
Supporting Object-based High-assurance
Write-up in Multilevel Databases for the

Replicated Architecture

Roshan K. Thomas 1 and Ravi S. Sandhu 2

1Odyssey Research Assoc ia tes
301 A Dates Drive

I thaca , NY 14850-1313, USA
2George Mason Univers i ty

ISSE D e p a r t m e n t , MS 4A4
Fairfax, VA 22030-4444, USA*

A b s t r a c t . We discuss the support of high-assurance write-up actions
in multilevel secure object-oriented databases under the replicated ar-
chitecture. In this architecture, there exists a separate untrusted single-
level database for each security level. Data is replicated across these
databases (or containers), as each database stores a copy of all the data
whose class is dominated by that of the database. Our work utilizes an
underlying message filter based object-oriented security model. Support-
ing message-based write-up actions with synchronous semantics directly
impacts condidentiality, integrity, and performance issues. Also, an im-
portant concern in the replicated architecture is the maintenance of the
mutual consistency of the replicated data. In this paper we offer solu-
tions to support write-up actions while preserving the conflicting goals
of confidentiality, integrity, and efficiency and at the same time demon-
s trate how the effects of updates arising from write-up actions are repli-
cated correctly to guarantee such mutual consistency. Finally, we wish
to emphasize that our elaboration of the message filter model demands
minimum functionality from the TCB that is hosted within the trusted
front end (TFE), and further requires no trusted subjects (i.e. subjects
who are exempted, perhaps partially, from the usual mandatory con-
trols). Collectively, these make verification of our solutions easier, since
we have the assurance that covert channels cannot be introduced through
the TFE.

K e y w o r d s : Replicated architecture, object-oriented databases, write-
up, serial correctness, message-filtering, signaling channels.

1 I n t r o d u c t i o n

The rep l i ca ted a rch i tec ture for mul t i leve l secure d a t a b a s e m a n a g e m e n t sys t ems
(mls DBMSs) has la te ly exper ienced a resurgence in the research communi ty .

* The work of both authors was partially supported by the National Security Agency
through contract MDA904-92-C-5140. We are indebted to Pete Sell, Howard Stainer
and Mike Ware for their support and encouragement in making this work possible.

404

It represents one of the three architectures identified by the Woods Hole study
organized by the U.S. Air Force [19]. These architectures were motivated by the
need to build multilevel-secure DBMSs from existing untrusted DBMSs. The
distinguishing feature of the replicated architecture is that lower level data is
replicated at higher levels. To be more precise, for any given security level, a
physically separate DBMS is used to manage data at or below the level. In
our further discussions, we use the term "container" to be synonymous with
"database". These backend databases are untrusted, and rely on a trusted front
end (TFE) that hosts the trusted computing base (TCB), for access mediation.
The replicated architecture, as elaborated for a simple lattice, is shown in figure
1. Thus an object classified at U and stored in the first container is replicated
across the other containers 2, 3, and 4. Such replicas when stored at containers
2, 3, and 4, are no longer considered to be at level U, rather are classified at the
level of their respective containers. However, as far as applications are concerned,
these replicas make up one logical object and is thus identified by a single object
identifier.

S{A,B}

Trusted Frontend & / ~

TCB C{A} ~ / ~ C{B}

U C{A}
DBMS DBMS

C{B}

DBMS

S{A,B}]
DBMS

Container 1 Container 2 Container 3 Container 4

Fig. 1. The replicated architecture illustrating containers for a simple lattice

The advantages and security of the replicated architecture stem from the
fact that users (or subjects acting on their behalf) at different levels are physi-
cally isolated from one another, and that a user is able to accomplish all tasks
(multilevel queries and updates at his/her level) from the data stored at a single

405

DBMS. This is because a properly cleared user who logs in to the system at se-
curity level l, will be assigned to the DBMS at I. All data that is classified below
levels l and stored at the lower level databases is replicated, and thus available,
at the DBMS at I. Thus, for example, security threats from covert channels due
to read-down operations in multilevel queries do not arise in this architecture.

The benefits of the replicated architecture come at the cost (and complexity)
of the replica control schemes needed to keep the replicas of the data mutually
consistent. To make this architecture commercially viable, these schemes would
not only have to be efficient, but in addition must be secure (in that they do not
introduce covert channels). It is important to note that covert channels can be
introduced in this architecture only through the TFE.

Replica and concurrency control algorithms for relational databases under
the replicated architecture have appeared in recent literature [1, 4, 5, 7, 11].
These algorithms have contributed to a better understanding of the complex-
ity that arises due to the interaction between concurrency control, replication,
and multilevel security. Perhaps the most significant advancement in this area
was reported in [1]. Here it was observed that many algorithms for the repli-
cated architecture could produce schedules that are not seriMizable, due to the
distributed nature of decision making and synchronization. The authors in [1]
pursue two approaches to address this. The first calls for global synchronization
while the second restricts the security structure to avoid such synchronization.

In this paper, we turn our attention to object-oriented databases. With the
ever increasing interest in object-oriented databases, we believe our effort here
is timely, and one that we hope will provide impetus for further work in the
area. The object-oriented security model that we utilize in this paper is based
on a message filter component in the TCB that mediates messages sent between
objects at various security levels [6]. The elaboration of this message filter object-
oriented security model for trusted subject and kernelized architectures has been
reported elsewhere in the literature [14, 15, 16]. In this paper, we elaborate the
message-filtering functions under the replicated architecture, and in particular,
focus on write-up actions. The solutions presented here are not prone to the
problems reported in [1] since we use a forkstamping scheme for centralized
decision making.

The rest of this paper is organized as follows. Section 2 presents some back-
ground material covering object-oriented databases and the message filter model.
Section 3 explores the implications of the message filtering approach to security,
for the replicated architecture. Section 4 discusses how the activity of a single
user session is replicated across containers, while section 5 discusses how such
sessions are synchronized across containers. Finally, section 6 concludes the pa-
per.

2 Background

In this section we give some background to the message filter object-oriented
security model and the concurrency and synchronization problems that arise
when write-up actions are supported.

406

2.1 T h e Message F i l t e r M o d e l

The message filter model is one of several proposals addressing mandatory se-
curity in multilevel object-oriented databases that have appeared in the recent
literature [6, 8, 9, 12, 13, 18]. The model [6, i4, 15, 16] is based on the view that
the task of enforcing mandatory confidentiality essentially reduces to that of
controlling and filtering the exchange of messages between objects. Objects and
messages thus constitute the main entities in the model. Every object is assigned
a single classification. The security policy is captured in a filtering algorithm,
and enforced by a message filter component.

The message filter algorithm is given in figure 2. (In this and other algorithms,
the % symbol is used to delimit comments.) Cases (1) through (4) deal with
abstract messages, which are processed by application and user-defined methods.
Cases (5) through (7) deal with primitive messages, which are directly processed
by system defined methods. In case (1), the sender and receiver are at the same
security level, and the message gl and its reply are allowed to pass. In case (2)
the levels are incomparable and thus the filter blocks the message from getting to
the receiver object, and further injects a NIL reply. Case (3) involves a receiver
at a higher level than the sender. The message is allowed to pass but the filter
discards the actual reply, and substitutes a NIL instead. In case (4), the receiver
object is at a lower level than the sender and the filter allows both the message
and the reply to pass unaltered.

In cases (1), (3), and (4) the method in the receiver object is invoked at a
security level given by the variable rlevel. The intuitive significance of rlevel is
that it keeps track of the least upper bound (lub) of all objects encountered in
a chain of method invocations, going back to the root of the chain. The value
of rlevel needs to be computed for each receiver method invocation. In cases (1)
and (4) the rlevel of the receiver method is the same as the rlevel of the sender
method. In case (3), rlevel is the least upper bound of the rlevel of the sender
method, and the classification of the receiver object. The purpose of rlevelis to
implement the notion of restricted method invocations so as to prevent write-
down violations. It is easy to see that if ti is a method invocation in object oi
then rlevel(ti) > L(oi). We say that a method invocation t~ has a restricted status
if rlevel(t~) > L(o~). When ti is restricted, it can no longer update the state of
the object oi, it belongs to.

The message filtering algorithm presented above can be thought of as an ab-
stract, non-executable, specification of the filtering functions. A close examina-
tion of the execution and implementation requirements for such a specification
bring several issues to the forefront. In particular, dealing with the timing of
replies to write-up messages (case 3 of the filtering algorithm) requires careful
attention to potential downward signaling channels [14, 15, 16, 17]. Such chan-
nels are opened up if a low level sender method is resumed on the termination of
the higher receiver method and receipt of the NIL reply. The solutions pursued
in [15, 16, 17] have been to return instantaenous NIL replies and to execute

407

% let g, = (h , , (p, pk) , r) be the message sen t f ram object ol to object o2 where

% hi is the message name, p l , . . . ,pk are message parameters , r is the return value

i r e1 ~ 02 V hi r { r e a d , w r i t e , c r e a t e } t h e n e a s e
% i.e., gl is a non-pr imi t i ve message

(1) L(o l) = L(o2) : % let gl pass, let reply pass
i n v o k e t2 w i t h r level(t2) *-- r l e v e l (h);
r ~-- reply from t2; r e t u r n r t o t l ;

(2) L(o l) < > L(o2) : % block #l , inject N IL reply
r ~ NIL; r e t u r n r t o t l ;

(3) L(o~) < L(o2) : % let g~ pass, in ject N IL reply, ignore actual reply
r *-- NIL; r e t u r n r t o t l ;
i n v o k e tz w l t h rlevel(t2) ~ lub[L(o2), rlevel(t l)];
% where lub denotes least upper bound
d l s e a r d reply from t2;

(4) L(o l) > L(o2) : % let gl pass, let reply pass
i n v o k e t2 w i t h rlevel(t2) ,-- r l eve l (t l) ;
r ~ reply from t2; r e t u r n r t o t l ;

e n d case ;

i f o l = 02 ^ hi E { r e a d , w r i t e , c r e a t e } t h e n c a s e
% i.e., gl is a pr imi t i ve message

let vl be the value that is to be bound to al lr ibule ai

(5) Yl = (r e a d , (a j) , r) : % allow uucondi l ional ly
r ~ value of aj; r e t u r n r to ll;

(6) gl = (w r i t e , (a~, v~),.r) : % allow i / s t a t u s o / t l is u, ,restr icled
i f rlevel(t~) = L(ol)

t h e n [aj ~- vj; r ~ SUCCESS]
e l s e r *-- FAILURE;

r e t u r n r t o t l ;

(7) gl = (c r e a t e , (vl vk, S~), r) : % allow i f s tatus of t l is unres tr ic ted relative to S 3
i f r l eve l (t l) < Sj

t h e n [CREATE i w i t h values v l , . . . , vk a n d L(i) ,--- S j ; r
e l s e r ~ FAILURE;

r e t u r n r to l~;
e n d ease ;

F i g . 2 . M e s s a g e f i l t e r i n g a l g o r i t h m

408

oooo

G 0 Q ooo
 ooo

3100 ~ 7 @

3210

Fig. 3. A tree of concurrent computations with forkstamps

the methods (computations) in the sender and receiver objects concurrently on
issuing write-up messages. Now if the application being modeled calls for syn-
chronous message passing semantics, the challenge then is to synchronize the
concurrent computations to achieve equivalence to a sequential (synchronous)
execution. When such equivalence can be guaranteed, we say that the concur-
rent computations preserve s e r i a l correc tness . If serial correctness cannot be
guaranteed, the integrity of the database may be compromised. Lastly, it should
be noted that the signaling channel threat does not exist in kernelized archi-
tectures. But it turns out that synchronous semantics are not implementable in
such architectures as there exists no trusted subjects. 2 Hence concurrent com-
putations are still the most efficient way to process write-up messages requiring
synchronous semantics.

2.2 C o n c u r r e n c y , S c h e d u l i n g a n d Ser ia l C o r r e c t n e s s

We now elaborate on concurrency and serial correctness in more general
terms. We can visualize the set of concurrent computations issued by a user as
belonging to a u s e r s e s s i o n and forming a tree such as the one shown in figure
3. The label on the arrows indicate the order in which the messages and the
associated computations (methods) would be processed in a serial (synchronous)
execution. Note that this order can be derived by a depth-first traversal of the

The term "trusted" is used often in the literature to convey one of two different
notions of trust. In the first case, it conveys the fact that something is trusted to be
correct. In the second case, we mean that some subject is exempted from mandatory
confidentiality controls; in particular the simple-security and *-properties in the Bell-
Lapadula framework. It is the latter sense of trust that we refer to in this paper.

409

tree. Serial correctness requires that a computat ion such as 3(TS) in the tree, see
all the latest updates of lower level computat ions to its left, and no updates of
lower level computat ions to its right. Thus 3(TS) should see the latest updates
of 2(S) but not of 4(C) and 6(S). This is achieved with the help of a multi-
version synchronization scheme that ensures that the versions of objects at levels
C (confidential) and S (secret) that are available to 3(TS) are the ones tha t
existed before 4(C) and 6(S) were created (forked). Further, serial correctness
also mandates that a computat ion such as 3(TS) not get ahead of earlier forked
ones to its left. Thus 3(TS) should not be started until 2(S) and its children (if
any) have terminated.

If no system component has a global snapshot (such as that embedded in a
tree) of the entire set of computations, then we need to explicitly capture the
global serial order of messages and computations. This can be done by a scheme
that assigns a unique forkstamp to each computat ion, as shown in figure 3.
Starting with an initial forkstamp of 0000 for the root, every subsequent child of
the root is given a forkstamp by progressively incrementing the most significant
digit of this initial s tamp by one. To generalize this for the entire tree, we require
that with increasing levels, a less significant digit be incremented.

We can now succinctly state the requirements for serial correctness in terms
of the following constraints that need to hold whenever a computat ion c is s tar ted
at a level l:

C o r r e c t n e s s - c o n s t r a i n t 1- There cannot exist any earlier forked compu-
tation (i.e. with a smaller forkstamp) at level l, that is pending execution;
C o r r e c t n e s s - c o n s t r a i n t 2: All current non-ancestral as well as future exe-
cutions of computat ions that have forkstamps smaller than that of c, would
have to be at levels higher or incomparable to l;

- C o r r e c t n e s s - c o n s t r a i n t 3: At each level below l, the object versions read
by c would have to be the latest ones created by computat ions such as k,
that have the largest forkstamp that is still less than the forkstamp of c. I f
k is an ancestor of c, then the latest version given to c is the one that was
created by k just before c was forked.

From the above discussion it should be clear that we need to enforce some
discipline on concurrent computat ions as arbi trary concurrency makes synchro-
nization difficult and could lead to the violation of serial correctness (thereby
affecting the integrity of objects). A scheduling strategy which guarantees serial
correctness and at the same time enforces some discipline on concurrency, must
take into account the following considerations.

- The scheduling strategy itself must be secure in that it should not introduce
any signaling channels.

- The amount of unnecessary delay a computat ion experiences before it is
s tarted should be reduced.

The first condition above requires that a low-level computat ion never be delayed
waiting for the termination of another one at a higher or incomparable level. If

410

this were allowed, a potential for a signaling channel is again opened up. The
second consideration admits a family of scheduling strategies offering varying
degrees of performance. Informally, we say a computation is unnecessarily de-
layed if it is denied immediate execution on being forked, for reasons other than
the violation of serial correctness.

We now consider two scheduling strategies that appear to approach the ends
of a spectrum of secure (and correct) scheduling strategies, and a third one that
lies somewhere in the middle of such a spectrum. These schemes that lie at the
ends of this spectrum are referred to as conservative and aggressive schemes, and
they are governed by the following invariants, respectively.

I n v - c o n s e r v a t i v e : A computation is executing at a level l only if all compu-
tations at lower levels, and all computations with smaller fork stamps at level I,
have terminated.

I n v - a g g r e s s i v e : A computation is executing at a level I only if all non-ancestor
computations (in the corresponding computation tree) with smaller fork stamps
at levels l or lower, have terminated.

Given a lattice of security levels, the conservative scheme essentially reduces
to executing computations on a level-by-level basis in forkstamp order, starting
at the lowest level in the lattice. At any point, only computations at incomparable
levels can be concurrently executing. However, with the aggressive scheme, we are
not following a level-by-level approach. Rather, a forked computation is denied
immediate execution only if (at the time of fork) there exists at least one non-
ancestral lower level computation with an earlier (smaller) forkstamp, that has
not terminated. If denied execution, such a computation is queued and later
released for execution when this condition is no longer true (as a result of one or
more terminations). Figures 4 and 5 illustrate the progressive execution of the
tree of concurrent computations in figure 3 under the conservative and aggressive
strategies, respectively. In each of these figures, the termination of one or more
computations (indicated by shaded circles) advances the tree to the next stage.
As can be seen in these figures, the tree progresses to termination fastest under
the aggressive scheme, since it induces no unnecessary delays. We conjecture
that there exists several other variations of the above three scheduling schemes.
Finally, it is important to note that the security of these schemes stem from the
fact a low level computation is never suspended (delayed) because of a higher
one.

3 M e s s a g e - f i l t e r i n g i n t h e R e p l i c a t e d A r c h i t e c t u r e

When we consider the implementation of message filtering in the replicated ar-
chitecture, the very nature of the architecture poses a different and unique set
of problems. We have to deal with security and integrity aspects of processing
data within a single container as welt as multiple containers.

Q Q (Z)

(a)

@ Q @

|
(d)

0 0 @

(g) I~

O o O

(a)

@ O O

(d) 0

411

Q Q

(b)

(e)

A
O Q @

(c)

Fig. 4. Conservative Scheduling

0

0 0 0

(e) O

Legend

O Active

O Terminated

(~ Queued

Unborn

Fig. 5. Aggressive Scheduling

412

3.1 Message-filtering Revisited

Consider first the issues pertinent to a singler container. The way objects are
replicated and classified at the various containers, and the fact that only a subject
cleared to the level of a container can access the data at the container, have the
following implications:

1. There exists no need for message filtering between objects at a single con-
tainer.

2. Method invocations resulting from messages sent between objects at a sin-
gle container can be processed sequentially, as there exists no downward
signaling channel threat.

3. There exists the need for integrity mechanisms to prevent replicas at a single
container from being updated arbitrarily by subjects.

In other words, we do not enforce any message filtering or mandatory security
controls between objects at a single container, since doing so would require ac-
cess mediation mechanisms to be imported into the individual backend DBMS's.
This clearly goes against the original spirit and motivation of the replicated
architecture. Messages sent from low replicas to other objects within a single
container result in method invocations which are processed sequentially accord-
ing to RPC semantics. Hence there is no need to maintain multiple versions of
objects. Also, covert channel threats do not exist, as only subjects cleared to
the level of a container can observe the results of local computations. Finally,
the lack of mandatory controls within a container has to be balanced with ad-
equate integrity mechanisms giving us the assurance that such replicas will not
be updated by the local subjects at a container.

In contrast to the above, dealing with objects residing at different containers
does require message filtering so as to prevent illegal information flows. If we
review the different filtering cases in the message filtering algorithm (as shown
in figure 2), we now see that case (4) which deals with messages sent from
higher level to lower level objects, is degenerate. This is because messages sent
downwards in the security lattice to enable read-down operations do not cross the
boundary of a container, and as mentioned before, involve no filtering. Messages
sent to higher and incomparable levels will still need to be filtered. In particular,
when messages are sent to higher objects (residing at higher level containers),
concurrency may again arise.

Having discussed the message filtering and security issues in the replicated
architecture, we now turn our attention to the trusted computing base (TCB)
in the architecture. As mentioned before, the TCB is hosted within the trusted
front end (TFE). A design objective in any secure architecture is to minimize
the number of trusted functions that need to be implemented within the TCB.
This enables the TCB to have a small size, and thereby making its verification
and validation easier. In light of this, is it possible to implement the various
coordination and replica control algorithms while keeping the size of the TCB
small? In later sections, we present replica control and coordination schemes that
require minimal functionality from the TCB. To be more precise, the role of the

413

T C B reduces basically to that of a router of messages from lower level to higher
containers. In particular, the TCB requires no trusted (multilevel) subjects or
da ta structures. All scheduling and coordination is achieved through single-level
subjects at the backend databases. In other words, this portion of the front-end
TCB could be implemented using a kernelized architecture.

3.2 Serial Correctness and Replica Control

Recall f rom our previous discussion that sending messages between objects at a
single container involves no message filtering, while sending messages to objects
across containers does call for filtering. When filtering is involved concurrency is
once again inevitable and we have to ensure that the concurrent computat ions
executing across the various containers preserve serial correctness. We now inves-
t igate the interplay between serial correctness, the various scheduling algorithms,
and replica control.

We had earlier presented three constraints as sufficient conditions to guaran-
tee serial correctness of concurrent computations. Correctness constraints 1 and
2 are required to govern the scheduling of concurrent computat ions while the
third constraint governs how versions should be assigned to process read-down
requests. Constraints 1 and 2 would now have to be interpreted for computat ions
executing across containers. For example, when a computat ion c is started at a
level 1 (container Ct), constraint 2 would now read: All current non-ancestral as
well as future executions of computations that have forktamps smaller than that
of c, would have to be at containers for level I or higher. Also, the fact that there
are no trusted subjects in our implementat ion means that there will no central
coordination of the computat ions executing across the various containers. Hence
the implementat ion of the various scheduling algorithms would have to be in-
herently distributed. Finally, correctness-constraint 3 also has to reinterpreted
for the replicated architecture as we no longer maintain versions of objects. The
original requirement that a computat ion c reading down obtain the versions
of lower level objects consistent with a sequential execution, now maps to the
requirement that the various updates (also called update projections in the liter-
ature) producing these different versions be shipped and applied to cls container
before it s tarts executing. This last constraint thus has a direct implication on
the replica control schemes that would be utilized for the architecture.

In order to reason about update projections and their effect on serial cor-
rectness, we introduce the notion of r-transactions. This is done only for ease
of exposition. Our solutions do not impose or mandate any particular model of
transactions. Transactions allow us to conveniently group sequences of updates,
and in particular those that need to be incrementally propagated to higher con-
tainers. We use the prefix "r" which stands for "replicated", to distinguish this
notion of transactions from others in the literature. We drop the prefix when it
is clear from the context that we are referring to r-transactions.

In the object model of computing, every message in is received at an object
and results in the invocation of a method defined in that object. We refer to such
an object as the home object of the method. The subsequent activity (reads and

414

u p d a t e s) wi th in the b o u n d a r y of a home ob jec t can be mode l e d as be long ing to
a r - t r ansac t ion . Every message in a message chain can be m a p p e d to a corre-
spond ing t r ansac t ion . Th is leads to a h ierarchica l (tree) m o d e l of t r a n sa c t i ons
for a user session. We consider the roo t message as s t a r t i n g a roo t t r ansac t ion .
T h e root t r a n s a c t i o n in tu rn issues o ther t r ansac t ions which we see as i ts de-
scendants in the tree. F igure 6 i l lus t ra tes the t r ansac t i on t ree for a c o m p u t a t i o n
tree.

/ (~) ,,~ T1 (U ~

/\ G

~ T3(TS) / ~ T4(S)
A computation tree A transaction tree

1"5 (c)

0000
T1 (U)

tll tl3

t21 O" T3 (TS) t22 "D ~ ~ NO T4 (S) NN t23

\
t31 t41

t51

The corresponding subtransaction tree

F ig . 6. A transaction tree and its subtransaction mapping

A depth- f i r s t (le f t - to- r ight) t raversa l of a t r ansac t i on tree s t a r t i ng wi th the
roo t t r ansac t ion , will give the sequence in which the t r ansac t i ons are issued
and s t a r t ed wi th in a user session. To i l lus t ra te how serial correctness is to be

415

maintained within a session and in the context of the replicated architecture,
we need to zoom in and take a magnified look at the transaction tree. This is
because a transaction may make its partial results visible to other transactions
at different containers. Consider any subtree in figure 6 such as the one rooted
at t ransaction T~. A child of T2, such as T3, is allowed to see (read down) only
par t of the updates made by T2. To be more precise, it is only those updates
made by T2 up to the point T3 was issued. The second child T4 will be allowed
to see all the updates seen by T6, and in addition those made by T2 between the
interval tha t T~ and T4 were issued.

To model and visualize partial visibilities within transaction boundaries, we
introduce r-subtransactions as finer units of transactions. The second and larger
tree in figure 6 illustrates a subtransaction tree derived from the original transac-
tion tree. A transaction such as T2 is now chopped up into three subtransactions
t2,1, t2,2, t2,3. The subtransaction t2,1 represents all the updates by T2 until
t ransaction T3 was issued. Subtransaction t~,2 similarly represents the updates
between the interval that transactions T3 and T4 were issued. Finally, the sub-
t ransact ion t2,3 accounts for all 'the remaining activity in T~ before it commit ted.
A subtransaet ion is seen as having a relatively short lifetime, and is required to
commit before any sibling subtransactions to the right, or child transactions (and
implicitly subtransactions) are started. The operations issued by a subtransac-
tion are said to be atomic operations. Such operations never cross the boundary
of their relevant home object and cannot lead to the sending of further messages
(or the issuing of transactions) to other objects. Serial correctness requires that
an individual transaction, such as T4 see all the updates of all subtransactions
below its level that will be encountered in a depth-first search of the subtrans-
action tree start ing with the root and ending in T4. Thus for T4 this will include
subtransactions t1,1, t2,1, and t~,_,. The updates of all these subtransactions ex-
cept t~,2 would have to be seen by the left sibling of T4, which is transaction T3,
and thus would have already been applied logically at the relevant containers
before T4 was issued.

We formally define these and other notions below:

D e f i n i t i o n 1. We consider a subtransaction to be a totally ordered set of a tomic
operations. We define a transaction Ti to be a partial order (si, <Ti) such that:

1. si is a set of operations, and each operation may be a subtransaction or
another transaction ~ = (sj, <%).

2. The relation <T, orders at least all conflicting atomic operations in sl.

D e f i n i t i o n 2 . We define the replica-set of a transaction Tj at level j to be the
set of updates of subtransactions at or below level j that will be seen by Tj in a
sequential execution (or depth-first search) of the tree.

D e f i n i t i o n 3 . We define the propagation-list of a transaction Tj to be those
updates in the replica-set of Tj that have not been seen by Ti, where Ti was
the last t ransaction that was issued before Tj in a sequential execution. These
updates are those made by subtransactions at levels lower than. j , and to the
right of T/ and to the left of Tj (in the subtransaction tree).

416

In figure 6, the replica-set of transaction T4 will consist of the updates issued by
subtransactions tl,1, t2,1, and t2,2. The propagation-list of T4 will consist of the
updates issued by subtransaction t2,2.

Now in the replicated architecture, the transactions in a subtransaction tree
execute across containers. Whenever an object in a low container issues a write-
up request, a message will be sent upwards in the lattice, and routed by the
T F E to the appropriate high level container. Such a message will be received by
an object in the higher level container and eventually result in the invocation
of a method. Before this method can be invoked (i.e., before the corresponding
transaction can be started), we need to do the following:

1. Determine if it is safe to begin execution of the transaction;
2. Make sure that the propagation-list of the transaction has been applied at

the local container.

The first consideration above arises from the fact that the transactions (meth-
ods) generated by a session execute across the various containers in a distributed
fashion, and this may lead to transactions at higher containers starting prema-
turely (when compared to centralized sequential execution). We thus require the
start-up of transactions to be governed by some invariant. Once a transaction
is allowed to start (i.e., doing so would not violate the invariant), the replica
control scheme should ensure that the relevant propagation-list (set of update
projections) is applied at the local container of the transaction.

Before concluding our discussion on serial correctness and replica control, we
note that in the replicated architecture serial correctness alone is insufficient to
guarantee the mutual consistency of replicated data. This is because serial cor-
rectness can be guaranteed by shipping update projections only to the containers
which have forked transactions for a session. In other words, if a transaction was
not forked for a level, the replicas at the container for the level could be out-of-
date, and we wouId still not violate serial correctness. The scheduling algorithms
that we present in the next section not only guarantee serial correctness, but in
addition ensure that when a session terminates, all containers will be mutually
consistent. When such consistency is guaranteed, we say that the algorithms
preserve the final-state equivalence of all the containers.

4 I n t r a - s e s s i o n S c h e d u l i n g

In this section we discuss how we can combine replica control to ensure final-
state equivalence with scheduling strategies. As in the kernelized architecture,
the conservative scheme involves less complexity and is thus easier to implement.
Due to the lack of space we discuss only the aggressive scheduling scheme. We
begin by clarifying some aspects related to the execution and failure semantics of
transactions, as well as some of the necessary data structures to be maintained
by individual containers.

A r-transaction, as described here, is characterized by the property of failure
atomicity. Hence if any of the subtransactions of a transactions fails or aborts,

417

we have to abort the entire corresponding transaction. This would also require
that we undo the effects of any committed earlier subtransactions. To avoid this,
and still guarantee failure atomicity, we allow a transaction to commit only if
all its subtransactions commit. The updates of committed subtransactions are
made permanent in the database only when the parent transaction commits.
Also, we take the commit of the root transaction to imply that the entire session
has committed.

To implement our scheduling strategies and replica control schemes, every
container Cj at level j maintains the following data structures for an active user
session:

Activation-queuej: this is a priority queue of transactions that is maintained
according to the forkstamp;

Projection-queuej : a queue which stores update projections (propagation-lists)
by their forkstamps;

Transaction-historyi: this is a list maintained for each level i < j , and maintains
for every transaction forked from level i, its id, forkstamp,
status and other information.

When transactions start issuing other transactions at higher levels, the relevant
propagation-lists (update projections) are incrementally shipped to higher con-
tainers and stored in their projection queues. When a scheduling scheme calls for
a transaction to be started, it is dequeued from the local activation queue and the
relevant update projections are applied to the container just before transaction
starts.

4.1 I m p l e m e n t i n g Aggres s ive S c h e d u l i n g

We now briefly discuss the implementation of the aggressive scheduling scheme.
A transaction history (listed above) is required to be maintained at every con-
tainer and keeps track of the forked transactions at dominated levels. It is impor-
tant to note that this history itself is a replicated data structure and snapshot.
The need for the maintenance of this history arises from the fact that a container
cannot read-down information at lower level containers. Recall that the front-
end in the replicated architecture sends messages only in an upwards direction
in the lattice. Hence the relevant information has to be gathered with the help
of snapshots maintained by constantly sending messages upwards in the lattice.
It is the sending of such messages and the maintenance of snapshots such as
transaction histories that add to the complexity of implementing the aggressive
scheduling scheme.

The aggressive scheduling algorithm is governed by the following invariant:
I n v - a g g r e s s i v e - r e p l i c a t e d : A transaction is executing at a container at level l
only if all non-ancestor transactions (in the corresponding transaction tree) with
smaller fork stamps at containers for levels l or lower, have terminated.

418

The description of the scheduling algorithms is similar to that of the ker-
nelized architecture [17], with the difference that we now have to post update
projections at the right time to the appropriate containers. A container always
looks at its transaction histories for dominated levels to see if the start-up of
the next transaction would violate the above invariant. The detailed algorithms
are presented in figures 7,8,11, and 12. In these algorithms % is a delimiter for
comments.

When a write-up message is issued and a transaction is forked at a level,
the transaction-history at this level is updated (see the fork procedure in figure
7). We then check to see if the update projections from the parent issuing the
write-up can be applied to the local container and also if the forked transaction
can be allowed to start. If doing so would violate serial correctness, the update
projections are queued in the local projection-queue and the forked transaction
is queued in the local activation-queue. A queued transaction is later started or
"woken up" by the termination of a running transaction. When a transaction
terminates (see figure 9), its updates are posted to the local as well as higher
containers. If serial correctness is not violated, relevant update projections from
the projection-queue may also be applied to the local container. We then check
to see if transactions at the local and higher containers can be started as a result
of this most recent termination. To release or start queued transactions at higher
levels, a WAKE-UP message is sent to the higher level containers through the
trusted front end (TFE). It is important to note that a WAKE-UP message is
sent to higher containers only if there exists queued transactions and their release
would not violate serial correctness and the invariant. As such when a container
receives a WAKE-UP message from a lower level, it knows that its activation
queue is not empty and proceeds unconditionally to start the next transaction
at the head of the activation queue (see procedure for WAKE-UP processing
in figure 8). Before a transaction is actually started, the projection queue is
examined and all entries with a forkstamp less than that of the transaction are
emptied and applied to the local container (as shown in figure 10).

P r o o f s

For brevity, we omit the proofs to demonstrate that that our algorithms preserve
serial correctness. The arguments are similar to those made for the aggressive
scheme under the kernelized architecture [17]. However, the requirement for these
algorithms to preserve final-state equivalence is unique to this architecture. We
state and prove this as a theorem.

T h e o r e m 4. The aggressive scheme preserves final-state-equivalence.

Proof:
By induction on the number of possible terminations, n, in a session.
Basis: Consider the basis with n = 1. In this case we have only one termination,
that of the root transaction. The procedure t e r m - r e p - a g g in figure 9 processes
terminate requests, and calls for the update projection of the root transaction

419

P r o c e d u r e f o rk - rep -agg(level-parent, level-create,]orkstamp, update-projection)
{
%Let level-create be the level of the local transaction and container
Create a new transaction tt at level-create with identifier id;

%Initialize variables for tt
tt .id ~-- id;
tt .level-parent ~-- level-parent;
tt.level-create ~ level-create;
t t . forkstamp ~ forkstamp;
t t . s ta tus ~ 'non-terminated' ;

% Update local transaction history
append(transaction-historyz~w~_p t , tt);

%See if the update projection from the parent can be applied at the local container and
%i] tt can be started immediately
I f V l < level-create, -~q any transaction c E transaction-historyz:

(c.level-create _< level-create A c.forkstamp < t t . forkstamp
A c.status = 'non-terminated')
t h e n

apply update-projection to local container;
s tart-rep(t t) ;

e lse
% This is a priority queue maintained in forkstamp order
enqueue(projection-queue, update-projection, forkstamp);
% This is also a priority queue of transactions waiting to be activated
enqueue (activation-queue, tt);

e n d - i f
}
e n d p r o c e d u r e fork-rep-agg;

F ig . 7. Processing fo rk requests under aggressive scheduling

P r o c e d u r e w a k e - u p - r e p - a g g
{
%Let tt be the transaction at the head of the local activation-queue
dequeue (activation-queue, tt);
start-rep(t t) ;
}
e n d p r o c e d u r e wake-up-rep-agg;

F | g . 8. Processing w a k e - u p requests under aggressive scheduling

420

P r o c e d u r e t e rm-rep-agg(leve l - t e rm, last-update, term-forkstamp, last-forkstamp)
{
%Record the termination of transaction tt at level-term
For each level 1 < level-term do

I f (pp E transaction-historyz A pp.forkstamp = t t . forkstamp)
t h e n t t .s tatus ~ ' terminated' ; E n d - I f E n d - F o r

% Update local container with the last set of updates issued by tt
apply the updates in last-update to local container;
%Post these updates to higher levels
term-flag ,--- ' t rue ' ;
Fo r each level > level-term do

post-update-rep-agg(level, last-update, increment(last-forkstamp), term-flag, tt);
E n d - F o r

%See ff the update projections for last-updates from lower levels can be applied
quit-flag ~-- 'false';
Fo r all levels 1 < level-term do

I f 3 any transaction q E transaction-historyz :(q.status = 'not- terminated ' A
q.level-create < level-term) t h e n quit-flag ~ ' t rue ' ; ex i t fo r ; end- I f ; e n d - F o r ;

I f quit-flag = 'false' t h e n
R e p e a t

dequeue (projection-queue, update-projection);
apply update-projection to local container;

U n t i l projection-queue = empty; ex i t p r o c e d u r e ; E n d - I f

%Check ff a queued transaction at level level-term can be started
%Let mm be the transaction at the head of the activation queue
I f the activation-queue is not empty
t h e n I f V l, l < level-term, -,3 any transaction c E transaction-historyz:

(c.forkstamp < mm.forkstamp A c.status = 'not- terminated ')
t h e n dequeue(activation-queue, ram); s tar t - rep(mm); E n d - I f E n d - I f

%Check if a transaction at levels > level-term can be started
F o r all levels l < level-term do

I f 3 a transaction c E transaction-historyl with c.level-create > level-term A
c.forkstamp > tt .forkstamp: -~3 any non-ancestor transaction k
with (level(k) _< level(c) A k.forkstamp < c.forkstamp A
transaction-historyt~.~t(k) .k.status = 'not- terminated ')
% We checked to see if c was not preceded by a lower-level active or queued
% non-ancestor transaction in any of the transaction-histories searched
t h e n Send a WAKE-UP message to the container at level(c); E n d - I f E n d - F o r

} e n d p r o c e d u r e term-rep-agg;

F ig . 9. Processing t e r m i n a t e requests under aggressive scheduling

421

P r o c e d u r e s t a r t - r e p (t t)
{
%Let tt be the transaction to be started
counter *-- 1;
R e p e a t
%Treat the projection-queue at the level o.f tt as a list and examine it
element-wise

Read (projection-queue[counter], pp);
I f pp.forkstamp < tt .forkstamp

t h e n
apply pp to local container;
delete (projection-queue, pp);

E n d - I f
counter *-- counter -t- 1;

U n t i l counter = length-of(projection-queue);

%Begin executing tt
execute(tt);
}
e n d p r o c e d u r e start-rep;

F ig . 10. Updating the local container before starting a transaction

P r o c e d u r e p o s t - u p d a t e - r e p - a g g (local-level, update-projection,]orkstamp,
term-flag, tt)
{
%See if the posted update can be applied
I f V I < local-level, 73 any transaction c E transaction-historyz:

(c.level-create < local-level A c.forkstamp _< t t .forkstamp
A c.status = 'non-terminated')
t h e n

apply update-projection to local container;
e lse

% This is a priority queue maintained in]orkstamp order
enqueue(projection-queue, update-projection, forkstamp);

e n d - i f

I f term-flag = ' t rue '
t h e n %Record the termination of transaction tt
transaction-historytt tewZ_parr ~- ~terminated~;
e n d - i f
}
e n d p r o c e d u r e post-update-rep-agg;

F ig . 11. Processing posted updates

422

Pr o c e d u r e record-new-t ransact ion(transaction, level-parent)
{
% Update local transaction history for level level-parent
append(transaction-historyt,v~l_p t , transaction);
}
end p rocedure record-transaction;

Fig. 12. Recording the fork of computations at lower levels

to be posted to the local container as well as all higher containers. Each higher
container, on receiving the projection, will find that there are no lower level
transactions with smaller forkstamps than the terminated root, and apply the
update projection from its queue. Each higher container will thus be brought
up-to-date with the updates of the root transaction and thus preserving final-
state equivalence.
Induction Step: For the induction hypothesis, assume that when n is equal to m,
final-state equivalence is guaranteed. For the induction step, let n = m + 1. In
other words, there are m + 1 possible terminations, and given that the first m
terminations preserve final-state equivalence, we have to show that the m + 1 th
termination preserves final-state equivalence. Consider the transaction tr~+l at
container Cm+l that causes the m-F1 th termination. By the induction hypothesis,
we are guaranteed that Cm+l will receive all update projections from dominated
containers. Some of these projections would be applied to the contents of Cm+l
as soon as they are received, while others will be queued in the projection queue
(as shown in procedure p o s t - u p d a t e - r e p - a g g of figure 11). When tm+l starts,
all the queued update projections originating from lower level transactions with
smaller forkstamps than tm+l would also be applied to Cm+l. Finally when
tm+X terminates all remaining update projections will be emptied and applied
to Cm+l along with its last-updates. This guarantees the mutual consistency
of container Cm+l will all lower level containers. It now remains to show that
mutual consistency is preserved with containers higher than Cm+l. This follows
from the fact when tm+l terminates, all its update projection would be sent to
all higher containers where they would be subsequently applied. Thus final-state
equivalence is preserved across all m + 1 terminations, and this concludes the
proof. O

5 Inter-sess ion Synchronizat ion

Having discussed various intra-scheduling schemes, we now turn our attention to
inter-session concurrency control in the the replicated architecture. We do not
address the issue of concurrency control between sessions at a single container,
rather focus on multiple containers. Every container is assumed to provide some
local concurrency control.

423

We assume the following:

- Every container Cj at level j , uses some local concurrency control scheme
Lj.

- All containers share a system-low real-time clock. This is a reasonable as-
sumpt ion since the replicated architecture is not for a distributed system,
but rather to be implemented on a single (central) machine. The value read
from this clock is used to maintain a global serial order for sessions and
transactions.

We discuss three approaches to inter-session synchronization and concurrency
control tha t provide increasing degrees of concurrency across user sessions. To
elaborate, consider the four sessions Sa, Sb, So, and Sd as shown in figure 13(a).
Sessions Sa and Sb originate at container Cu at level U, while Sc and Sd originate
at containers Cc and Cs at levels C and S respectively. The different transactions
generated by these sessions are shown in the figure. For example, session Sa
generates transactions Tal at level U, Ta2 at level C, and Ta3 at level S. Figures
13 (a), 13 (b), and 13 (c) depict the histories that could be generated by the
three inter-session schemes, at the various containers.

In the first scheme, sessions are serialized in a global order that is equivalent
to the serialization events of the sessions. If Lj is based on two phase locking,
we can use the lock point, which is the last lock step of the root transaction of
the session, as its serialization event. If the local concurrency control scheme, Lj
is based on t imestamping, the t imes tamp assigned to Sj or the root transaction
can be used for the serialization event. In the second approach, this serial order
can be successively redefined to interleave incoming newer sessions without af-
fecting the mutual consistency or correctness of the replicas and updates. In the
third approach we relax the serial order for the sessions, and instead serialize
transactions on a level-by-level basis.

P r o t o c o l 1: G l o b a l l y s e r i a l s e s s ions

When a session Sj starts at a container j (i.e., the root transaction executes Cj),
the following protocol is observed:

1. S 5 makes its resource requests to the local concurrency controller, and its
transactions compete with other local sessions that s tart at C 5.

2. When Sj reaches its serialization event as governed by L5, the real-t ime clock
is read and its value used to form a serial-stamp for Sj.

3. The serial-stamp of Sj is broadcast to all higher level containers.
4. When Sj commits, a commit-session message is broadcast to all higher con-

tainers. This message may be piggy-backed with the commit-transaction mes-
sage f rom the root transaction of S/.

On receiving the serial-stamp from a container at a lower level, a container,
Ck at level k, observes the following rules:

5. All local sessions originating at Ck, and having a smaller serial-stamp than
that of Sj, are allowed to commit according to their serial-stamps, and sub-
sequently propagate their updates to containers at levels higher than k.

TaI(U)

(a) / / %

Ta2(C) Ta3(S) Tb2(C) Tb3(S)

424

Tc3(S) Tc4(TS) Td4(TS) Td5CITS)

Session Sa Session Sb Session Se Session Sd

(b)

Container U

Tal, Tbl

Container C

Tal, Tbl

Ta2, Tb2, Tc2

Container S

Tal, Tbl

Ta2, Tb2, Tc2

Ta3, Tb3, Tc3, Td3

(c)
Tal, Tbl Tal, Tbl

Ta2, Tc2, Tb2

Tal, Tbl

Ta2, Tc2, Tb2

Ta3, Tc3, Td3, Tb3

(d)
Tal, Tbl Tal,Tbl

Tb2, Tc2, Ta2

Tal, Tbl

Tb2, Tc2, Ta2

Tb3, Ta3, Tc3, Td3

Fig. 13. Illustrating histories with various inter-session synchronization schemes

6. The updates and transactions of Sj are allowed to proceed.
7. All local sessions at Ck having a greater serial-stamp than Sj are allowed to

commit only after the commit-session notification of Sj is received, and its
updates applied as in step 2 above, to Ck.

Several optimizations and variations on the above protocol are possible. It is
obvious that the protocol provides minimum concurrency between sessions. In
particular, the scheme offers very poor performance if transactions are of long
durations. To elaborate, consider what happens if session Sb has sent its serial-
stamp to container C but does not commit for a long time. If timestamping is
used for the serialization events of sessions at container C, a local session Sc
starting at container Cc after the serial-stamp of Sa has been received, will be
assigned a greater serial-stamp. Hence, Sc will not be allowed to commit until

425

Sb sends its commit-transaction message. The decrease in such concurrency is
directly proport ional to the size of the window between the serialization and
commit events of session Sb.

We can easily improve the performance of the above scheme if Sc were allowed
to go ahead and commit even if the commit-session message has not been received
from Sb. This is possible if Sb has not updated the container Cc at level C so
far. We can then re-assign to Sc an earlier serial-stamp than that of Sb. Figure
13(b) shows a possible history at the various containers with protocol 1, and
figure 13(c) shows how the updates of session Sc can be placed ahead of Sb at
container C by giving S~ an earlier serial-stamp than Sb. It is impor tan t to note
tha t the relative order between the sessions S~ and Sb is still maintained, but
only that S~ is now allowed to come between them. This idea is summarized in
protocol 2 below.

P r o t o c o l 2: G l o b a l l y s e r i a l s e s s ions w i t h s u c c e s s i v e l y r e d e f i n a b l e
s e r i a l - o r d e r s

Steps 1 through 6 of Protocol 1 still apply to Protocol 2, but step 7 is modified
as below.
When a container Ck receives the serial-stamp from a session Sj at a lower
container Cj, the following rules are followed:

7'. If there exists a session S~ that has the smallest serial-stamp among the
sessions at Ck that have reached their serialization events but not yet com-
mitted, and such that S~ has a serial-stamp greater than Sj, then do:

(a) If session 6'j has not yet updated Ck, then reassign a serial-stamp to S~
that is smaller than the s tamp of Sj.

(b) Broadcast this new serial-stamp to all higher containers.
(c) Allow Sk to update Ck and propagate its updates to higher containers.

The ability of protocols 1 and 2 above, to ensure the mutual consistency of
the replicas at the various containers, can be at t r ibuted to the way updates are
processed. To be more specific, the updates represented in the propagation-lists
sent by various sessions, are processed at every container in strict serial-stamp
order. A single serial-stamp is associated with the entire set of transactions
(updates) that belong to a session, u In other words, a session is the basic unit of
concurrency for interleaving updates from multiple sessions. To put it another
way, the histories of the updates generated by protocols 1 and 2, guarantee that
the individual transactions of two sessions, where each session starts at a different
container, cannot be interleaved with each other in any of these histories.

3 We assume that such associations are kept in some data structure. We also assume
that a transaction such as To2 in figure 13(c), running at the container Cc, cannot
update the local replicas of data stored at the lower container Cu. Protocols 1 and
2 can guarantee mutual consistency only to the extent that integrity safeguards are
available to prevent such events.

426

A further improvement to protocol 2 and protocol 1 which we might call
protocol 3, can be achieved if the global serial order that is maintained for ses-
sions, is relaxed. Transactions are now serialized in some order on a level-by-level
basis. This allows us to exploit more fine-grained concurrency within the struc-
ture of a session. The unit of concurrency now is no longer a session, but rather
of finer granularity, and thus a transaction. Of course, the key here is exploit
such fine-grained concurrency without compromising the mutual consistency of
the replicas. The intuition behind this approach is illustrated in figure 13(d).
Thus we see that the transactions at level U, namely Ta,1 and Tb,1 are serial-
ized in the same order at all the containers. However, transactions at level C,
namely Ta,2, To,2, Tb,2 are serialized in a different order. In particular, the up-
dates from session Sb now come before sessions Sa and So. Protocol 2 can easily
be modified so that the updates at each level are serialized independently, and
made known to the higher containers. Unlike protocols 1 and 2, level-initiator
transactions now have to compete with other transactions at the various con-
tainers to access data. When an individual transaction reaches it serialization
event, the real-time clock is read to form a transaction-serial-stamp, which is
subsequently broadcast to higher containers. Mutual consistency of the replicas
is achieved by ensuring that updates in the propagation-lists are applied in strict
transaction-serial-stamp order.

We now briefly discuss the correctness of the above protocols. Space con-
straints prevent us from giving a full-blown formal proof here. A well known
correctness criterion for replicated data is one-copy serializability [2]. Protocols
1 and 2 guarantee what one might call one-copy sess ion serializability. This
gives the illusion that the sessions originating at the different containers exe-
cute serially on a one-copy, non-replicated, database. The interactions between
transactions as governed by one-copy session serializability is much more restric-
tive in terms of concurrency and interleaving than one-copy serializability, but
implicitly guarantees the latter. The final variation, ie., protocol 3, is less re-
strictive than the other two protocols and does not guarantee one-copy session
serializability, but instead maintains one-copy serializability.

6 S u m m a r y a n d C o n c l u s i o n s

In this paper, we have addressed the issue of replica control for object-oriented
databases. The elaboration of the message filter model for the replicated archi-
tecture required that we handle replica control for updates and computations
generated within a session, as well as synchronization for multiple user sessions.
Collectively, object-orientation and the support of write-up actions have im-
pacted the solutions presented in this paper. These solutions thus differ from
others presented for the replicated architecture within the context of traditional
(relational) database systems.

The solutions presented here increase the commercial viability of the repli-
cated architecture as well as object-oriented databases, for applications and en-
vironments that require multilevel security. The approach taken here requires

427

minimum functionality from the TCB (that is hosted within the TFE) and more
significantly, requires no multilevel (trusted) subjects. The potential for covert
channels to be exploited within the TFE is thus eliminated.

There exists several avenues for future work. Inter-session synchronization
and concurrency control warrant further investigation. In particular, it would be
interesting to look at type-specific and semantic concurrency control across user
sessions in the multilevel context. We would also like to investigate if it is possi-
ble to maintain atomicity of an entire session without violating confidentiality?
That is, all of the component transactions in a session commit or abort without
any impact on security (confidentiality). As observed by Mathur and Keefe in
[10], atomicity and security seem to be conflicting requirements. If a session has
component transactions at many levels, we cannot guarantee atomicity without
introducing covert channels. At best we can only hope to reduce the bandwidth
of such channels. Perhaps the approach would be to build a model that support
write-up actions and at the same time minimizes such channels.

References

1. P. Ammann and S. Jajodia. Planar lattice security structures for multi-level repli-
cated databases. Proc. of the Seventh IFIP 11.3 Workshop on Database Security,
Vancouver, Huntsville, Alabama, September 1993.

2. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems, Addison-Wesley Publ. Co., Inc., Reading, MA, 1987.

3. B. Blaustein, S. Jajodia, C.D. MeCollum, and L. Notargiacomo. A model of atom-
icity for multilevel transactions. Proc. of the 1993 IEEE Symposium on Security
and Privacy, pp. 120 134, May 1993.

4. O. Costich. Transaction processing using an untrusted scheduler in a multilevel
database with replicated architecture, Database Security V, Status and Prospects,
C.E Landwehr and S. J~jodia (Editors), Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1992.

5. O. Costieh and J. McDermott. A multilevel transaction problem for multilevel
secure database systems and its solution for the replicated architecture. Proc. of
the 1992 1EEE Symposium on Security and Privacy, pp. 192 203, May 1992.

6. S. Jajodia and B. Kogan. Integrating an object-oriented data model with multi-
level security. Proc. of the 1990 IEEE Symposium on Security and Privacy, pp.
76-85, May 1990.

7. Sushil Jajodia and Boris Kogan, "Transaction processing in multilevel-secure
databases using replicated architecture." Proc. IEEE Symposium on Security and
Privacy, Oakland, California, May 1990, pages 360-368.

8. T.F. Keefe and W.T. Tsai. Prototyping the SODA security model. Proc. 3rd IFIP
WG 11.3 Workshop on Database Security, September 1989.

9. T.F. Keefe, W.T. Tsai, and M.B. Thuralsingham. A multilevel security model for
object-oriented systems. Proc. l l t h National Computer Security Con]erence, pp.
1-9, October 1988.

10. A.G. Mathur and T.F. Keefe. The concurrency control and recovery problem for
multilevel update transactions in MLS systems. To appear in the Proc. o/ the
Computer Security Foundations Workshop, Franconia, New Hampshire, 1993.

428

11. J. McDermott, S. Jajodia, and R. Sandhu. A single-level scheduler for the repli-
cated architecture for multilevel-secure databases. Proc. of the Seventh Annual
Computer Security Applications Conference, San Antonio, TX, 1991.

12. J.K. Millen and T.F. Lunt. Security for object-oriented database systems. In Proc.
of the 1992 IEEE Symposium on Security and Privacy, pp 260-272, May 1992.

13. M. Morgenstern A security model for multilevel objects with bidirectional relation-
ships. Database Security IV, Status and Prospects, S. Jajodia and C.E Landwehr
(Editors), Elsevier Science Publishers B.V. (North-Holland)

14. R.S. Sandhu, R. Thomas, and S. Jajodia. A Secure Kernelized Architecture
for Multilevel Object-Oriented Databases. Proc. of the IEEE Computer Security
Foundations Workshop IV, pp. 139-152, June 1991.

15. R.S. Sandhu, R. Thomas, and S. Jajodia. Supporting timing-channel free com-
putations in multilevel secure object-oriented databases. Proc. of the IFIP 11.3
Workshop on Database Security, Sheperdstown, West Virginia, November 1991.

16. R.K. Thomas and R.S. Sandhu. Implementing the message filter object-oriented
security model without trusted subjects. Proc. of the IFIP 11.3 Workshop on
Database Security, Vancouver, Canada, August 1992.

17. R.K. Thomas and R.S. Sandhu. A Kernelized Architecture for Multilevel Secure
Object-oriented Databases Supporting Write-up. Journal of Computer Security,
Volume 2, No. 3, IOS Press, Netherlands, 1994.

18. M.B. Thuraisingham. A multilevel secure object-oriented data model. Proc. 12th
National Computer Security Conference, pp. 579-590, October 1989.

19. Multilevel data management security. Committee on Multilevel Data Management
Security, Air Force Studies Board, National Research Council, Washington, D.C.,
1983.

