
Proc. Fourth European Symposium on Research in Computer Security, Rome,

Italy, September 25-27, 1996

Role Hierarchies and Constraints for
Lattice-Based Access Controls

Ravi Sandhu1

George Mason University & SETA Corporation2

Abstract Role-based access control (RBAC) is a promising al-
ternative to traditional discretionary and mandatory access con-
trols. In RBAC permissions are associated with roles, and users
are made members of appropriate roles thereby acquiring the
roles' permissions. In this paper we formally show that lattice-
based mandatory access controls can be enforced by appropriate
con�guration of RBAC components. Our constructions demon-
strate that role hierarchies and constraints are required to ef-
fectively achieve this result. We show that variations of the
lattice-based ?-property, such as write-up (liberal ?-property)
and no-write-up (strict ?-property), can be easily accommodated
in RBAC. Our results attest to the exibility of RBAC and its
ability to accommodate di�erent policies by suitable con�gura-
tion of role hierarchies and constraints.

1 INTRODUCTION

Role-based access control (RBAC) has recently received considerable atten-
tion as a promising alternative to traditional discretionary and mandatory
access controls (see, for example, [FK92, SCY96, SCFY96]). In RBAC per-
missions are associated with roles, and users are made members of appro-
priate roles thereby acquiring the roles' permissions. This greatly simpli�es
management of permissions. Roles are created for the various job functions

1This research is partly supported by contract 50-DKNB-5-00188 from the National
Institute of Standards and Technology at SETA Corporation, and grant CCR-9503560
from the National Science Foundation at George Mason University.

2All correspondence should be addressed to Ravi Sandhu, ISSE Department, MS 4A4,
George Mason University, Fairfax, VA 22030, USA. Email: sandhu@isse.gmu.edu, voice:
+1 703 993 1659, fax: +1 703 993 1638, URL: http://www.isse.gmu.edu/faculty/sandhu.

1



in an organization and users are assigned roles based on their responsibilities
and quali�cations. Users can be easily reassigned from one role to another.
Roles can be granted new permissions as new applications and systems are
incorporated, and permissions can be revoked from roles as needed.

An important characteristic of RBAC is that by itself it is policy neutral.
RBAC is a means for articulating policy rather than embodying a particular
security policy (such as one-directional information ow in a lattice). The
policy enforced in a particular system is the net result of the precise con-
�guration and interactions of various RBAC components as directed by the
system owner. Moreover, the access control policy can evolve incrementally
over the system life cycle, and in large systems it is almost certain to do so.
The ability to modify policy to meet the changing needs of an organization
is an important bene�t of RBAC.

Classic lattice-based access control (LBAC) models [San93] on the other
hand are speci�cally constructed to incorporate the policy of one-directional
information ow in a lattice.1 There is nonetheless strong similarity between
the concept of a security label and a role. In particular, the same user
cleared to say Secret can on di�erent occasions login to a system at Secret
and Unclassi�ed levels. In a sense the user determines what role (Secret or
Unclassi�ed) should be activated in a particular session.

This leads us naturally to ask whether or not LBAC can be simulated us-
ing RBAC. If RBAC is policy neutral and has adequate generality it should
indeed be able to do so. Particularly, because the notion of a role and the
level of a login session are so similar. This question is theoretically sig-
ni�cant because a positive answer would establish that LBAC is just one
instance of RBAC thereby relating two distinct access control models that
have been developed with di�erent motivations. A positive answer is also
practically signi�cant, because it implies that the same Trusted Computing
Base can be con�gured to enforce RBAC in general and LBAC in particu-
lar. This addresses the long held desire of multi-level security practitioners
that technology which meets needs of the larger commercial marketplace be
applicable to LBAC. The classical approach to ful�lling this desire has been
to argue that LBAC has applications in the commercial sector. So far this
argument has not been terribly productive. RBAC, on the other hand, is
speci�cally motivated by needs of the commercial sector. Its customization
to LBAC might be a more productive approach to dual-use technology.

1This one-directional information ow can be applied for con�dentiality, integrity, con�-
dentiality and integrity together, or for aggregation policies such as Chinese Walls [San93].

2



In this paper we answer this question positively by demonstrating that
several variations of LBAC can be easily accommodated in RBAC by con-
�guring a few RBAC components.2 We use the family of RBAC models
recently developed by Sandhu et al [SCFY96] for this purpose. Our construc-
tions show that the concepts of role hierarchies and constraints are critical
to achieving this result. Changes in the role hierarchy and constraints lead
to di�erent variations of LBAC. A simulation of LBAC in RBAC has been
earlier given by Nyanchama and Osborn [NO96], however, they do not ex-
ploit role hierarchies and constraints and cannot handle variations so easily
as our constructions of this paper.

The rest of this paper is organized as follows. We review the family
of RBAC models due to Sandhu et al [SCFY96] in section 2. This is fol-
lowed by a quick review of LBAC in section 3. Our simulation of several
LBAC variations in RBAC is described in section 4. Section 5 gives our
conclusions.

2 RBAC MODELS

A general RBAC model was recently de�ned by Sandhu et al [SCFY96]. It is
summarized in Figure 1.3 The model is based on three sets of entities called
users (U), roles (R), and permissions (P ). Intuitively, a user is a human
being or an autonomous agent, a role is a job function or job title within
the organization with some associated semantics regarding the authority
and responsibility conferred on a member of the role, and a permission is
an approval of a particular mode of access to one or more objects in the
system.

The user assignment (UA) and permission assignment (PA) relations
of Figure 1 are both many-to-many relations. A user can be a member of
many roles, and a role can have many users. Similarly, a role can have many

2It should be noted that RBAC will only prevent overt ows of information. This is
true of any access control model, including LBAC. Information ow contrary to the one-
directional requirement in a lattice by means of so-called covert channels is outside the
purview of access control per se. Neither LBAC nor RBAC addresses the covert channel
issue directly. Techniques used to deal with covert channels in LBAC can be used for the
same purpose in RBAC.

3Figure 1 shows the RBAC3 model which is the most general among the family of
models described in [SCFY96]. The administrative model of [SCFY96] is not relevant
here. For our purpose we assume a single security o�cer is the only one who can con�gure
various components of RBAC.

3



CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

ROLE

HIERARCHY

RH

Figure 1: The RBAC Model

4



permissions, and the same permission can be assigned to many roles. There
is a partially ordered role hierarchy RH, also written as �, where x � y

signi�es that role x inherits the permissions assigned to role y. Inheritance
along the role hierarchy is transitive and multiple inheritance is allowed in
partial orders.

Figure 1 shows a set of sessions S. Each session relates one user to pos-
sibly many roles. Intuitively, a user establishes a session during which the
user activates some subset of roles that he or she is a member of (directly or
indirectly by means of the role hierarchy). The double-headed arrow from a
session to R indicates that multiple roles can be simultaneously activated.
The permissions available to the user are the union of permissions from all
roles activated in that session. Each session is associated with a single user,
as indicated by the single-headed arrow from the session to U . This associ-
ation remains constant for the life of a session. A user may have multiple
sessions open at the same time, each in a di�erent window on the work-
station screen for instance. Each session may have a di�erent combination
of active roles. The concept of a session equates to the traditional notion
of a subject in access control. A subject (or session) is a unit of access
control, and a user may have multiple subjects (or sessions) with di�erent
permissions active at the same time.

Finally, Figure 1 shows a collection of constraints. Constraints can apply
to any of the preceding components. An example of constraints is mutually
disjoint roles, such as purchasing manager and accounts payable manager,
where the same user is not permitted to be a member of both roles.

The following de�nition formalizes the above discussion.

De�nition 1 (RBAC Model) The RBAC model has the following com-

ponents:

� U , R, P , and S, sets of users, roles, permissions and sessions respec-

tively,

� PA � P � R, a many-to-many permission (to role) assignment rela-

tion,

� UA � U �R, a many-to-many user (to role) assignment relation,

� RH � R�R, a partially ordered role hierarchy (written as � in in�x

notation),

5



� user : S ! U , a function mapping each session si to the single user

user(si) (constant for the session's lifetime),

� roles : S ! 2R a function mapping each session si to a set of roles

roles(si) � fr j (9r0 � r)[(user(si); r
0) 2 UA]g (which can change

with time) so that session si has the permissions [r2roles(si)fp j (9r
00 �

r)[(p; r00) 2 PA]g, and

� a collection of constraints that determine whether or not values of
various components of the RBAC model are acceptable (only acceptable

values will be permitted). 2

3 LBAC MODELS

Lattice based access control (LBAC) is concerned with enforcing one direc-
tional information ow in a lattice of security labels. LBAC is also known as
mandatory access control (MAC) or multilevel security.4 Depending upon
the nature of the lattice the one-directional information ow enforced by
LBAC can be applied for con�dentiality, integrity, con�dentiality and in-
tegrity together, or for aggregation policies such as Chinese Walls [San93].
There are also variations of LBAC where the one-directional information
ow is partly relaxed to achieve selective downgrading of information or for
integrity applications [Bel87, Lee88, Sch88].

The mandatory access control policy is expressed in terms of security
labels attached to subjects and objects. A label on an object is called a
security classi�cation, while a label on a user is called a security clearance.
It is important to understand that a Secret user may run the same program,
such as a text editor, as a Secret subject or as an Unclassi�ed subject. Even
though both subjects run the same program on behalf of the same user, they
obtain di�erent privileges due to their security labels. It is usually assumed
that the security labels on subjects and objects, once assigned, cannot be
changed (except by the security o�cer). This last assumption, that security
labels do not change, is known as tranquility.5 The security labels form a

4LBAC is typically applied in addition to classical discretionary access controls
(DAC) [SS94] but for our purpose we will focus only on the MAC component. DAC
can be accommodated in RBAC as an independent access control policy just as it is done
in LBAC.

5Non-tranquil LBAC can also be simulated in RBAC but is outside the scope of this
paper.

6



M1 M2

H

L

Figure 2: A Partially Ordered Lattice

lattice structure as de�ned below.

De�nition 2 (Security Lattice) There is a �nite lattice of security labels

SC with a partially ordered dominance relation � and a least upper bound

operator.6 2

An example of a security lattice is shown in Figure 2. Information is only
permitted to ow upward in the lattice. In this example, H and L respec-
tively denote high and low, and M1 and M2 are two incomparable labels
intermediate to H and L. This is a typical con�dentiality lattice where in-
formation can ow from low to high but not vice versa.

The speci�c mandatory access rules usually speci�ed for a lattice are
as follows, where � signi�es the security label of the indicated subject or
object.

De�nition 3 (Simple Security) Subject s can read object o only if �(s) �
�(o). 2

De�nition 4 (Liberal ?-property) Subject s can write object o only if

�(s) � �(o). 2

The ?-property is pronounced as the star-property.

6The least upper bound operator is not relevant to our constructions which apply to
partially ordered security labels in general.

7



For integrity reasons sometimes a stricter form of the ?-property is stip-
ulated. The liberal ?-property allows a low subject to write a high object.
This means that high data may be maliciously destroyed or damaged by low
subjects. To avoid this possibility we can employ the strict ?-property given
below.

De�nition 5 (Strict ?-property) Subject s can write object o only if

�(s) = �(o). 2

The liberal ?-property is also referred to as write-up and the strict ?-property
as non-write-up or write-equal.

In variations of LBAC the simple-security property is usually left un-
changed as we will do in all our examples. Variations of the ?-property
in LBAC whereby the one-directional information ow is partly relaxed
to achieve selective downgrading of information or for integrity applica-
tions [Bel87, Lee88, Sch88] will be considered later.

4 CONFIGURING RBAC FOR LBAC

We now show how di�erent variations of LBAC can be simulated in RBAC.
It turns out that we can achieve this by suitably changing the role hierarchy
and de�ning appropriate constraints. This suggests that role hierarchies and
constraints are central to de�ning policy in RBAC.

4.1 A Basic Lattice

We begin by considering the example lattice of Figure 2 with the liberal
?-property. Subjects with labels higher up in the lattice have more power
with respect to read operations but have less power with respect to write op-
erations. Thus this lattice has a dual character. In role hierarchies subjects
(sessions) with roles higher in the hierarchy always have more power than
those with roles lower in the hierarchy. To accommodate the dual character
of a lattice for LBAC we will use two dual hierarchies in RBAC, one for
read and one for write. These two role hierarchies for the lattice of Figure 2
are shown in Figure 3(a). Each lattice label x is modeled as two roles xR
and xW for read and write at label x respectively. The relationship among
the four read roles and the four write roles is respectively shown on the left

8



HR

LR

M1R M2R M1W M2W

HW

LW

(a) Liberal ?-Property

HR

LR

M1R M2R HW LW M2WM1W

(b) Strict ?-Property

Figure 3: Role Hierarchies for the Lattice of Figure 2

9



and right hand sides of Figure 3(a). The duality between the left and right
lattices is obvious from the diagrams.

To complete the construction we need to enforce appropriate constraints
to reect the labels on subjects in LBAC. Each user in LBAC has a unique
security clearance. This is enforced by requiring that each user in RBAC is
assigned to exactly two matching roles xR and xW. An LBAC user can login
at any label dominated by the user's clearance. This requirement is captured
in RBAC by requiring that each session has exactly two matching roles yR
and yW. The condition that x � y, that is the user's clearance dominates the
label of any login session established by the user, is not explicitly required
because it is directly imposed by the RBAC model anyway.

LBAC is enforced in terms of read and write operations. In RBAC this
means our permissions are read and writes on individual objects written as
(o,r) and (o,w) respectively. An LBAC object has a single sensitivity label
associated with it. This is expressed in RBAC by requiring that each pair
of permissions (o,r) and (o,w) be assigned to exactly one matching pair of
xR and xW roles respectively. By assigning permissions (o,r) and (o,w) to
roles xR and xW respectively, we are implicitly setting the sensitivity label
of object o to x.

The above construction is formalized below.

Example 1 (Liberal ?-Property)

� R = fHR, M1R, M2R, LR, HW, M1W, M2W, LWg

� RH as shown in Figure 3(a)

� P = f(o,r), (o,w) j o is an object in the systemg

� Constraint on UA: Each user is assigned to exactly two roles xR and

LW

� Constraint on sessions: Each session has exactly two roles yR and yW

� Constraints on PA:

{ (o,r) is assigned to xR i� (o,w) is assigned to xW

{ (o,r) is assigned to exactly one role xR 2

The set of permissions P remains the same in all our examples so we will
omit its explicit de�nition in subsequent examples.

10



Variations in LBAC can be accommodated by modifying this basic con-
struction in di�erent ways. In particular, the strict ?-property retains the
hierarchy on read roles but treats write roles as incomparable to each other
as shown in Figure 3(b).

Example 2 (Strict ?-Property) Identical to example 1 except RH is as

shown in Figure 3(b). 2

Now the permission (o,w) is no longer inherited by other roles as is the case
in example 1.

4.2 Lattice with Trusted Write Range

Next we consider a version of LBAC in which subjects are given more power
than allowed by the simple security and ?-properties [Bel87]. The basic idea
is to allow subjects to violate the ?-property in a controlled manner. This is
achieved by associating a pair of security labels �r and �w with each subject
(objects still have a single security label). The simple security property is
applied with respect to �r and the liberal ?-property with respect to �w.
In the LBAC model of [Bel87] it is required that �r should dominate �w.
With this constraint the subject can read and write in the range of labels
between �r and �w which is called the trusted range. If �r and �w are equal
the model reduces to the usual LBAC model with the trusted range being
a single label.

The preceding discussion is remarkably close to our RBAC constructions.
The two labels �r and �w correspond directly to the two roles xR and yW
we have introduced earlier. The dominance required between �r and �w is
trivially recast as a dominance constraint between x and y. This leads to
the following example.

Example 3 (Liberal ?-Property with Trusted Range) Identical to exam-

ple 1 except

� Constraint on UA: Each user is assigned to exactly two roles xR and

yW such that x � y in the original lattice

� Constraint on sessions: Each session has exactly two roles xR and yW

such that x � y in the original lattice 2

11



Lee [Lee88] and Schockley [Sch88] have argued that the Clark-Wilson
integrity model [CW87] can be supported using LBAC. Their models are
similar to the above except that no dominance relation is required between
x and y. Thus the write range may be completely disjoint with the read
range of a subject. This is easily expressed in RBAC as follows.

Example 4 (Liberal ?-Property with Independent Write Range) Identical
to example 3 except x � y is not required in the constraint on UA and the

constraint on sessions. 2

A variation of the above is to use the strict ?-property as follows.

Example 5 (Strict ?-Property with Designated Write) Identical to exam-

ple 2 except

� Constraint on UA: Each user is assigned to exactly two roles xR and

yW

� Constraint on sessions: Each session has exactly two roles xR and

yW 2

Example 5 can also be directly obtained from example 4 by requiring
the strict ?-property instead of the liberal ?-property. Example 5 can ac-
commodate Clark-Wilson transformation procedures as outlined by Lee and
Schockley. (Lee and Schockley actually use the liberal ?-property in their
construction, but their lattices are such that the construction is more di-
rectly expressed by example 5.)

4.3 Independent Con�dentiality and Integrity Roles

Next we turn our attention to integrity lattices and their interaction with
con�dentiality lattices. LBAC was �rst formulated for con�dentiality pur-
poses. It was subsequently observed that if high integrity is at the top of
the lattice and low integrity at the bottom then information ow should be
downward rather than upward (as in con�dentiality lattices). In [San93] it
is argued that it is simpler to �x the direction of information ow and put
high integrity at the bottom and low integrity at the top in integrity lattices.
Because the con�dentiality models were developed earlier we might as well
stay with lattices in which information ow is always upwards.

12



HS

LS

LI

HI

(a) Two Independent Lattices

HS-HI LS-LI

HS-LI

LS-HI

(b) One Composite Lattice

Figure 4: Con�dentiality and Integrity Lattices

13



Figure 3(a) shows two independent lattices. The one on the left has HS
(high secrecy) on the top and LS (low secrecy) on the bottom. The one on
the right has LI (low integrity) on the top and HI (high integrity) on the
bottom. In both lattices information ow is upward. The two lattices can
be combined into the single composite lattice shown in Figure 3(b).7

One complication in combining con�dentiality and integrity lattices (or
multiple lattices in general) is that these lattices may be using di�erent ver-
sions of the ?-property. We have discussed earlier that the strict ?-property
is often used in con�dentiality lattices due to integrity considerations. In
integrity lattices there is no similar need to use the strict ?-property, and
one would expect to see the liberal ?-property instead.

In order to accommodate di�erent versions of the ?-property for the two
lattices we could keep two distinct lattices as shown in Figure 3(a). We
know how to recast each lattice in RBAC with liberal or strict ?-properties
as appropriate. Three of these combinations8 are shown in Figure 5 and
described formally below.

Example 6 (Liberal Con�dentiality and Liberal Integrity ?-Property)

� R = fHSR, LSR, LSW, HSW, LIR, HIR, HIW, LIWg

� RH as shown in Figure 5(a)

� Constraint on UA: Each user is assigned to exactly two pairs of roles

xSR, xSW and yIR, yIW

� Constraint on sessions: Each session has exactly two pairs of roles

xSR, xSW and yIR, yIW

� Constraints on PA:

{ (o,r) is assigned to xSR i� (o,w) is assigned to xSW

{ (o,r) is assigned to exactly one role xSR

{ (o,r) is assigned to yIR i� (o,w) is assigned to yIW

{ (o,r) is assigned to exactly one role yIR 2

7It is always possible to mathematically combine multiple lattices into a single lattice.
8The fourth combination of liberal con�dentiality and strict integrity could be easily

constructed but is rather unlikely to be used in practice so is omitted.

14



HIW

LIW

LIR

HIR

HSR

LSR HSW

LSW

(a) Liberal Con�dentiality and Liberal Integrity

HIW

LIW

LIR

HIR

HSR

LSR

HSW LSW

(b) Strict Con�dentiality and Liberal Integrity

HSR

LSR

HSW LSW

LIR

HIR

HIW LIW

(c) Strict Con�dentiality and Strict Integrity

Figure 5: Independent Con�dentiality and Integrity Roles

15



HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

LSW-HIW

HSW-LIW

HSW-HIW LSW-LIR

(a) Liberal Con�dentiality and Liberal Integrity

HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

LSW-HIW

LSW-LIW

HSW-HIW

HSW-LIW

(b) Strict Con�dentiality and Liberal Integrity

HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

HSW-HIW LSW-LIR LSW-HIW HSW-LIW

(c) Strict Con�dentiality and Strict Integrity

Figure 6: Composite Con�dentiality and Integrity Roles
16



Example 7 (Strict Con�dentiality and Liberal Integrity ?-Property) Iden-
tical to example 6 except that RH is as shown in Figure 5(b). 2

Example 8 (Strict Con�dentiality and Strict Integrity ?-Property) Identi-
cal to example 6 except that RH is as shown in Figure 5(c). 2

4.4 Composite Con�dentiality and Integrity Roles

The preceding constructions require each user and session to have a pair of
roles for each lattice. We now show how the same results can be achieved by
a single pair of roles. Consider the composite lattice of Figure 3(b). Since
the simple security property does not change we have a similar role hierarchy
for the read roles shown on the left hand side of the three role hierarchies
of Figures 6(a), (b) and (c). In each case the hierarchy for the write roles
needs to be adjusted as shown on the right hand side of each of these �gures.
The constructions are formally described below.

Example 9 (Liberal Con�dentiality and Liberal Integrity ?-Property)

� R = fHSR-LIR, HSR-HIR, LSR-LIR, LSR-HIR, HSW-LIW, HSW-

HIW, LSW-LIW, LSW-HIWg

� RH as shown in Figure 6(a)

� Constraint on UA: Each user is assigned to exactly two roles xSR-yIR

and xSW-yIW

� Constraint on sessions: Each session has exactly two roles uSR-vIR

and uSW-vIW

� Constraints on PA:

{ (o,r) is assigned to xSR-yIR i� (o,w) is assigned to xSW-yIW

{ (o,r) is assigned to exactly one role xSR-yIR 2

Example 10 (Strict Con�dentiality and Liberal Integrity ?-Property) Iden-
tical to example 9 except that RH is as shown in Figure 6(b). 2

Example 11 (Strict Con�dentiality and Strict Integrity ?-Property) Iden-
tical to example 9 except that RH is as shown in Figure 6(c). 2

17



The constructions indicate how a single pair of roles can accommodate
lattices with di�erent variations of the ?-property. The construction can
clearly be generalized to more than two lattices.

5 CONCLUSION

In this paper we have shown how di�erent variations of lattice based access
controls (LBAC) can be simulated in role-based access control (RBAC),
speci�cally using the models developed by Sandhu et al [SCFY96]. RBAC
is itself policy neutral but can be easily con�gured to specify a variety of
policies as we have shown. The main components of RBAC that need to be
adjusted for di�erent LBAC variations are the role hierarchy and constraints.
This attests to the exibility and power of RBAC.

A practical consequence of our results is that it might be better to de-
velop systems that support general RBAC and specialize these to LBAC.
RBAC has much broader applicability than LBAC, especially in the com-
mercial sector. LBAC can be realized as a particular instance of RBAC.
This approach provides the added bene�t of greater exibility for LBAC,
for which we have seen there are a number of variations of practical interest.
In LBAC systems these variations so far require the rules to be adjusted in
the implementation. RBAC provides for adjustment by con�guration of role
hierarchies and constraints instead.

References

[Bel87] D.E. Bell. Secure computer systems: A network interpretation. In
Third Annual Computer Security Application Conference, pages
32{39, 1987.

[CW87] D.D. Clark and D.R. Wilson. A comparison of commercial and
military computer security policies. In Proceedings IEEE Com-

puter Society Symposium on Security and Privacy, pages 184{
194, Oakland, CA, May 1987.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In
15th NIST-NCSC National Computer Security Conference, pages
554{563, Baltimore, MD, October 13-16 1992.

18



[Lee88] T.M.P. Lee. Using mandatory integrity to enforce \commercial"
security. In Proceedings IEEE Computer Society Symposium on
Security and Privacy, pages 140{146, Oakland, CA, May 1988.

[NO96] Matunda Nyanchama and Sylvia Osborn. Modeling mandatory
access control in role-based security systems. InDatabase Security
VIII: Status and Prospects. To appear, 1996.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Com-
puter, 26(11):9{19, November 1993.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control models. IEEE

Computer, 29(2):38{47, February 1996.

[Sch88] W.R. Schockley. Implementing the clark/wilson integrity policy
using current technology. In NIST-NCSC National Computer

Security Conference, pages 29{37, 1988.

[SCY96] Ravi Sandhu, Ed Coyne, and Charles Youman, editors. Proceed-
ings of the 1st ACM Workshop on Role-Based Access Control.
ACM, 1996.

[SS94] Ravi S. Sandhu and Pierangela Samarati. Access control: Prin-
ciples and practice. IEEE Communications, 32(9):40{48, 1994.

19


