
Proc. Second European Symposium on Research in Computer Security,

Toulouse, France, November 1992, pages 307-328.

Polyinstantiation for Cover Stories

Ravi S. Sandhu and Sushil Jajodia1

Center for Secure Information Systems &
Department of Information and Software Systems Engineering

George Mason University
Fairfax, VA 22030, USA

email: fsandhu, jajodiag@sitevax.gmu.edu

Abstract. In this paper we study the use of polyinstantiation, for the
purpose of implementing cover stories in multilevel secure relational
database systems. We de�ne a particular semantics for polyinstantiation
called PCS (i.e., polyinstantiation for cover stories). PCS allows two al-
ternatives for each attribute (or attribute group) of a multilevel entity:
(i) no polyinstantiation, or (ii) polyinstantiation at the explicit request
of a user to whom the polyinstantiation is visible. PCS strictly limits the
extent of polyinstantiation by requiring that each entity in a multilevel
relation has at most one tuple per security class. We demonstrate that
PCS provides a natural, intuitive and useful technique for implement-
ing cover stories. A particularly attractive feature of PCS is its run-time
exibility regarding the use of cover stories. A particular attribute may
have cover stories for some entities and not for others. Even for the same
entity, a particular attribute may be polyinstantiated at some time and
not at other times.

1 INTRODUCTION

Polyinstantiation has generated a great deal of controversy lately. Some have
argued that polyinstantiation and integrity are fundamentally incompatible, and
have proposed alternatives to polyinstantiation. Others have argued about the
correct de�nition of polyinstantiation and its operational semantics. Much has
been written about this topic, as can be seen from the bibliography of this paper.

There are two extreme positions that can be identi�ed with respect to polyin-
stantiation.

1 The work of both authors was partially supported by the U.S. Air Force, Rome Air
Development Center through contract #F-30602-92-C-002. We are indebted to Joe
Giardono for making this work possible.



{ Polyinstantiation and integrity are fundamentally incompatible, and steps
must be taken to avoid polyinstantiation in multilevel relations regardless of
the cost.

{ Polyinstantiation is an intrinsic phenomenon, inevitable in the multilevel
world. Therefore, multilevel relations must be polyinstantiated whenever
necessary.

Extreme proponents of the former view are apparently willing to tolerate infor-
mation leakage and/or severe denial-of-service in order to totally banish polyin-
stantiation. Extreme proponents of the latter view appear similarly willing to
generate large numbers of spurious tuples and data associations, whenever the
opportunity is presented.

As is often the case in such situations, the truth lies somewhere in between.
To reconcile these extreme views, it is useful to draw an analogy with the debate
in the early 1970's regarding goto statements in programming languages. To-
day it is well understood that indiscriminate use of goto's is harmful, but also
that the complete eliminations of goto's creates more problems than it solves.
Polyinstantiation should similarly be viewed as a technique which can be used
for better or for worse.

It is important to understand that there is nothing fundamental about the
occurrence of polyinstantiation. Jajodia and Sandhu [16, 23] have shown how it
is possible to prohibit polyinstantiation securely (i.e., without leakage of secret
information or denial-of-service). In other words, if you don't like it you can get
rid of it completely and securely.

At the same time, it is equally important to understand that there is no
fundamental incompatibility between polyinstantiation and integrity. A prop-
erly designed database management system (DBMS) can limit the occurrence
of polyinstantiation to precisely those instances where it is explicitly requested
by a user2 to whom the polyinstantiation is visible. The early work on polyin-
stantiation allowed an unclassi�ed user to insert information which propagated
into several polyinstantiated tuples at the secret and higher levels. The resulting
\spaghetti relations" do remind one of the all too familiar spaghetti code riddled
with goto's. But, much as the elimination of goto's is not fundamental to struc-
tured programming, the elimination of polyinstantiation is not fundamental to
database integrity.

The principal objective of this paper is to demonstrate that careful use of
polyinstantiation is a natural, intuitive and disciplined method for implementing
cover stories in multilevel secure relational databases. Polyinstantiation should,
of course, be used only where it is appropriate. Therefore polyinstantiation must
be prevented in the many situations where there is no need for cover stories.
In other words, even within the same database or relation we should be able to

2 Strictly speaking we should be saying subject rather than user. For the most part
we will loosely use these terms interchangeably. Where the distinction is important
we will be appropriately precise.



allow or disallow polyinstantiation selectively. We also reiterate the importance
of limiting the occurrence of polyinstantiation to precisely those instances where
it is explicitly requested by the user to whom it will be visible.

This paper de�nes a particular semantics3 for polyinstantiation called PCS
(i.e., polyinstantiation for cover stories). In developing PCS we have re�ned
many of our previously published ideas, included some new ones; as well as
borrowed and adapted concepts from other researchers who have published on
this topic. Our principal contribution is in the total package we have produced,
by combining and re�ning various ideas into a consistent, intuitive, and exible
aggregate.

PCS allows two alternatives for each attribute (or attribute group) of a multi-
level entity: (i) no polyinstantiation, or (ii) polyinstantiation by explicit request.
PCS o�ers run-time exibility of when to use cover stories, and uniformity of
the query interface. These are not available in other proposals for implementing
cover stories, such as having a separate attribute for the true facts and the cover
story. A particularly attractive feature of PCS is that the same attribute may be
polyinstantiated or not for di�erent entities in the same relation. For example,
the Destination of the Starship Enterprise can be polyinstantiated for a cover
story, while polyinstantiation for the Destination of the Voyager is forbidden.
Furthermore, PCS can readily accommodate the situation where on di�erent
occasions the same entity does or does not have a cover story for a particular
attribute, as the need changes. For example, the Destination of the Starship
Enterprise can be polyinstantiated for a cover story today, but tomorrow its
polyinstantiation can be forbidden.

The remainder of this paper is organized as follows. Section 2 reviews the
concept of polyinstantiation emphasizing those aspects which are important to
our objective in this paper. Section 3 discusses how polyinstantiation can be
eliminated in a secure manner, i.e., without introducing signaling channels4 for
leakage of secret information or incurring serious denial-of-service costs. Sec-
tion 4 introduces and motivates the concepts of PCS. (A formal model for PCS,
including its entity integrity and referential integrity properties, is given in the
appendix.) Section 5 gives our conclusions.

3 We do not claim that PCS is the only useful semantics for polyinstantiation.
4 A signaling channel is distinct from a covert channel. A signaling channel is a means
of information ow which is inherent in the data model, and will occur in every

implementation of the model. A covert channel, on the other hand, is a property of
a speci�c implementation; not a property of the data model. In other words, even
if the data model is free of downward signaling channels, a speci�c implementation
may well contain covert channels due to implementation quirks. It is therefore most
important for the data model to be free of downward signaling channels. Otherwise
there is no implementation of the model, however idealized, which can be free of
information leakage.



2 POLYINSTANTIATION

In this section we discuss some basic concepts of polyinstantiation by means of
examples. We assume that the readers are familiar with the basic concepts of
the standard (single-level) as well as multilevel relations. We refer the readers
to [14] or [15] for a detailed exposition.

A multilevel relation is said to be polyinstantiated when it contains two or
more tuples with the same \apparent" primary key values. The concept of ap-
parent primary key was introduced by Denning et al. in [3]. While the notion of
a primary key is simple and well understood for classical (single-level) relations,
it does not have a straightforward extension to multilevel relations. The appar-
ent primary key of a multilevel relation are those attributes which are asserted
by the user as being the primary key. The real primary key (i.e., the minimal
set of attributes which is unique in each tuple) of the multilevel relation is ob-
tained by adding one or more classi�cation attributes to the apparent primary
key. The exact manner in which this is done is closely related to the precise
polyinstantiation behavior of the relation (see [2] for a detailed discussion).

In multilevel relations, a major issue is how access classes are assigned to
data stored in relations. One can assign access classes to relations, to individual
tuples in a relation, to individual attributes (i.e., \columns") of a relation, or
to the individual data elements of a relation. Polyinstantiation does not arise
explicitly when access classes are assigned to relations or individual attributes of
a relation. For generality, we consider the case where access classes are attached
to the individual data elements themselves. Systems which attach access classes
to the tuples in a relation have limited expressive power and will not be discussed
in this paper.

There are two di�erent types of polyinstantiation in multilevel relations with
element level labeling [19], as follows:

{ entity polyinstantiation, and
{ element polyinstantiation.

Our proposal in PCS is to disallow entity polyinstantiation5, and allow element
polyinstantiation in a carefully controlled manner, as explicitly requested by
users.

2.1 Entity Polyinstantiation

Entity polyinstantiation occurs when a relation contains multiple tuples with
the same apparent primary key values, but having di�erent access class values

5 Entity polyinstantiation can actually be allowed without signi�cantly impacting
PCS. There may be situations in which entity polyinstantiation is desirable. How-
ever, it should be understood that entity polyinstantiation is particularly detrimental
to referential integrity as noted in [7].



for the apparent primary key. As an example, consider the relation SOD given
below:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

Here, as in all our examples, each attribute in a tuple not only has a value
but also a classi�cation. In addition there is a tuple-class or TC attribute. This
attribute is computed to be the least upper bound of the classi�cations of the
individual data elements in the tuple. We assume that the attribute Starship is
the apparent primary key of SOD.

The name \entity polyinstantiation" arises from the interpretation that these
two tuples refer to two distinct entities in the external world. That is, there are
two distinct Starships with the same name Enterprise. We will discuss how to
prevent entity polyinstantiation in section 3.

2.2 Element Polyinstantiation

The following relation illustrates element polyinstantiation:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S

With element polyinstantiation, a relation contains two or more tuples with iden-
tical apparent primary keys and the associated access class values, but having
di�erent values for one or more remaining attributes. As shown in the above
example, the objective of the starship Enterprise is di�erent for U- and S-users.

What are we to make of this last relation given above? There are at least
two reasonable interpretations that have been proposed in the literature.

{ The objective of Exploration is a cover story (at the U-level) for the real
objective of Spying (at the S-level).

{ We have an inconsistency in the database which needs to be resolved.

We will show in section 3 how to securely prevent element polyinstantiation from
arising due to inconsistencies. As a result the only occurrence of polyinstantiation
will be when it is deliberately requested for the purpose of implementing cover
stories.

To appreciate the intuitive notion of a cover story consider the eight instances
of SOD shown below [9].



No. Starship Objective Destination TC

1 Enterprise U Exploration U Talos U U

2 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S

3 Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

4 Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

5 Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S
Enterprise U Spying S Rigel S S

6 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Spying S Rigel S S

No. Starship Objective Destination TC

7 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Exploration U Rigel S S

8 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Exploration U Rigel S S
Enterprise U Spying S Rigel S S

These instances can be partitioned into three classes as follows.

{ Instance 1 has no polyinstantiation and is therefore straightforward.
{ Instances 2, 3, and 4 are also relatively straightforward. In each case there
is a single U-tuple and a single S-tuple for the Enterprise. The U-tuple can
therefore be reasonably interpreted as being a cover story for the S-tuple.
Instances 2, 3, and 4 di�er in the extent to which the U cover story is actually
true or false at the S level. Instance 2 has a cover story for the objective,
but the U destination is correct. Instance 3 conversely has a cover story for
the destination, but the U objective is correct. Instance 4 has a cover story
for both the objective and destination.

{ Instances 5, 6, 7, and 8 are, however, confusing to interpret from a cover story
perspective. Each of these cases has more than one S-tuple for the Enterprise,
but only one U-tuple. It is possible to give a meaningful and consistent
interpretation and update semantics for such relations [9, 12]. However, these
interpretations loose the basic intuitive simplicity of the relational model.

The intuitive appeal of instances 2, 3 and 4 is that they have one tuple per tuple

class. We will adhere to this requirement in the rest of this paper.

It should be noted that certain problems with the concept of one-tuple-per-
tuple-class in context of a partially ordered lattice were identi�ed in [21]. These



problems arise because [21] takes the following view: those attributes in a tuple
that are classi�ed below the tuple class are automatically derived from lower-
level polyinstantiated tuples. PCS, however, takes the view that such attributes
are explicitly derived by the user when constructing the higher-level tuple. PCS
therefore does not su�er from the problems identi�ed in [21].

2.3 Update Propagation

One of the subtleties involved in maintainingplausible cover stories is consistency
across di�erent levels. To illustrate this issue consider the following relation
instances:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration S Rigel S S

We will treat these relations as being di�erent, even though the values of the
individual data elements are the same in both cases. In other words, there is a dif-
ference between the objective being <Exploration,U> versus <Exploration,S>.
To understand this di�erence, consider what happens when a U-user updates the
objective of the Enterprise to be Mining. These two relations will respectively
be updated as follows:

Starship Objective Destination TC

Enterprise U Mining U Talos U U
Enterprise U Mining U Rigel S S

Starship Objective Destination TC

Enterprise U Mining U Talos U U
Enterprise U Exploration S Rigel S S

3 ELIMINATING POLYINSTANTIATION

In this section we show how polyinstantiation can be completely prevented. We
discuss the prevention of entity and element polyinstantiation separately below.

3.1 Source of Entity Polyinstantiation

Entity polyinstantiation can occur in basically two di�erent ways, which we
respectively call polyhigh and polylow for ease of reference [23].



1. Polyhigh: A high user inserts a tuple with a primary key that already exists
at the low level.

2. Polylow: A low user inserts a tuple with a primary key that already exists
at the high level.

Polyhigh is easily prevented without disclosing secret information. The DBMS
simply rejects the attempted insertion. The real challenge is in preventing poly-
low.

To be concrete, let us illustrate polyhigh by considering the following instance
of SOD.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Now suppose a S-user attempts to insert the following tuple in this relation:
(Enterprise, Spying, Rigel). A polyinstantiating DBMS will allow this insertion
giving us the following result.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

There is, however, no fundamental need to polyinstantiate in this situation. The
DBMS can simply reject this insertion by the S-user. The key conict is visible
to the S-user without any secrecy violation. Since the name Enterprise is already
in use, it is only proper to ask the S-user to choose another name for the new
ship, say, Enterprise0 . In other words, there is no serious denial-of-service to the
S-user; so long as the user can rename the new Starship to be Enterprise0 and
enter the following tuple: (Enterprise0, Spying, Rigel) to obtain

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise0 S Spying S Rigel S S

without polyinstantiation.

Similarly, let us illustrate polylow by considering the following relation in-
stance.

Starship Objective Destination TC

Enterprise S Spying S Rigel S S

Note that due to simple-security this tuple is not visible to U-users, who therefore
see an empty relation. Now suppose a U-user attempts to insert the following
tuple in this relation: (Enterprise, Exploration, Talos). This insertion cannot be
rejected without some security compromise. Once we allow the database to come
to this point, we can get out of the situation only by compromising some aspect
of security. Various solutions have been proposed but none are really palatable.
We can identify the following alternatives.



1. Tolerate Loss of Secrecy. Proponents of this approach consider it better to
disallow the insertion and leak information, by inference, that the Enterprise
is being used as a key at some level above U. Unfortunately the signaling
channels opened up by this tolerance preclude such systems from attaining
a high rating (i.e., B2 or above [6]) for multilevel security.

2. Tolerate Loss of Integrity. This is the entity polyinstantiation route and
would give us the following result.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

It is possible to maintain an appearance of integrity in this case by deleting
the existing S-tuple for the Enterprise and inserting the new U-tuple to
obtain

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

For obvious reasons, no one has proposed this \solution" seriously.
3. Tolerate Denial of Service. The SWORD project [25] has proposed that in

such situations we forbid all further insertions for all time! For instance, a
U-user is prevented from even inserting a tuple such as (Voyager, Mining,
Mars) which does not cause any key conict. Thus, the moment a S-key has
been inserted no more Starships can be created by any user in this relation.
Moreover, there is no way of recovering from this state. This is clearly serious
denial-of-service.

The main point to note, for our purpose, is that is too late to securely prevent this

insertion at the point where the insertion is about to take place. The insertion can
be securely prevented only by taking proactive steps in advance of its imminent
occurrence.

3.2 Prevention of Entity Polyinstantiation

There are three basic techniques for eliminating entity polyinstantiation.

1. Make all the keys visible. In this method the apparent primary key is required
to be labeled at the lowest level at which a relation is visible. For example, we
can require that all keys be unclassi�ed. Consequently, the following relation

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

would be forbidden. Note that we can represent the same information in two
di�erent relations called USOD and SSOD as follows



UStarship Objective Destination TC

Enterprise U Exploration U Talos U U

SStarship Objective Destination TC

Enterprise S Spying S Rigel S S

In other words we horizontally partition the original SOD relation, putting
all the U-Starships in USOD and all the S-Starships in SSOD.

2. Partition the domain of the primary key. Another way to eliminate entity
polyinstantiation is to partition the domain of the primary key among the
various access classes possible for the primary key. For our example, we
can say require that starships whose names begin with A-E are unclassi�ed,
starships whose names begin with F-T are secret, and so on. Whenever a new
tuple is inserted, we enforce this requirement as an integrity constraint. In
this case we would need to rename the secret Enterprise, perhaps as follows.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
FEnterprise S Spying S Rigel S S

The DBMS can now reject any attempt by a U-user to insert a Starship
whose name begins with F-Z, without causing any information leakage or
integrity violation.

3. Limit insertions to be done by trusted subjects. A third way to eliminate en-
tity polyinstantiation is to require that all insertions are done by a system-
high user, with a write-down occurring as part of the insert operation.
(Strictly speaking, we only need a relation-high user, i.e., a user to whom all
tuples are visible.) In context of our example this means that a U-user who
wishes to insert the tuple: (Enterprise, Exploration, Talos), must request a
S-user to do the insertion. The S-user does so by invoking a trusted subject
which can check for key conict, and if there is none insert a U-tuple by
writing down. If there is a conict the S-user informs the U-user about it,
so the U-user can, say, change the name of the Starship to Enterprise0.

The �rst approach is available in any DBMS which allows a range of access classes
for individual attributes (or attribute groups), by simply limiting the classi�ca-
tion range of the apparent key to be a singleton set. The second approach is
available to any DBMS that can enforce domain constraints with adequate gen-
erality. The third approach is always available but requires the use of trusted
code, and tolerates some leakage of information (although with a human in the
loop). The best approach will depend upon the characteristics of the DBMS and
the application, particularly concerning the frequency and source of insertions.

3.3 Source of Element Polyinstantiation

Element polyinstantiation can occur by polyhigh or polylow, similar to the oc-
currence of entity polyinstantiation. Let us again consider concrete examples to



make these notions clearer.

Polyhigh occurs when an S-user attempts to update the destination of the
Enterprise in the following relation to be Rigel.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

The existing destination of Talos cannot be overwritten without violating the ?-
property. Therefore, either the update must be rejected or the destination must
be polyinstantiated to get the following result.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

In either case U-users see no change in the relation and there is no information
leakage.

Polylow arises in the opposite situation, where the Enterprise previously
already has an S-destination and a U-destination is entered later. Speci�cally,
consider the following relation.

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

U-users see this relation with the secret data �ltered out as follows.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Now suppose a U-user attempts to update the destination of the Enterprise to
be Talos. This update cannot be rejected on the grounds that a S-destination for
the Enterprise already exists, because that amounts to establishing a downward
signaling channel. It is possible to overwrite the secret destination, so that both
U- and S-users see the following relation after the update takes place.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

This option has major problems for the integrity of secret data, and has never
been seriously considered. The remaining option is to polyinstantiate the des-
tination attribute for the Enterprise, so that S-users see the following relation;
whereas, U-users see the relation above.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S



To summarize, we can deal with polylow using the same three alternatives iden-
ti�ed for polylow in entity polyinstantiation.

1. Tolerate Loss of Secrecy. This precludes a high degree of assurance (i.e., B2
or above [6]) for multilevel secure DBMS's.

2. Tolerate Loss of Integrity. This is the polyinstantiation route. (Or, the clearly
unacceptable route of overwriting secret data by unclassi�ed data.)

3. Tolerate Denial of Service. Once any secret data has been entered in a rela-
tion, we can prohibit further entry of any unclassi�ed data.

It is again important to understand that it is too late to securely prevent the poly-

low update at the point where the update is about to take place. The update can
be securely prevented only by taking proactive steps in advance of its imminent
occurrence.

3.4 Prevention of Element Polyinstantiation

In this section we show how to prevent element polyinstantiation without com-
promising on con�dentiality, integrity or denial-of-service requirements. The ba-
sic idea is to introduce a special symbol denoted by \restricted" as the possible
value of a data element [23]. The value \restricted" is distinct from any other
value for that element and is also di�erent from \null." In other words the do-
main of a data element is its natural domain extended with \restricted" and
\null." We de�ne the semantics of \restricted" in such a way that we are able
to eliminate both polyhigh and polylow.

Consider again the polyhigh scenario of section 3.3. We have the following
relation to begin with.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Next a S-user attempts to modify the destination of the Enterprise to be Rigel.
As we have argued we can reject this update securely. But what if the true
destination has changed to <Rigel,S>? Surely there must be some way to enter
this information. We require the S-user to �rst login as a U-subject6 and mark
the destination of the Enterprise as restricted giving us the following relation.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

6 Alternately the S-user logs in at the U-level and requests some properly authorized
U-user to carry out this step. Communication of this request from the S-user to
the U-user may also occur outside of the computer system, by say direct personal
communication or a secure telephone call.



The meaning of <restricted,U> is that this �eld can no longer be updated by an
ordinary U-user.7 U-users can therefore infer that the true value of Enterprise's
destination is classi�ed at some level not dominated by U. The S-user then logs
in as a S-subject and enters the destination of the Enterprise as Rigel giving us
the following relations at the U and S levels respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U restricted U U
Enterprise U Exploration U Rigel S S

Note that this protocol does not introduce a signaling channel from a S-
subject to an U-subject. There is information ow, but from a S-user (logged in
as an U-subject) to an U-subject. This is an extremely important distinction.
The paramount threat in computer security (at least, in terms of the Orange
Book [6]) is from Trojan Horse infected subjects. Information leakage due to the
activities of users in carrying out their jobs is of concern to overall system secu-
rity. However, computerization cannot eliminate leakage that is intrinsically part
of the application domain (such as setting some data element to be restricted).
The point is that an information ow channel with a trusted S-user in the loop
can be exercised only by Trojan Horses that are capable of manipulating the real
world! This entails the manipulation of real trusted people making real decisions
and not merely the manipulation of bits in a database. Finally, it is important
to understand that information ow which includes humans in the loop always
exists. For example, the above scenario can be played out replacing \restricted"
with \null" and the same information ow occurs.

Next consider how the polylow scenario of section 3.3 plays out with the
restricted requirement. In this case the Enterprise can have a secret destination
only if the destination has been marked as being restricted at the unclassi�ed
level. Thus either the S- and U-users respectively see the following instances of
SOD,

Starship Objective Destination TC

Enterprise U Exploration U restricted U U
Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

or both S- and U-users see the following instance

7 As discussed in section 4.6, only those U-users with the unrestrict privilege for this
�eld can update it.



Starship Objective Destination TC

Enterprise U Exploration U null U U

In the former event an attempt by a U-user to update the destination of the
Enterprise to Talos will be rejected, whereas in the latter event the update will
be allowed (without causing polyinstantiation).

The concept of restricted is straightforward, so long as we have a totally
ordered lattice. In the general case of a partially ordered lattice some subtleties
arise. How to completely eliminate polyinstantiation using restricted is discussed
at length in [23]. In general, updating the value of a data element to restricted
is a safe operation from a polyinstantiation viewpoint; that is, it cannot cause
polyinstantiation. On the other hand, updating the value of a data element
to a data value, say, at the c-level can be the cause of polyinstantiation. If
polyinstantiation is to be completely prohibited, this update must require that
the data element is restricted at all levels which do not dominate c. The fact that
the data element is restricted at all levels below c can be veri�ed by the usual
integrity checking mechanisms in a DBMS [22]. However, to guarantee this at
levels incomparable with c is more tricky. In preparing to enter a data value at
the c level, we would need to start a system-low (really data element low) process
which can then write-up. A protocol for this purpose is described in [23].8

4 SEMANTICS OF PCS

We now describe and motivate the intuitive semantics underlying our concept
of PCS (i.e., polyinstantiation for cover stories). A formal model is given in the
appendix. In a nutshell, PCS combines the \one tuple per tuple class" concept
discussed in section 2 with the \restricted" concept of section 3. The basic mo-
tivation for PCS can be appreciated by considering the following instance of
SOD.

Starship Objective Destination TC

Enterprise U restricted U Talos U U
Enterprise U Spying S Rigel S S

In this case the Destination attribute of the Enterprise is polyinstantiated, so
that <Talos,U> is a cover story for the real S destination of Rigel. The Objective
is not polyinstantiated.

In the rest of this section we will discuss various aspects of PCS in turn,
leading up to a summary at the end of this section which reiterates the main
points.

8 It should be noted that this protocol works for any arbitrary lattice, and does not
require any trusted subjects. The use of trusted subjects will allow simpler protocols
for this purpose.



4.1 Polylow Revisited

Let us reconsider the occurrence of polyinstantiation due to polylow, as discussed
by example in section 3.3. This example begins with S- and U-users respectively
having the following views of SOD.

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U null U U

So far there is no polyinstantiation. Polyinstantiation occurs in the example
when a U-user updates the destination of the Enterprise to be Talos.

In developing PCS we will take a slightly di�erent perspective on this ex-
ample. The shift in viewpoint, although very small, is extremely signi�cant for
the semantics of polyinstantiation. In our opinion it is a mistake to say that
polyinstantiation does not exist in the S-instance of SOD given above. Indeed
this instance should be correctly shown as follows.

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Rigel S S

But then polyinstantiation already exists prior to the U-user updating the des-
tination of the Enterprise to be Talos! This update merely modi�es an already
polyinstantiated relation instance to the one given below.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

With this perspective, element polyinstantiation can occur only due to polyhigh.
Polylow simply cannot be the cause of element polyinstantiation. Consequently,
polyinstantiation will occur only by the deliberate action of a user to whom
the polyinstantiation is immediately available. In other words, polyinstantiation
does not occur as a surprise.

4.2 The Semantics of Null

The issue here is a subtle one, but one that is very important to resolve properly;
so as to get a good semantics for PCS. Our proposal is remarkably simple: a
\null" value should be treated just like any data value (except in the apparent
key �elds where \null" should not occur). Previous work on the semantics of
null in polyinstantiated databases has taken the view that null's are subsumed
by non-null values independent of the access class [9, 21]. In this case the �rst
tuple in the following relation



Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Rigel S S

is subsumed by the second tuple, resulting in the following relation used in our
polylow example of section 3.3.

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

In PCS the former relation is quite acceptable. The latter can be acceptable, but
only if the lower limit on the classi�cation of the destination attribute is S.

To further illustrate the semantics of null in PCS, consider the following
relation.

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U null S S

PCS will consider this to be a polyinstantiated relation. The fact that we have
null's rather than data values in the polyinstantiated �eld has no bearing on this
issue. We note that the semantics of null in [9, 21] require all null values to be
classi�ed at the level of the apparent key (U in this case), thereby deeming the
second tuple as illegal.

4.3 The Semantics of Update

Our interpretation of the semantics of an SQL UPDATE command is identical to
the one in the standard relational model: An update command is used to change
values in tuples that are already present in a relation. In short, UPDATE does
not cause polyinstantiation. UPDATE is a set level operator; i.e., all tuples in the
relation which satisfy the predicate in the update statement are to be updated
(provided the resulting relation satis�es integrity constraints).

The UPDATE statement executed by a c-user (i.e., a user with clearance c)
has the following general form.

UPDATE R

SET Ai = si[; Aj = sj ] : : :
[WHERE p]

Here, sk is a scaler expression, and p is a predicate expression which identi�es
those tuples in Rc that are to be modi�ed. The predicate p may include condi-
tions involving the classi�cation attributes, in addition to the usual case of data
attributes. The assignments in the SET clause, however, can only involve the
data attributes. The corresponding classi�cation attributes are implicitly deter-
mined to be c. In PCS this statement is interpreted, from the c-users perspective,
to apply only to tuples with TC = c as follows.



UPDATE R

SET Ai = si[; Aj = sj ] : : :
WHERE [p ^ ] TC = c

To be speci�c consider the following relation instance

Starship Objective Destination TC

Enterprise U Exploration U null U U

to which a U-user applies the following UPDATE command

UPDATE SOD
SET Destination = \Talos"
WHERE Starship = \Enterprise"

This statement is interpreted in PCS as follows

UPDATE SOD
SET Destination = \Talos"
WHERE Starship = \Enterprise" ^ TC = U

giving us the following result

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Next, suppose a S-user executes the following UPDATE statement

UPDATE SOD
SET Destination = \Rigel"
WHERE Starship = \Enterprise"

PCS interprets this as follows

UPDATE SOD
SET Destination = \Rigel"
WHERE Starship = \Enterprise" ^ TC = S

Since there is no secret tuple for the Enterprise, this UPDATE has no e�ect.

4.4 Propagation of Updates

As discussed in section 2.3 the update of an attribute must propagate into polyin-
stantiated tuples. For example, consider the above UPDATE by a U-user in
context of the following relation.

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Spying S null U S



The S-tuple is invisible to the U-user who therefore sees exactly the scenario
described above, i.e., the destination of the Enterprise is set to <Talos,U>. The
point of update propagation is that this change must also be reected in the
S-tuple. That is, S-users should now see the following relation.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S

In this relation the Destination attribute of the U-tuple has been explicitly up-
dated by a U-user. The Destination attribute of the S-tuple is implicitly updated
unknown to the U-user. The fact that the Destination attribute of the S-tuple
is classi�ed U indicates that this implicit update is desired.

Suppose further, that a U-user executes the following UPDATE statement.

UPDATE SOD
SET Objective = \Mining"
WHERE Starship = \Enterprise"

After this update S-users will see the following relation

Starship Objective Destination TC

Enterprise U Mining U Talos U U
Enterprise U Spying S Talos U S

This behavior can be implemented in a kernelized architecture using decompo-
sitions similar to [14]. Detailed discussion of this is beyond the scope of this
paper.

4.5 Polyinstantiating Updates

In addition to the usual UPDATE statement, whose interpretation is given
above, we propose in PCS to introduce a polyinstantiating update statement
to allow users to explicitly request polyinstantiation. This statement is called a
PUPDATE (i.e., polyinstantiating UPDATE) statement and has the same gen-
eral format as an UPDATE, as shown below.

PUPDATE R

SET Ai = si[; Aj = sj ] : : :
[WHERE p]

The interpretation of this statement in PCS is intuitively speaking, to polyinstan-
tiate whenever a write-down is imminent. To be concrete consider the following
relation instance

Starship Objective Destination TC

Enterprise U Exploration U null U U



to which a S-user applies the following UPDATE command

PUPDATE SOD
SET Destination = \Rigel"
WHERE Starship = \Enterprise"

Since overwriting the null destination in place would result in a write-down, PCS
will interpret this statement as a request to polyinstantiate a secret destination.
It will therefore insert a new tuple into the relation, identical to the one above,
but with a secret destination of Rigel. This will give us the following relation.

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Rigel S S

Subsequent PUPDATEs by S-users to the Enterprise are treated just like UP-
DATES. For example, the following PUPDATE statement

PUPDATE SOD
SET Destination = \Sirius"
WHERE Starship = \Enterprise"

by an S-user will be interpreted in PCS as

UPDATE SOD
SET Destination = \Sirius"
WHERE Starship = \Enterprise" ^ TC = S

giving us the following result

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Sirius S S

In other words a PUPDATE requests polyinstantiation if necessary to prevent
a write-down, but otherwise is identical to an UPDATE.

4.6 The Semantics of Restricted

Our proposal in PCS is to treat \restricted" for the most part as just another
data value. The main di�erence comes about when restricted is changed to unre-
stricted (i.e., some value other than restricted), and vice versa. The usual write
privilege for the data item in question should not authorize these special updates
which change restricted to unrestricted, and vice versa. Otherwise restricted pro-
vides no additional protection. Our proposal in PCS is to provide two additional
access privileges as follows.



1. The restrict privilege on a data item authorizes a write operation which
changes unrestricted to restricted.

2. The unrestrict privilege on a data item authorizes a write operation which
changes restricted to unrestricted.

The possession of restrict and unrestrict privileges must be carefully controlled
by non-discretionary means to make this e�ective. One possibility is to tie the use
of these privileges to some kind of a mandatory integrity label on the subject.
Another possibility is to control the propagation of these privileges, by non-
discretionary means such as described in [20, 24], so it can be determined who
can possess them (i.e., with e�cient safety analysis).

The meaning of <restricted,c> in a data element is that ordinary c-users
cannot modify this �eld. Only a c-user with the unrestrict privilege for that �eld
is allowed to write into it. Similarly, ordinary c-users cannot write the restricted
value into a data �eld in the �rst place.

4.7 Summary

In summary we can describe the salient features of PCS as follows.

1. No entity polyinstantiation (which greatly facilitates referential integrity).
2. Element polyinstantiation only by explicit polyhigh PUPDATE requests.
3. One tuple per tuple class for a given apparent primary key.
4. UPDATEs apply only to tuples at the user's access class, and propagate to

higher level tuples.
5. Nulls are treated like any other data value.
6. Polyinstantiation is further controlled by restricted.
7. Changing restricted to unrestricted and vice versa requires special privileges.

The former is specially dangerous in terms of possible polyinstantiation and
should be executed only with proper protocols.

Finally, we note that PCS can be implemented in a kernelized architecture using
decompositions similar to [14]. Detailed discussion of this will require another
paper.

5 CONCLUSION

In this paper we have brought together a number of our previously published
ideas, along with some new ones. We have also incorporated some concepts
proposed by other researchers in the polyinstantiation arena. We have adapted
and re�ned these ideas, while combining them into a consistent, intuitive and
exible package called PCS (i.e., polyinstantiation for cover stories).

PCS has several advantages over other proposals for incorporating cover sto-
ries in a multilevel relational DBMS. Most noteworthy are its uniform query



interface and its exibility. One can ask the same query and expect to be shown
cover stories only when they exist, rather than having to explicitly ask for them.
The cover stories are created upon need and may disappear and reappear from
time to time for the same entity. Using explicit attributes to accommodate such
situations makes for a rigid structure in which the DBA (Database Administra-
tor) is the ultimate authority regarding creation of cover stories. PCS puts this
power in the users' hands, where it properly belongs.

There is little, if any, experience regarding the use of multilevel DBMSs. Until
recently, there have been no systems to use. Systems are now emerging but with
many ad hoc features built into their data models. We must give users a exible
vehicle to experiment with. We believe PCS provides a useful data model for
this purpose.

References

1. Rae K. Burns, \Referential Secrecy." Proc. IEEE Symposium on Security and Pri-

vacy, Oakland, California, May 1990, pages 133-142.
2. F. Cuppens and K. Yazdanian, \A \natural" decomposition of multi-level rela-

tions," Proc. IEEE Symposium on Security and Privacy, May 1992, pages 273-284.
3. Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, Mark Heckman, and William

R. Shockley, \A multilevel relational data model." Proc. IEEE Symposium on

Security and Privacy, April 1987, pages 220-234.
4. Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, William R. Shockley, and

Mark Heckman, \The SeaView security model." Proc. IEEE Symposium on Secu-

rity and Privacy, April 1988, pages 218-233.
5. Dorothy E. Denning, \Lessons Learned from Modeling a Secure Multilevel Re-

lational Database System." In Database Security: Status and Prospects, (C. E.
Landwehr, editor), North-Holland, 1988, pages 35-43.

6. Department of Defense National Computer Security Center. Department of Defense
Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD (1985).

7. Gajnak, G.E. \Some Results from the Entity-Relationship Multilevel Secure
DBMS Project." Aerospace Computer Security Applications Conference, pages 66-
71 (1988).

8. J. Thomas Haigh, Richard C. O'Brien, and Daniel J. Thomsen, \The LDV Secure
Relational DBMS Model." Database Security IV: Status and Prospects, S. Jajodia
and C. E. Landwehr (editors), North-Holland, 1991, pages 265-279.

9. Sushil Jajodia and Ravi S. Sandhu, \Polyinstantiation integrity in multilevel rela-
tions." Proc. IEEE Symposium on Security and Privacy, Oakland, California, May
1990, pages 104-115.

10. Sushil Jajodia and Ravi S. Sandhu, \A formal framework for single level decompo-
sition of multilevel relations." Proc. IEEE Workshop on Computer Security Foun-

dations, Franconia, New Hampshire, June 1990, pages 152-158.
11. Sushil Jajodia and Ravi S. Sandhu, \Polyinstantiation integrity in multilevel rela-

tions revisited." Database Security IV: Status and Prospects, S. Jajodia and C. E.
Landwehr (editors), North-Holland, 1991, pages 297-307.

12. Sushil Jajodia, Ravi S. Sandhu, and Edgar Sibley, \Update semantics of multi-
level relations." Proc. 6th Annual Computer Security Applications Conf., December
1990, pages 103-112.



13. Sushil Jajodia and Ravi S. Sandhu, \Database security: Current status and key
issues," ACM SIGMOD Record, Vol. 19, No. 4, December 1990, pages 123-126.

14. Sushil Jajodia and Ravi S. Sandhu, \A novel decomposition of multilevel rela-
tions into single-level relations." Proc. IEEE Symposium on Security and Privacy,
Oakland, California, May 1991, pages 300-313.

15. Sushil Jajodia and Ravi S. Sandhu, \Toward a multilevel secure relational data
model," Proc. ACM SIGMOD Int'l. Conf. on Management of Data, Denver, Col-
orado, May 29-31, 1991, pages 50-59.

16. Sushil Jajodia and Ravi S. Sandhu, \Enforcing Primary Key Requirements in Mul-
tilevel Relations," Proc. 4th RADC Workshop on Multilevel Database Security,
Rhode Island, April 1991.

17. Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heckman, and William
R. Shockley, \The SeaView security model." IEEE Transactions on Software En-

gineering, Vol. 16, No. 6, June 1990, pages 593-607.
18. Teresa F. Lunt and Donovan Hsieh, \Update semantics for a multilevel rela-

tional database." Database Security IV: Status and Prospects, S. Jajodia and C.
E. Landwehr, (editors), North-Holland, 1991, pages 281-296.

19. Teresa F. Lunt, \Polyinstantiation: an inevitable part of a multilevel world." Proc.
IEEE Workshop on Computer Security Foundations, Franconia, New Hampshire,
June 1991, pages 236-238.

20. Ravi S. Sandhu, \The Schematic Protection Model: Its De�nition and Analysis for
Acyclic Attenuating Schemes." Journal of ACM 35(2):404-432 (1988).

21. Ravi S. Sandhu, Sushil Jajodia, and Teresa F. Lunt, \A new polyinstantiation
integrity constraint for multilevel relations." Proc. IEEE Workshop on Computer

Security Foundations, Franconia, New Hampshire, June 1990, pages 159-165.
22. Ravi S. Sandhu and Sushil Jajodia, \Integrity Mechanisms in Database Manage-

ment Systems." Proc. 13th NIST-NCSC National Computer Security Conference,
Washington, D.C., October 1990, pages 526-540.

23. Ravi S. Sandhu and Sushil Jajodia, \Honest Databases That Can Keep Secrets."
Proc. 14th NIST-NCSC National Computer Security Conference, Washington,
D.C., October 1991, pages 267-282.

24. Ravi S. Sandhu, \The Typed Access Matrix Model." Proc. IEEE Symposium on

Research in Security and Privacy, Oakland, California, May 1992, pages 122-136.
25. Simon R. Wiseman, \On the Problem of Security in Data Bases." In Database

Security III: Status and Prospects, (Spooner, D.L. and Landwehr, C.E., editors),
North-Holland, 1990, pages 143-150.

APPENDIX: FORMAL MODEL OF PCS

A multilevel relation consists of the following two parts.9

De�nition1. [RELATION SCHEME] A state-invariant multilevel relation
scheme

R(A1; C1; A2; C2; : : : ; An; Cn; TC)

9 For simplicity the formal model is stated in terms of individual attributes. It can be
generalized by replacing each Ai by an attribute group in a straightforward manner.



where each Ai is a data attribute over domain Di, each Ci is a classi�cation

attribute for Ai and TC is the tuple-class attribute. The domain of Ci is speci�ed
by a range [Li;Hi] which de�nes a sub-lattice of access classes ranging from Li
up toHi. The domain of TC is [lubfLi : i = 1 : : :ng; lubfHi : i = 1 : : :ng] (where
lub denotes the least upper bound). Let A1 = AK be the apparent primary key.

De�nition2. [RELATION INSTANCES] A collection of state-dependent
relation instances

Rc(A1; C1; A2; C2; : : : ; An; Cn; TC)

one for each access class c in the given lattice. Each instance is a set of distinct
tuples of the form (a1; c1; a2; c2; : : : ; an; cn; tc) where each ai 2 Di or ai = null,
c � ci and tc = lubfci : i = 1 : : :ng. Moreover, if ai is not null then ci 2 [Li;Hi].
We require that ci be de�ned even if ai is null, i.e., a classi�cation attribute
cannot be null.

Property3. [Entity Integrity]Let AK be the apparent key of R. A multilevel
relation R satis�es entity integrity if and only if for all instance Rc of R and
t 2 Rc

1. Ai 2 AK ) t[Ai] 6= null,

2. Ai; Aj 2 AK ) t[Ci] = t[Cj], i.e., AK is uniformly classi�ed, and

3. Ai 62 AK ) t[Ci] � t[CAK] (where CAK is de�ned to be the classi�cation of
the apparent key).

Property4. [No Entity Polyinstantiation] A multilevel relation R has no
entity polyinstantiation if and only if AK ! CAK .10

Property5. [Tuple Integrity] A multilevel relation R has tuple integrity if
and only ifAK;CAK; TC ! Ai. (In context with Property 4, it su�ces to require
AK; TC ! Ai.)

Property6. [Entity Element Integrity] A multilevel relation R has entity
element integrity if and only if AK;CAK; Ci! Ai. (In context with Property 4,
it su�ces to require AK;Ci! Ai.)

Property7. [Inter-Instance Integrity] R satis�es inter-instance integrity if
and only if for all c0 � c we have Rc0 = ftjt 2 Rc ^ t[TC] � c0).

Property8. [Referential Integrity] Let Aj be a foreign key of R(A1; C1; : : : ;

An; Cn) referencing an entity in Q(B1; C1; : : : ; Bm; Cn). R and Q satisfy refer-
ential integrity if and only if for all c, if t 2 Rc with t[Aj ] 6= null or restricted
then there exists q 2 Qc such that t[Aj] = q[B1].

10 The notation X1; : : : ;Xn ! Y signi�es that Y is functionally dependent on
X1; : : : ;Xn, that is, it is not possible to have two tuples with the same values for
X1; : : : ;Xn but di�erent values for Y .



Formalization of UPDATE and PUPDATE semantics is omitted due to lack of
space. The formalization is very similar in outline to the minimal propagation
semantics of [12].

This article was processed using the LaTEX macro package with LLNCS style


