] or a VMM [4])
and the TRM.
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APPENDIX
A. MODEL CHECKING USING NUSMV

Expression operators !, &, |, and -> represent logical op-
erators “not”, “and”, “or” and “implies”, respectively. Com-
ments follow the symbol “- -”. Further, the symbols F , X
and U represent the future temporal operators eventually,
next, and until respectively (please refer section 3.2).

The set of next assignments execute concurrently in a step
to determine the next state of the model. SMV allows non-
deterministic assignment, i.e., the value of variable is chosen
arbitrarily from the set of possible values. SMV supports
macros, which are replaced by their definitions, so they do
not increase the system’s state space.

A.1 Stale-safe TRM
Code listing A is an SMV implementation of the stale-

safe FSMobject shown in figure 11. Note that the property
that is verified is ϕ1 (stated as LTLSPEC towards the end).
It is re-formulated using the future temporal operators. As
reported by SMV, figure 11 satisfies the Weak Stale Safety
property. The second property simply makes an additional
check that it is always the case, if a subject is able to perform
an action on an object then that object was added before
the last refresh time. SMV confirms that this is indeed the
case.

Code Listing A

MODULE main

VAR

--declare attributes

r_ts : 0..100;

leave_ts : boolean;

remove_ts : boolean;

join_ts : {2,18};

--usage count

N : 0..5;

--clock ticks

ticks : 1..10;

--declare events

--input event from subject

request_event : boolean;

--the latched request_event

request : boolean;

--refresh event received from the CC

refresh : boolean;

--action perform

perform : boolean;

--input event representing if subject has left

leave : boolean;

--input event representing if object has been removed

remove : boolean;

-- declare states

idle : boolean;

authorized : boolean;

refreshed : boolean;

DEFINE

add_ts := 10;

stale := r_ts <= add_ts;

authzE := (add_ts > join_ts) &

(!leave_ts) & (!remove_ts);

authzSS := authzE & !stale & (N>0);

ASSIGN

init(join_ts) := {2,18};

next(join_ts) := join_ts;

init(leave_ts) := 0;

next(leave_ts) := case

idle & refresh & leave : 1;

idle & request & !refresh &

authzE & (stale | N=0) & leave : 1;

authorized & refresh & leave : 1;

refreshed & refresh & leave : 1;

1 : leave_ts;

esac;

init(remove_ts) := 0;

next(remove_ts) := case

idle & refresh & remove : 1;

idle & request & !refresh &

authzE & (stale | N=0) & remove: 1;

authorized & refresh & remove : 1;

refreshed & refresh & remove : 1;

1 : remove_ts;

esac;

init(r_ts) := join_ts;

next(r_ts) := case

idle & refresh & (r_ts <= 90) : r_ts + ticks;

idle & request & !refresh & authzE &

(stale | N=0) & (r_ts <= 90): r_ts + ticks;

authorized & refresh & (r_ts <= 90) : r_ts + ticks;

refreshed & refresh & (r_ts <= 90) : r_ts + ticks;

1 : r_ts;

esac;

init(N) := 5;

next(N) := case

idle & refresh : 5;

idle & request & !refresh &

authzE & (stale | N=0): 5;

authorized & refresh : 5;

refreshed & refresh : 5;

--perform

authorized & !refresh & authzE & (N>0) : N - 1;

1 : N;

esac;

init(request) := 0;

next(request) := case
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idle & request_event & !refresh & authzE: 1;

authorized & !refresh & (!authzE | authzE): 0;

1: request;

esac;

init(idle):= 1;

next(idle):= case

idle & refresh : 1;

idle & request & !refresh & !authzE : 1;

idle & request & !refresh & authzSS : 0;

idle & request & !refresh &

authzE & (stale | N=0) : 0;

authorized & !refresh & !authzE : 1;

authorized & !refresh & authzE & (N>0): 1;

refreshed & !authzE : 1;

1: idle;

esac;

init(authorized):= 0;

next(authorized):= case

idle & request & !refresh & authzSS : 1;

refreshed & authzSS : 1;

authorized & refresh : 1;

authorized & !refresh & !authzE : 0;

authorized & !refresh & authzE & N=0: 0;

1 : authorized;

esac;

init(refreshed):= 0;

next(refreshed):= case

idle & request & !refresh &

authzE & (stale | N=0) : 1;

refreshed & !authzE : 0;

refreshed & authzSS : 0;

authorized & !refresh & authzE & N=0 :1;

1 : refreshed;

esac;

init(perform) := 0;

next(perform) := case

authorized & !refresh & authzE : 1;

1 : 0;

esac;

---formula phi1 for WEAK STALE SAFETY

LTLSPEC G ( (refresh & authzE & F request) ->

(X((!refresh | (refresh & authzE) & !request) U

((request & F perform) -> (!perform &

(!refresh | (refresh & authzE)) U perform)))) )

LTLSPEC G ( perform -> add_ts < r_ts )

[root@localhost TRMobject.smv]# NuSMV

trm_object_safe.smv

*** This is NuSMV 2.4.3 (compiled on Mon May

5 02:33:40 UTC 2008)

*** For more information on NuSMV see

<http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification

G ( (refresh & authzE & F request) ->

(X((!refresh | (refresh & authzE) & !request) U

((request & F perform) -> (!perform &

(!refresh | (refresh & authzE))

U perform)))) ) is true

-- specification

G (perform -> add_ts < r_ts) is true

[root@localhost TRMobject.smv]# NuSMV -int

trm_object_safe.smv

NuSMV > go

NuSMV > print_reachable_states

################################################

system diameter: 19

reachable states: 1.12752e+06 (2^20.1047) out of

2.48218e+07 (2^24.5651)

################################################

NuSMV >

A.2 Stale-unsafe TRM
Code Listing B is an SMV implementation of stale-unsafe

FSMobject shown in figure 10. For brevity, we only show the
lines that differ from Code Listing A. One can construct
this unsafe machine by replacing the corresponding lines in
listing A with the ones specified in listing B. A significant
change is the missing check for stale-safety. All occurrences
of the variable authzSS has been replaced with authzE.
authzE is just the access policy and authzSS is the stale-
safe version of authzE. Also, checks for the variable stale
are removed. The property that is specified here is formula
ϕ0 (Staleness Unaware) which is satisfied by this machine.
In order to see the time-stamps of objects that are acces-
sible using this machine, we obtain a counter-example by
specifying the second property that checks if the objects be-
ing accessed were added after the last refresh time. As you
can see in the trace, in state 1.4, the subject performs an
action on an object whose add ts is 10. But however the
last refresh time-stamp r ts at this point for the subject is
2. This is clearly a stale-unsafe access. Note that we use
the -bmc option (for Bounded Model Checking) to get a
counter-example of minimal length.

Code Listing B

ASSIGN

init(leave_ts) := 0;

next(leave_ts) := case

idle & request & !refresh &

authzE & (N=0) & leave : 1;

esac;

init(remove_ts) := 0;

next(remove_ts) := case

idle & request & !refresh &

authzE & (N=0) & remove: 1;

1 : remove_ts;

esac;

init(r_ts) := join_ts;

next(r_ts) := case

idle & request & !refresh & authzE &

(N=0) & (r_ts <= 90): r_ts + ticks;

esac;

init(N) := 5;

next(N) := case
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idle & request & !refresh &

authzE & (N=0): 5;

esac;

init(idle):= 1;

next(idle):= case

idle & request & !refresh & authzE : 0;

idle & request & !refresh &

authzE & (N=0) : 0;

esac;

init(authorized):= 0;

next(authorized):= case

idle & request & !refresh & authzE : 1;

refreshed & authzE : 1;

esac;

init(refreshed):= 0;

next(refreshed):= case

idle & request & !refresh &

authzE & (N=0) : 1;

refreshed & authzE : 0;

esac;

--formula phi0, STALENESS UNAWARE

LTLSPEC G( (refresh & F(request & authzE)) ->

(!request U ((request & authzE & F perform) ->

((!perform & (!refresh |

(refresh & authzE))) U perform))))

LTLSPEC G( perform -> add_ts < r_ts)

[root@localhost TRMobject.smv]# NuSMV

trm_object_unsafe.smv

-- specification

G( (refresh & F(request & authzE)) ->

(!request U ((request & authzE & F perform) ->

((!perform & (!refresh |

(refresh & authzE))) U perform)))) is true

-- specification

G (perform -> add_ts < r_ts) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

.

.

.

[root@localhost TRMobject.smv]# NuSMV -bmc

trm_object_unsafe.smv

-- no counterexample found with bound 0

-- no counterexample found with bound 1

.

.

.

-- no counterexample found with bound 10

-- no counterexample found with bound 0

-- no counterexample found with bound 1

-- no counterexample found with bound 2

-- specification G (perform -> add_ts < r_ts) is false

-- as demonstrated by the following execution sequence

Trace Description: BMC Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

r_ts = 2

leave_ts = 0

remove_ts = 0

join_ts = 2

N = 5

ticks = 1

request_event = 1

request = 0

refresh = 0

perform = 0

leave = 0

remove = 0

idle = 1

authorized = 0

refreshed = 0

authzE = 1

add_ts = 10

-> Input: 1.2 <-

-> State: 1.2 <-

request_event = 0

request = 1

-> Input: 1.3 <-

-> State: 1.3 <-

idle = 0

authorized = 1

-> Input: 1.4 <-

-> State: 1.4 <-

N = 4

request = 0

perform = 1

idle = 1

[root@localhost TRMobject.smv]# NuSMV -int

trm_object_unsafe.smv

NuSMV > go

NuSMV > print_reachable_states

#################################################

system diameter: 20

reachable states: 1.02864e+06 (2^19.9723) out of

2.48218e+07 (2^24.5651)

#################################################

NuSMV >
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