Stale-Safe Security Properties for
Group-Based Secure Information Sharing

Ram Krishnan
George Mason University
Fairfax, VA, USA
rkrishna@gmu.edu

Ravi Sandhu
Univ of Texas at San Antonio
San Antonio, TX, USA
ravi.sandhu@utsa.edu

ABSTRACT

Attribute staleness arises due to the physical distribution of
authorization information, decision and enforcement points.
This is a fundamental problem in virtually any secure dis-
tributed system in which the management and representa-
tion of authorization state are not globally synchronized.
This problem is so intrinsic, it is inevitable that access deci-
sion will be based on attribute values that are stale. While it
may not be practical to eliminate staleness, we can limit un-
safe access decisions made based on stale subject and object
attributes. In this paper, we propose and formally specify
four stale-safe security properties of varying strength which
limit such incorrect access decisions. We use Linear Tempo-
ral Logic (LTL) to formalize these properties making them
suitable to be verified, for example, using model checking.
We show how these properties can be applied in the specific
context of group-based Secure Information Sharing (g-SIS)
as defined in this paper. We specify the authorization deci-
sion/enforcement points of the g-SIS system as a Finite State
Machine (FSM) and show how this FSM can be modified so
as to satisfy one of the stale-safe properties.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection —
Access controls; K.6.5 [Management of Computing and
Information Systems]|: Security and Protection
—Unauthorized access

General Terms
Security

Keywords

Stale Attributes, Security Properties, Information Sharing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FMSE’08, October 27, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-60558-288-7/08/10 ...$5.00.

53

Jianwei Niu
Univ of Texas at San Antonio
San Antonio, TX, USA
niu@cs.utsa.edu

William H. Winsborough
Univ of Texas at San Antonio
San Antonio, TX, USA
wwinsborough@acm.org

1. INTRODUCTION

The concept of a stale-safe security property is based on
the following intuition. In a distributed system authorita-
tive information about subject and object attributes used for
access control is maintained at one or more secure authoriza-
tion information points. Access control decisions are made
by collecting relevant subject and object attributes at one or
more authorization decision points, and are enforced at one
or more authorization enforcement points. Because of the
physical distribution of authorization information, decision
and enforcement points, and consequent inherent network
latencies, it is inevitable that access control will be based on
attributes values that are stale (i.e., not the latest and fresh-
est values). In a highly connected high-speed network these
latencies may be in milliseconds, so security issues arising
out of use of stale attributes can be effectively ignored. In
a practical real-world network however, these latencies will
more typically be in the range of seconds, minutes and even
days and weeks. For example, consider a virtual private
overlay network on the internet which may have intermit-
tently disconnected components that remain disconnected
for sizable time periods. In such cases, use of stale attributes
for access control decisions is a real possibility and has se-
curity implications.

We believe that, in general, it is not practical to eliminate
the use of stale attributes for access control decisions.! In
a theoretical sense, some staleness is inherent in the intrin-
sic limit of network latencies, of the order of milliseconds
in modern networks. We are more interested in situations
where staleness is at a humanly meaningful scale, say min-
utes, hours or days. In principle, with some degree of clock
synchronization amongst the authorization information, de-
cision and enforcement points, it should be possible to deter-
mine and bound the staleness of attribute values and access
control decisions. For example, a SAML (Security Assertion
Markup Language) assertion produced by an authorization

!Staleness of attributes as known to the authoritative infor-
mation points due to delays in entry of real-world data is
beyond the scope of this paper. For example, if an employee
is dismissed there may be a lag between the time that action
takes effect and when it is recorded in cyberspace. The lag
we are concerned with arises when the authoritative informa-
tion point knows that the employee has been dismissed but
at some decision point the employee’s status is still showing
as active.

decision point includes a statement of timeliness, i.e., start
time and duration for the validity of the assertion. It is
upto the access enforcement point to decide whether or not
to rely on this assertion or seek a more timely one. Likewise
a signed attribute certificate will have an expiry time and an
access decision point can decide whether or not to seek up-
dated revocation status from an authorization information
point.

Given that the use of stale attributes is inevitable, the
question is how do we safely use stale attributes for access
control decisions and enforcement? The central contribu-
tion of this paper is to formalize this notion of “safe use of
a stale property” in the specific context of group-based se-
cure information sharing (g-SIS) as defined in this paper.
We also demonstrate specifications of systems that do and
do not satisfy this requirement. We believe this formalism
can be extended to more general contexts beyond the group-
based secure information sharing considered in this paper,
but this is beyond the current scope. We believe that the re-
quirements for “safe use of a stale property” identified in this
paper represent fundamental security properties the need for
which arises in virtually any secure distributed systems in
which the management and representation of authorization
state is not centralized. In this sense, we suggest that we
have identified and formalized a basic security property of
distributed enforcement mechanisms, in a similar sense that
non-interference [5] and safety [6] are basic security proper-
ties that are desirable in a wide range of secure systems.

Specifically, we present formal specifications of two stale-
safe properties, one strictly stronger than the other. The
most basic and fundamental requirement we consider deals
with ensuring that while authorization data cannot be prop-
agated instantaneously throughout the system, in many ap-
plications it is necessary that a request should be granted
only if it can be verified that it was authorized at some
point in the recent past. The second, stronger property says
that to be granted, the requested action must have been au-
thorized at a point in time after the request and before the
action is performed. We believe that the first property, weak
stale-safety, is a requirement for most actions (e.g., read or
write) in distributed access control systems. We also believe
that the second property, strong stale-safety, is (further) re-
quired of some or all actions in many applications.

We further show how these two properties can be strength-
ened to bound the acceptable level of staleness in terms of
time elapsed between the point at which the request was last
known to have been authorized and the point at which the
action is performed. Thus, including these two strengthened
versions, we have a total of four stale-safe properties.

We formalize these four properties in Linear Temporal
Logic (LTL), making them suitable to be verified by us-
ing model checking. We show how these properties can be
applied in the specific application domain of group-based
secure information sharing (g-SIS). We specify one compo-
nent of a g-SIS system as a finite state machine (FSM). We
present an FSM that does not satisfy the weakest of our
state-safe properties and show how it can be modified to
satisfy the property.

The remainder of the paper is organized as follows. In
section 2, we discuss the group-based Secure Information
Sharing problem which will be used throughout the paper
to illustrate the stale-safe properties. In section 3, we for-
malize the stale-safe security properties using Linear Tem-

poral Logic. We specify a weak and strong version of the
properties each of which is further restricted with a notion
of elapsed time between the time at the which the operation
is authorized and performed. In section 4, we demonstrate
the construction of two Finite State Machines (FSM)—one
FSM that is stale-unsafe and the other that enforces a g-
SIS policy in a stale-safe manner. In section 5, we discuss
related work, future work and conclude.

2. GROUP-BASED SECURE INFORMATION
SHARING

Secure Information Sharing (SIS) or sharing information
while protecting it is one of the earliest problems to be rec-
ognized in computer security, and yet remains a challenging
problem to solve. A detailed discussion of SIS problem mo-
tivation and solution approaches can be found in [9]. The
central problem is that copies of digital information are eas-
ily made and controls on the original typically do not carry
over to the copies. One approach tried in the past has been
to tie access control to each copy also so that copies are as
tightly controlled as the original. The most common form
of this approach is so-called mandatory or lattice-based ac-
cess control [15] where copies are also labeled to reflect se-
curity sensitivity of the original. More recently, an alter-
nate approach has emerged wherein plaintext unprotected
copies are prohibited, while encrypted protected copies can
be freely made. This implies that access controls need to
be enforced on the client machines where the content is de-
crypted and displayed, so as to ensure that only authorized
users get to see the content and that they are unable to make
plaintext unprotected copies. There has been considerable
interest in this approach, initially driven by the forces of
digital rights management for entertainment content seek-
ing to protect revenue but more generally seeking to protect
content for its sensitivity.

2.1 Objectives

The group-based SIS (g-SIS) problem [9] is motivated by
the need to share sensitive information amongst a group of
authorized users. For simplicity we only consider the case
of read access to the objects and addition of objects to the
group. For purpose of this paper, we specify the following
objectives for the g-SIS problem. For brevity, the terms sub-
jects and objects refer to subjects and objects that belong
to the group.

1. Objects are always protected (encrypted) and never
exists in plain text except when viewed.

2. Objects are assumed to be available via super-distribu-
tion. This simply means that the objects are protected
once and subjects may access them when authorized.
They are not individually prepared for each subject.

3. Subjects can access objects off-line without involving
the server using trusted access machines. The degree
of trust required on the access machines may vary de-
pending on the application and policy. In one case, the
access machines may be implicitly trusted because of
its physical location (e.g. access machines in an organi-
zation). In a completely distributed setting, a Trusted
Reference Monitor (TRM) needs to be present on the
access machines that can verify the integrity of the sys-

Subject join /
Object add

Never group
subject/object

Past group
subject/object

Subject join /
Object add

Subject leave /
Object remove

Figure 1: Subject and object membership states.

tem and enforce the authorization policies in a trust-
worthy manner. This can be achieved using integrity
measurements, remote attestation and other features
enabled by Trusted Computing Technology [1] or soft-
ware analogs of this technology?.

4. Each group has a Group Administrator (GA) who con-
trols group membership and policies. The GA can
add or remove subjects and objects from the group.
Each group also has a Control Center (CC), a server
that maintains authoritative subject and object at-
tributes and provides group credentials to new mem-
bers. Changes in subject and object attributes are
updated by the GA at the CC and this change will
eventually propagate to the subject’s access machines
(discussed later in detail).

5. When a subject joins or leaves the group, remaining
members should not be affected. In other words, join
and leave of a subject should be completely oblivious to
other subjects. Remaining subjects cannot be forced
to be online.

6. Secure multicast, a related problem, focuses on main-
taining forward and backward secrecy of data [14].
Forward-secrecy requires that a leaving subject should
not be able to read data that will subsequently be ex-
changed in the future. Backward-secrecy requires that
a joining subject should not be able to read data ex-
changed amongst the remaining subjects in the past.
However, information sharing may not be limited to
forward and backward-secrecy. For g-SIS flexible mem-
bership policies are required.

2.2 Group Management and Policy
Enforcement

Subjects and objects in a group go through various states
as shown in figure 1. Different access policies are possible
depending on the relative state of subjects and objects. For
example, a joining subject could be allowed access only to
new objects or also to objects that currently exist in the
group. Similarly, a past subject may lose access to all objects
or retain access to objects authorized during his membership
period. When a subject rejoins the group, he may either gain

Tt is generally accepted that software-only solutions will
provide a lower degree of assurance than solutions with a
hardware root of trust. The issues discussed in this paper
are orthogonal to assurance so will apply to both software
and hardware based solutions.

55

access to objects authorized during his past membership or
simply join the group as a new subject. Similarly, many
different object policies are possible. Detailed discussions
can be found in [9]. Each group may thus pick a specific set
of group-level access policies for subjects and objects.

Figure 2 shows one possible enforcement model for the g-
SIS problem and illustrates the interaction of various com-
ponents in g-SIS. The Group Administrator (GA) controls
group membership and policies. The Control Center (CC) is
responsible for maintaining authoritative group credentials
and attributes of group subjects and objects on behalf of the
GA.

e Subject Join: Joining a group involves obtaining au-
thorization from the GA followed by obtaining group
credentials from the CC. In step 1.1, the subject con-
tacts the GA using an access machine and requests
authorization to join a group. The GA verifies that
the subject is not already a member and authorizes
the subject in step 1.2 (by setting AUTH to TRUE).
The subject furnishes the authorization to join the
group and the evidence that the access machine is in
a good software state to the CC in step 1.3. The CC
remotely verifies GA’s authorization, if the subject’s
access machine is trustworthy (using the evidence) and
has a known Trusted Reference Monitor (TRM) that
is responsible for enforcing policies. In step 1.4, the
CC provisions the attributes. sid is the Subject Id,
Join_T'S is the time-stamp of subject join (set to a non-
NULL value), Leave_TS is the time at which a subject
leaves the group (initially set to NULL), gKey is the
group key using which group objects can be decrypted,
Policy is the group’s access policy, ORL is the Object
Revocation List which lists the objects removed from
the group.

e Policy Enforcement: From here on, the subject is con-
sidered a group member and may start accessing group
objects (encrypted using the group key) as per the
group policy and using the credentials obtained from
the CC. This is locally mediated and enforced by the
TRM. Note that the objects are available via super-
distribution and because of the presence of a TRM on
subject’s access machines, objects may be accessed of-
fline conforming to the policy. For example, the TRM
on an access machine may allow the subject to ac-
cess objects added after subject joined the group and
disallow access to objects added before he/she joined
the group. Such decisions can be made by using the
join and leave time-stamps of subject, add and remove
time-stamps of object and comparing their relative val-
ues. Objects may be added to the group by subjects by
obtaining an add time-stamp (setting an Add_TS at-
tribute for the object) from the CC. We assume object
attributes are embedded in the object itself. Note that
due to super-distribution, the remove time-stamps for
objects cannot be embedded in the object (since there
could be many copies of the same object). Instead, an
Object Revocation List (with the remove time-stamps
of object ids) is provisioned on the access machine.

o Attribute Refresh: Since subjects may access objects
offline, the access machines need to connect to the CC
and refresh subject attributes periodically. How this is

5.2 Update Policy for 4.2 Set Leave_TS

all Subjects of Subject sid
. N P e 1.4 Provision Credentials| cC
/25 Tsid, AUTH, Join_TS,

.‘g‘ ;""5 Leave_TS, gKey, v 3 Py -
% @ S Policy, ORL} g > 3| @
) g E 2l e E| g
~ S| s 212

= E g 2. Access

i J <yo Objects

1.1 Request Join 7

Non-group {AUTH} GA D D - \~EF
Subjects
d 1.2 Authz Join Group Subjects

-
{AUTH = TRUE}

Figure 2: g-SIS System.

done is a matter of policy and/or practicality. For ex-
ample, a refresh could take effect in an access machine
based on time or a usage count. Offline access to secure
clock may be impractical in many circumstances. Us-
age count is a practical approach when using Trusted
Computing Technology. The usage count limits the
number of times the credentials may be used to access
group objects (like consumable rights). Thus objects
may be accessed until the usage count is exhausted
and the access machine will be required to refresh at-
tributes in step 3.1 and 3.2 before any further access
can be granted. Attributes RT and N represent the
refresh time-stamp and usage count of the subject re-
spectively.

o Administrative Actions: The GA may have to remove
a subject or object from the group or update group
policy. In step 4.1, the GA instructs the CC to remove
a subject. The CC in turn marks the subject for re-
moval by setting the subject’s Leave_TS attribute in
step 4.2. This attribute update is communicated to
the subject’s access machine during the refresh step
3.1 and 3.2. In the case of object removal, the ORL
is updated with the object’s id and Remove_TS. Pol-
icy updates (or any other update for that matter) are
handled in a similar manner as shown in step 5.1 and
5.2.

As one can see, there is a delay in attribute update in
the access machine that is defined by the refresh window.
Although a subject may be removed from the group at the
CC, the access machines will let subjects access group ob-
jects until the subject attributes are refreshed at the next
refresh step. This access violation is due to attribute stale-
ness that is inherent to any distributed system however short
the refresh window is. We discuss this topic in detail in the
subsequent sections. This paper does not focus on building
trusted systems to realize the architecture in figure 2 and is
outside the scope of this paper.

3. STALE SAFE SECURITY PROPERTIES

As discussed earlier, in distributed systems access deci-
sions are almost always based on stale-attributes which lead
to critical access violations. In this section we propose stale-
safe security properties that limit such access violations.
Note that it is impossible to completely eliminate staleness
in practice and thus our intension here is best effort. We first
discuss a few scenarios where stale attributes lead to access

56

Object

Cloud cC Author

oAdd (O)

User

Distribute (O)

Get (O)

_,_Provide (O)
e

Store
Locally

Figure 3: Create and Propagate.

violations using the g-SIS example and informally discuss
the stale-safe properties. We formalize them next.

3.1 System Characterization

The g-SIS system consists of subjects and objects, trusted
access machines (using which objects are accessed), a GA
and a CC. Access machines maintain a local copy of sub-
ject attributes which they refresh periodically with the CC.
Object attributes are part of the object itself. A removed
object is listed in the Object Revocation List (ORL) which
is provided to access machines as part of refresh. To eas-
ily illustrate the properties, we assume that each subject is
tied to an access machine from which objects are accessed
and there is a single GA and single CC per group. Also,
we assume that the refresh is based on usage count. Sup-
pose a policy that a subject is allowed to access an object as
long as both the subject and object are current members of
the group and the object was added after the subject joined
the group. Thus the g-SIS system can be characterized as
follows:

Subject attributes {id, Join_T'S, Leave_TS,
ORL, gKey, RT, N}

{id, Add_TS}.

TRM contacts CC to refresh
subject attributes and ORL.
Interval between two RT’s
(depends on how quick usage
count is exhausted).
Authz(S,0,0P) — O ¢ ORL
ALeave_TS(S) = NULLA
Join_TS(S) < Add_TS(O).

Object attributes
Refresh Time (RT)

Refresh Window (RW)

Access Policy

Figure 3 illustrates super-distribution. An Author (a group
subject) creates an object, encrypts the object using the
group key (mediated by TRM) and sends it to the CC for
approval and distribution. The CC (or possibly a GA) ap-
proves the object, time-stamps object add and releases this
protected object for distribution. Since the object is pro-
tected, it is not necessarily guarded by the CC. Instead it is
made available to subjects by distribution through networks
such as WWW, email, etc. This infospace is called the Ob-
ject Cloud in figure 3. The User (another group subject)
can obtain these encrypted objects and store them locally
in his/her access machine. The sequence diagram in Figure 4
illustrates the staleness problem. The User and the TRM in-
teracts with the GA and CC in steps 1 to 5 to join the group.
The TRM refreshes attributes with the CC in steps 6 and 7.
Briefly after the refresh, the GA removes this subject (step
8) by setting his/her Leave_TS attribute at the CC (a non-

null value). Note that this step is not visible to the TRM
until the next refresh steps 11 and 12. In the mean time,
the User may request access to objects the were obtained via
super-distribution (step 9). “Create and Propagate” refers
to the scenario in figure 3. At this point, the TRM evaluates
the policy based on the attributes that it maintains. This
should be successful and the object is displayed to the user
in step 10. Note the difference in Leave_ TS values between
the CC and TRM. Only after the following refresh (steps
11 and 12) does the TRM notice that the subject has been
removed from the group and denies any further access (steps
13 and 14).

Figure 5 shows a timeline of events involving a single
group. Subject S1 joins the group and the attributes are
refreshed with the CC periodically. RT represents the time
at which refreshes happen. The time period between any two
RT’s is a Refresh Window, denoted RW;. After join, RWj
is the first window, RW; is the next and so on. Suppose
RWy is the current Refresh Window. Objects O1 and O2
were added to the group by some group subject (or the GA)
during RW3y and RW, respectively and they are available to
S1 via super-distribution. In RW4, S1 requests access to O1
and O2. An access decision will be made by the TRM in the
access machine as per the attributes obtained at the latest
RT.

Clearly, our access policy will allow access to both O1 and
02. However it is possible that S1 was removed by the GA
right after the last RT and before Request(S1, O1, access)
in RWy (see figure 4). Ideally, S1 should not be allowed to
access both O1 and O2.

From a confidentiality perspective in information sharing,
granting S1 access to O1 is relatively less of a problem than
granting access to O2. This is because the CC or the GA
can assume that S1 was always authorized access to O1 and
hence information has already been released to S1. In the
worst case, S1 continues to access the same information (O1)
until the next RT. However, S1 never had an authorization
to access O2 and letting S1 access O2 means that S1 has
gained knowledge of new information. This is a critical vi-
olation and should not be allowed. Such scenarios are what
our stale-safe security properties address. A subject cannot
access an object if it was added to the group after the last
refresh time even if the authorization policy allows access.

The property we discussed considers attributes to be stale
if it is time-stamped later than the last refresh time-stamp
of the access machine. A more strict property may require
the access machine to refresh attributes before granting any
access. That is, when S1 requests access to O1, the stricter
version of the stale-safe property mandates that the access
machine refreshes the subject attributes before making an
authorization decision. Further, it is natural to consider
elapsed time since the last refresh to be an important issue
in limiting staleness of authorization data. We formalize
these notions in the following subsection.

3.2 Formal Property Specification

In this section we use Linear Temporal Logic (LTL) [12] to
specify four different formal stale-safety properties of vary-
ing strength. Temporal logic is a specification language for
expressing properties related to a sequence of states in terms
of temporal logic operators and logic connectives (e.g., A and
V). Temporal logic operators are of two types: Past and Fu-
ture. The past operators &) and S (read previous and

57

TRM

| User |

1. Request Join

2. Request Join (S)

3. Authz Join QS)I

4. Forward Authz Join (S)

| 5. Join (S)

%

6. Request Refresh »

< 7. Refresh Attributes

" 8. Leave (S)
{ Leave TS (S)
NULL }

Ref Create and Propagate

9. Request
Display (O) .

" |{ Leave_TS (S) = NULL A
O ¢ ORL)A
10. Display (0) [(F0InTS (S) < Add_TS (0) }
11. Request Refresh »
13. Request | 12. Refresh Attributes
Display (0) _ [
" |{ Leave_TS (S) # NULL A
0 ¢ ORL)A
(Join_TS (S) < Add_TS (0) }

14. Reject

Figure 4: Staleness Illustration.

. Request
Join (S1) Add (01) Add (02) (s1, 02, access)
Rw, [rw| Rw, | Rw, | T TRW4 S
RT RT RT RT RT

Leave (S1) Request
(S1, 01, access)

Figure 5: Events on a time line illustrating staleness
leading to access violation.

since respectively) have the following semantics. ©) p means
that the formula p was true in the previous state. Note that
(® p is false in the very first state. p S ¢ means that ¢ has
happened sometime in the past and p has held continuously
following the last occurrence of ¢ to the present. The future
operators (), ¢, and O represent next state, some future
state, and all future states respectively. For example, Op
means that formula p is true in all future states. Also, the
formula p until ¢ (read p until ¢) means that ¢ will occur
sometime in the future and p will remain true at least until
the first occurrence of q.
Our formalization uses the following predicates:

request (S,0,0P) S requests to perform

an action OP on O.

S is authorized to perform
an action OP on O.

Join & Leave events of S.
Add & Remove events of O.
S performs OP on O.

The TRM contacts the CC

to update subject attributes.

Authz (S,0,0P)

Join (S) and Leave (S)
Add (O) and Remove (O)
perform (S,0,0P)

RT (S)

In the forthcoming formulae (o, ¢1 and @2) and throughout
this paper, we drop the corresponding parameters S, O and
OP in these predicates for clarity. They should however be
interpreted with the respective semantics described above.
Further, we assume that the very first join event of a subject
is equivalent to RT (since attributes are set at join time).

3.2.1 Access Policy Specification

We first formalize the access policy discussed in section 3.1
as an example. Note that, in distributed systems such as
g-SIS, events such as Remove and Leave cannot be instan-
taneously observed by the TRM. Such information (that a
subject or an object is no longer a group member) can only
be obtained from CC at subsequent refresh times (RT’s).
Thus, we have a notion of ideal or desirable policy that as-
sumes instant propagation of authorization information (like
that of a centralized system). This is enforceable only at the
CC. However, while designing the TRM (that is, in a dis-
tributed setting), one has to re-formulate this ideal policy
using available authorization information so that it is en-
forceable locally by the TRM. We call the former Authzcc
and the latter Authzrrwm.

Authzce below is the same policy in section 3.1 repre-
sented using LTL. Figure 6 illustrates Authzcc. Authzcc
says that S is allowed to perform an action OP on O if prior
to the current state the object was added to the group and
both the subject and object have not left the group since.
Also, the subject joined the group prior to the time at which
the object was added to the group and has not left the group
ever since. Clearly, this can be enforced only by the CC.

Authzcc = ((-Remove A —Leave) S (AddA

—Leave S Join)))

~RT S (Add A (=RT S (RTA

—Leave S Join))))) V

-RT S (RT A ((—Remove A —Leave)
S Add) A (—Leave S Join)))

vo = © ((—perform A (=RT V (RT A Authzrrm)))
S (request A Authzrrm))

Authztrvm =

(
(
(
(

Let us now re-formulate Authzcc so that it is enforceable
locally at TRM. Recall from section 2 that once a subject
joins the group, authorization information such as subject
join time and object add time are available instantaneously
to the TRM—subject join time is provisioned at the TRM
on successful join and object add time is available via super-
distribution. However, subject leave time and object remove
time are only available at refresh times from the CC. Thus,
in our re-formulation, we have a constraint that any mention
of Leave and Remove occur only at RT time. However, Join
and Add are free of this constraint and can be used at any
point in time.

AuthzrrMm above shows the re-formulation. It is a dis-
junction of two cases. The first part takes care of the case
in which the requested object is added after the most recent
RT. This is illustrated in case (a) of figure 7 where we are
only able to verify that the subject was still a member at
RT. Since the object was not added prior to that point, we
are unable to do a similar check for the object. The second
part handles the situation where the object is added before
the most recent RT. This is illustrated in case (b) of figure 7
where we are able to verify that at RT both the subject and
object are current members. Note that in both cases (a)
and (b), our evaluation of policy is based on authorization
information available at RT.

Figure 8 is a pictorial representation of formula ¢q. It
illustrates how a reference monitor traditionally reacts to a
request to access an object. When a request arrives from
a subject, the TRM verifies if the policy (Authzrrm) holds

58

—Leave —Remove A —Leave
A /\
f 11 1
| | |
Join Add Authz__
Figure 6: Ideal Access Policy (Authzcc).
—Leave —=RT —-RT
A A A
|]] 1
— | |
Joi RT
oin Add Authz_
Case (a)
—Leave —Remove A —Leave —RT
A A A
L I I 1
— | |
Join Add RT Authz
Case (b)

Figure 7: Approximate Access Policy (Authzrrm).

at that point. If successful, the TRM allows the subject
to perform the requested action subsequently. Note that
if an RT occurs in the meantime, the TRM re-evaluates
the policy with the updated attributes. Thus, ¢o says that
the operation was authorized at the time of request and
prior to the current state, the operation has not been per-
formed since it was requested. One can now see that the for-
mula O (perform —) reflects this behavior of the TRM.
However, observe that verifying that Authzrrm holds at
the time of request will allow the subject access to objects
that were added during the time between RT and request A
Authzrrym in figure 8. We illustrated this in case (a) of
figure 7. As discussed earlier, it is unsafe to let subjects ac-
cess these objects before a refresh can confirm the validity
of their group membership.

We next specify stale-safe security properties of varying
strength. The weakest of the properties we specify requires
that a requested action be performed only if a refresh of
authorization information has shown that the action was
authorized at that time. This refresh is permitted to have
taken place either before or after the request was made. The
last refresh must have indicated that the action was autho-
rized and all refreshes performed since the request, if any,
must also have indicated the action was authorized. This is
the weak stale-safe security property. By contrast, the strong
stale-safe security property requires that the confirmation of
authorization occur after the request and before the action
is performed.

3.2.2 Weak Stale-safe Security Property

Let us introduce two formulas formalizing pieces of stale-
safe security properties. Intuitively, 1 can be satisfied only
if authorization was confirmed prior to the request being
made. On the other hand, 2 can be satisfied only if au-
thorization was confirmed after the request. Note that weak

(—Perform A (=RT v (RT A AuthzTRM)))
Z/\.

\

(—Perform A (—-R‘;\v (RT A Authz_))) (—|PerformAA —-RT)

RT Request A Authz_ Perform
Figure 8: Formula ¢q.
—RT (—Perform A (=RT v (RT A Authz_)))
/\. /\

I 11 1

| | .

| | |
RT A Authz_ Request Perform

Figure 9: Formula ¢;.

stale safety is satisfied if either of these is satisfied prior to
a requested action being performed.

p1 = O (—perform A (-RT V (RT A Authzrrm)))
S (request A (WRT S (RT A Authzrrn)))

w2 = O (—perform A =RT) S (RT A AuthzrrMm A
((—perform A (-RT V (RT A AuthztrMm))) S request))

Figure 9 illustrates formula 1. 1 says that prior to the
current state, the operation has not been performed since
it was requested. Also since it was requested, any refreshes
that may have occurred indicated that the operation was
authorized (=RT V (RT A Authzrrm)). Finally, a refresh
must have occurred prior to the request and the last time
a refresh was performed prior to the request, the operation
was authorized.

Observe that formula ¢; mainly differs from ¢o on the
point at which Authzrrwu is evaluated. Referring to figure 9,
evaluating Authzrrm at the latest RT guarantees that re-
quests to access any object that may be added during the
following refresh window will be denied.

Note that ¢ is satisfied if there is no refresh between
the request and the perform. It requires that any refresh
that happens to occur during that interval indicate that the
action remains authorized. In our g-SIS application, this
could preclude an action being performed, for instance, if
the subject leaves the group, a refresh occurs, indicating
that the action is not authorized, the subject rejoins the
group, and another refresh indicates that the action is again
authorized. For some applications, this might be considered
unnecessarily strict.

Figure 10 illustrates formula ¢2. @2 does not require that
there was a refresh prior to the request. Instead it requires
that a refresh occurred between the request and now. It
further requires that the operation has not been performed
since it was requested and that every time a refresh has
occurred since the request, the operation was authorized.

Note that 2 can be satisfied without an authorizing re-
fresh having occurred prior to the request, whereas @1 can-
not. Thus, though > ensures fresher information is used to
make access decisions, it does not logically entail ¢ as it is
satisfied by traces that do not satisfy ¢;.

We call perform — @1 backward-looking stale safety, as it
does not require that a confirmation of authorization occur
after the request has been received. We call perform — 2
forward-looking stale safety, as it requires that confirmation

59

I 1

Request Perform

RT A Authz__

Figure 10: Formula ¢».

of authorization is obtained after the request, before the
action is performed.

DEFINITION 3.1 (WEAK STALE SAFETY). An FSM has
the weak stale-safe security property if it satisfies the fol-
lowing LTL formula:

O (perform — (p1 V ¢2))

3.2.3 Strong Stale-safe Security Property

Forward-looking stale safety is strictly stronger than weak
stale safety. For this reason, and because, unlike backward-
looking stale safety, it is a reasonable requirement for con-
trolling many operations, we give it a second name.

DEFINITION 3.2 (STRONG STALE SAFETY). An FSM has
the strong stale-safe security property if it satisfies the fol-
lowing LTL formula:

O (perform — ¢2)

Note that our formulas (po, ¢1 and ¢2) were concerned
about the temporal placement of refresh time (RT) with re-
spect to the occurrence of the time at which the request
came from the subject, the time at which the requested ac-
tion is performed and the evaluation of Authzrrm. This
separation of request and perform is important to differen-
tiate weak-stale safety from strong-stale safety property. In
weak-stale safety, although Authzrrm was evaluated at RT
prior to request, it is possible for an RT to occur between
request and perform. If fresh attributes are available, it is
important to re-evaluate Authzrry. Formula ¢q requires
that Authzrrwm continues to hold at such occurrences. On
the other hand, strong-stale safety mandates that after re-
quest, the action cannot be performed until Authzrrwm is
evaluated with up-to-date attributes.

3.2.4 Quantifying “Freshness” of Authorization

Let us now consider how to express requirements that
bound acceptable elapsed time between the point at which
attribute refresh occurs and the point at which a requested
action is performed. We refer to this elapsed time as the
degree of freshness. For this we introduce a sequence of
propositions {P;}o<i<n that model n time intervals. These
propositions partition each trace into contiguous state sub-
sequences that lie within a single time interval, with each
proposition becoming true immediately when its predeces-
sor becomes false. They can be axiomatized as follows:
P; Until (3=P; A (P2 Until (O—=P3 A (Ps Until (... Until
(O0=P,_1 AOP,)...))))). This partially® defines correct be-
havior of a clock, given by a component of the FSM. The
current time can be interrogated by the other FSM com-
ponents with which it is composed. It can also be referred

3Note that is it not possible to express in LTL that the clock
transits from P; to P;y1 at regular intervals of elapsed time.

>

to in the variant stale-safe properties presented in the fol-
lowing paragraphs. If the clock is accurate with respect to
transiting from P; to P;11 at regular intervals, the enforce-
ment machine obeying these variant properties will enforce
freshness requirements correctly.

We now formulate variants of 1 and @2 that take a pa-
rameter k indexing the current time interval. These formu-
las use two constants, ¢1 and f2 which represent the number
of time intervals since the authorization and the request,
respectively, that is considered acceptable to elapse prior
to performing the requested action. The formulas prohibit
performing the action if either the authorization or the re-
quest occurred further in the past than permitted by these
constants.

p1(k) = © ((—perform A (-RT V (RT A Authzrrm))) S
\/ PN
max(0,k—Llg)<i<k

(=RT S (RT A AuthzrrMm A

(request A

V

maz(0,k—£1)<i<k

V

max(0,k—01)<i<k
((—perform A (-RT V (RT A AuthztrMm))) S

\ Pi))

max(0,k—0s)<i<k

Pi))))

p2(k) = © (—perform A =RT) S

(RT A AuthzrrMm A

P; A

(request A

With these formulas, we are now able to state variants of
weak and strong stale safety that require timeliness, as de-
fined by the parameters ¢; and /3.

DEFINITION 3.3 (TIMELY, WEAK STALE SAFETY). An
FSM has the timely, weak stale-safe security property if it
satisfies the following LTL formula:

O (/\ (perform A Pr) — (p1(k) V @2(k)))

0<k<n

DEFINITION 3.4 (TIMELY, STRONG STALE SAFETY). An
FSM has the timely, strong stale-safe security property if it
satisfies the following LTL formula:

O (/\ (perform A Py) — p2(k))

0<k<n

3.3 Stale-safe Systems

We discuss the significance of the weak and strong stale-
safe properties in the context of stale-safe systems designed
for confidentiality or integrity. Confidentiality is concerned
about information release while integrity is concerned about
information modification. Both weak and strong properties
are applicable to confidentiality —the main trade-off between
weak and strong here is usability. Weak allows subjects to
read objects when they are off-line while strong forces sub-
jects to refresh attributes with the server before access can
be granted. Depending on the security and functional re-
quirements of the system under consideration, the designer
has the flexibility to choose between weak and strong to
achieve stale-safety. In the case of integrity, the weak prop-
erty can be risky in many circumstances —the strong prop-
erty is more desirable. This is because objects modified by
unauthorized subjects may be used/consumed by other sub-
jects before the modification can be undone by the server.

60

For instance, in g-SIS, a malicious unauthorized subject (i.e.
a malicious subject who has been revoked group membership
but is still allowed to modify objects for a time period due to
stale attributes) may inject bad code and share it with the
group. Other unsuspecting subjects who may have the priv-
ilege to execute this code may do so and cause significant
damage. In another scenario, a malicious subject may inject
incorrect information into the group and other subjects may
perform certain critical actions based on faulty information.
Thus, although both weak and strong properties may be ap-
plicable to confidentiality and integrity, the weak property
should be used with a caveat in the case of integrity.

4. MODELING TRM

The TRM we consider models refresh based on usage
count. The CC/GA determines a usage count for each sub-
ject which specifies the number of times the group creden-
tials (e.g. group key) may be used by the TRM to access
objects off-line before a refresh is required. Suppose N is
the usage count. Every time a subject accesses an object, N
is decremented by the TRM. Once N reaches zero for that
subject, the TRM denies access to any object until the at-
tributes are refreshed with the CC. As part of this refresh,
N is reset to the initial value.

We discuss the construction of a TRM machine, FSMrTrwM,
that satisfies Weak Stale Safety property (Definition 3.1).
Figure 11 shows one possible design of FSMrrwm to enforce
an authorization policy given by Authzg. Two versions of
FSMrrwm are shown in the figure, one stale-unsafe and one
stale-unsafe. Each version is obtained by interpreting X and
Y, as indicated. Observe that the authorization policy (the
LTL formula Authzrrwm in section 3) has been re-written
using attributes, denoted Authzg. Since we are at the en-
forcement layer, we specify the policy using attributes in-
stead of events. As earlier, Authzg indicates that the object
O has not been removed from the group, subject S has not
left the group, and the subject S joined the group before
the object O was added. We label state transitions using
the format e[C]/A, in which e is the event, C is the con-
dition that has to be satisfied to enable the transition, and
A represents actions that need to be performed when the
transition is taken.

The FSMrrwm is responsible for mediating request from
the subject to access the object to which it corresponds.
It remains in the idle state until a request to access the
object arrives from the subject. At this point, FSMrrm
checks the authorization policy (Authzg) to decide whether
the subject can access the requested object. At this point,
there are three possible paths the FSM can take, depending
on which condition is satisfied. Let us first consider stale-
unsafe FSMTgr:

Request[-Authzg|: If Authzg fails, FSMrrMm rejects the
request and remains in the idle state.

Request[Authzg A N = 0]: If Authzg succeeds, but the
usage count is exhausted, the machine is required to refresh
attributes before any access can be granted. A refresh re-
quest action (Refreshrrq) is initiated in this case. This cre-
ates a synchronizing event (transitions labeled Refresh in the
idle, authorized and refreshed states) for all the FSMrrum in-
stances in the local TRM, which has the effect of updating
all subject attributes, as well as the ORL, with the values
that are current at the CC. The synchronous event simply
ensures that the update is atomic with respect to transitions

Request [= Authz_]
I Reject

Refresh

Request[Y]
I RefreshREQ

f

[— Authz_]
| Reject
[Authz_ A

Request [X]

N>01 [— Authz_]
| Perform | Reject
IN=N-1

[Authz_]

authorized refreshed

[Authz_
AN=0]

I Refre::,hREQ

Refresh Refresh
Authz_(S,0,0P) — —Remove TS (O) A —Leave TS (S)

A Join_TS (S) <Add_TS (O)

Stale=R_TS <Add_TS (O)
Stale-Unsafe FSM_.:
X= AutthA N>0
YEAutthA N=0

Stale-Safe FSM_.:

o
X= Authz. AN>0A — Stale
Y =Authz_A (StalevN=0)

Figure 11: Two versions of FSMrry: One Stale-
unsafe and one Stale-safe. Each version is obtained
by interpreting X and Y, as indicated.

at every FSMrrm instance. After the refresh, the FSMrrm
enters the refreshed state. It again checks the authoriza-
tion policy to see whether the subject is now allowed the
requested access in light of the updated attribute values. If
Authzg holds, FSMrgrum directly enters the authorized state.
If Authzg does not hold, the FSMrgrnm denies access and im-
mediately returns to idle.

Request[Authzg A N > 0]: If Authzg succeeds and the
usage count NN is not exhausted, the machine enters the au-
thorized state and waits for the subject to access the object.
The requested action is performed only after re-checking the
policy Authzg and decrementing the usage count. If Authzg
does not hold, the action is rejected. This re-checking is crit-
ical because Authzg checked earlier may no longer hold due
to updated attributes received from the Refresh transition
which could possibly be triggered by another instance of
FSMrrm. We discuss this in more detail in the following
paragraph. FSMrry thereafter returns to the idle state.

Consider the self-transitions labeled Refresh in each of
the states in FSMrrwm. It is needed to allow refreshes ini-
tiated by other FSMrgrum’s to occur atomically with respect
to other transitions. When a subject requests access to
multiple objects, a separate instance of FSMrrm runs for

61

each such object. It is possible that updated attributes are
available when a FSMrgrwm instance is at authorized state.
Consider the following example. In a typical system, multi-
ple subjects request access to multiple objects at the same
time. When an FSMrgrwm instance enters and waits at au-
thorized state for a specific request, it is possible that a
refresh request was triggered by other FSMTgry instances
and updated attributes are available. In light of this up-
date, the FSMrrMm waiting at authorized state has a chance
to re-evaluate the policy before the action can be performed
by the subject. Thus the Refresh transitions simply ensure
that in the event of refresh triggerred by any instance of
FSMrrMm, all other running instances obtain the fresh au-
thorization information and re-evaluate the policy.

The FSMrrum in figure 11 is not stale-safe because it al-
lows access to objects that were added after the last refresh
time. This problem is fixed in stale-safe FSMrgry which we
now discuss.

Consider the stale-safe version of FSMrrm in Figure 11.
As indicated, it differs from stale-unsafe FSMrgrwM in the ex-
tra check that is carried out for stale safety. As per the weak-
stale safety property, objects added after the most recent RT
cannot be accessed until after refresh. The staleness check
(RT_TS < Add_TS(O)) makes sure that the property holds.
The transition from idle to authorized is enabled if the au-
thorization policy succeeds, the usage count is still available
and the attributes are not stale (i.e., Add_TS(O) < RT_TS).
The transition from idle to refreshed is enabled if the au-
thorization policy is successful but either the off-line usage
limit is reached or the attributes are stale. From refreshed,
FSMrrwm enters authorized state if Authzg still holds with
the refreshed attributes else it returns to idle. Thus this
machine satisfies formula ¢ (backward-looking stale-safety)
when the attributes are not stale, and it satisfies formula @2
(forward-looking stale-safety) when the attributes are stale.
Note that it is also possible to construct machines that will
satisfy the other properties we discussed earlier.

S. RELATED WORK AND CONCLUSION

Attribute staleness is inherent to any distributed system
and can result in serious access violations. In this paper, we
proposed stale-safe security properties using the group-based
Secure Information Sharing problem as an example. We for-
malized four stale-safe properties of varying strengths using
Linear Temporal Logic. This formalization not only enabled
us to precisely state the properties but also allows systems
to be formally verified, for example, using techniques such
as model checking. We discussed an FSM construction of
the Trusted Reference Monitor resident in access machines
that satisfies the weak stale-safe property. We believe that
these properties can be generalized to any distributed appli-
cations that uses attribute-based access control with minor
extensions/modifications if any.

To the best of our knowledge, this is the first effort towards
formalizing the notion of stale-safety in attribute-based ac-
cess control. The work of Lee et al [10, 11] is the closest to
ours that we have seen in the literature, but focuses exclu-
sively on the use of attribute certificates, called credentials,
for assertion of attribute values. Lee et al focus on the need
to obtain fresh information about the revocation status of
credentials to avoid staleness. Our formalism is based on the
notion of a “refresh time,” that is the time when an attribute
value was known to be accurate. We believe the notion of

refresh time is central to formulation of stale-safe proper-
ties. Because Lee et al admit only attribute certificates as
carriers of attribute information there is no notion of refresh
time in their framework.

A technical report on a more exhaustive version of this
work along with results from model checking the TRM can
be found in [8]. There has been substantial work on the
application of model checking to verify security properties.
Formal specification and verification techniques and tools,
such as model checking, have been increasingly leveraged to
verify security properties of access control systems [3, 7, 17,
2,4, 13, 16, 18].

Our future work is along three exciting paths. First,
model checking the complete g-SIS system is a major fu-
ture work. This is a complex problem which is composed of
multiple FSMs for TRM, CC and GA. All these machines
need to handle various operations such as membership man-
agement of subjects and objects, provisioning group creden-
tials, multiple group memberships, etc. Second, the stale-
safe properties need to be extended to accommodate multi-
ple CCs, multiple groups and multiple access machines. We
believe studying and formalizing these extensions is valuable
to build stale-safe large-scale distributed systems. Third, we
believe the notion of stale-safety as described in this paper
can be extended to Attribute-based Access Control (ABAC)
in general. This way, any system that uses ABAC to specify
policy can be made stale-safe.

6. ACKNOWLEDGMENTS

Ravi Sandhu is partially supported by NSF grant IIS-
0814027, AFOSR grant FA9550-06-01-0045, a research su-
periority grant from the State of Texas Emerging Tech-
nology Fund and a grant from Intel Corporation. Jianwei
Niu is partially supported by NSF grant I1IS-0814027 and
THECB ARP grant 010115-0037-2007. William Winsbor-
ough is partially supported by NSF grants CCR-0325951,
CCF-0524010 and CNS-0716750 and THECB ARP grant
010115-0037-2007. Ram Krishnan is partially supported by
a grant from Intel Corporation.

7. REFERENCES

[1] TCG specification architecture overview.
http: //www.trustedcomputinggroup. org.

[2] A. K. Babdara, E. C. Lupu, and A. Russo. Using

event calculus to formalize policy specification and

analysis. In Proceedings of the 4th International

Workshop on Policies for Distributed Systems and

Networks (POLICY 2003), pages 26-39, 2003.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tshchantz. Verification and change-impact
analysis of access-control policies. In ICSE, pages
196-205. ACM Press, 2005.

[4] D. Gilliam, J. Powell, and M. Bishop. Application of
lightweight formal methods to software security. In
Proceedings of the 14th IEEE International Workshop
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2005.

62

[5] J. Goguen and J. Meseguer. Security policies and
security models. IEEE Symposium on Security and
Privacy, 12, 1982.

[6] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Comm. of the ACM,
pages 461-471, August 1976.

[7] S. Jha and T. Reps. Model checking SPKI/SDSI.
volume 12, pages 317-353, 2004.

[8] R. Krishnan, J. Niu, R. Sandhu, and
W. Winsborough. Stale-safe security properties for
group-based secure information sharing. Technical
report CS-TR-2008-012, Department of Computer
Science, University of Texas, San Antonio, 2008.

[9] R. Krishnan, R. Sandhu, and K. Ranganathan. PEI

models towards scalable, usable and high-assurance

information sharing. Proc. of the 12th ACM

Symposium on Access Control Models and

Technologies, pages 145-150, 2007.

A. Lee, K. Minami, and M. Winslett. Lightweight

consistency enforcement schemes for distributed proofs

with hidden subtrees. Proceedings of the 12th ACM
symposium on Access control models and technologies,

pages 101-110, 2007.

A. Lee and M. Winslett. Safety and consistency in

policy-based authorization systems. Proceedings of the

18th ACM conference on computer and

communications security, pages 124-133, 2006.

7. Manna and A. Pnueli. The Temporal Logic of

Reactive and Concurrent Systems. Springer-Verlag,

Heidelberg, Germany, 1992.

M. J. May, C. A. Gunter, and I. Lee. Privacy APIs:

Access control techniques to analyze and verify legal

privacy policies. In Proceedings of the 19th IEEE

Computer Security Foundations Workshop, 2006.

S. Rafaeli and D. Hutchison. A survey of key

management for secure group communication. ACM

Computing Surveys, pages 309-329, September 2003.

R. Sandhu. Lattice-based access control models. I[EEE

Computer, pages 9-19, November 1993.

A. Schaad, V. Lotz, and K. Sohr. A model checking

approach to analysing organizational controls in a loan

origination process. In Proceedings of the 11th ACM

Symposium on Access Control Models and

Technologies (SACMATO06), pages 139149, 2006.

A. P. Sistla and M. Zhou. Analysis of dynamic

policies. In Proceedings of Foundations of Computer

Security and Automated Reasoning for Security

Protocol Analysis, pages 233-262, 2006.

N. Zhang, M. Ryan, and D. P. Guelev. Evaluating

access control policies through model checking. In

Proceedings of the 8th Information Security

Conference, volume 3650 of LNCS, pages 446—460.

Springer-Verlag, 2005.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

