
Proc. IEEE Symposium on Research in Security and Privacy

Oakland, California, May 1990, pages 104-105

POLYINSTANTIATION INTEGRITY

IN MULTILEVEL RELATIONS

Sushil Jajodia�y and Ravi Sandhuy

Department of Information Systems and Systems Engineering
George Mason University, Fairfax, VA 22030-4444

ABSTRACT. Polyinstantiation integrity (PI) as de�ned in the SeaView mul-
tilevel relational data model consists of a functional dependency component and a
multivalued dependency component. We show that the latter component rules out
many practically useful relations and is therefore unduly restrictive. This leads us to
propose that PI be de�ned to consist only of the functional dependency component.
For this revised de�nition of PI, we formulate and prove correct a lossless decompo-
sition of multilevel relations into single level ones with recovery based on the natural
join operation.

1 INTRODUCTION

In a multilevel world as we raise a user's clearance new facts will emerge. Conversely
as we lower a user's clearance some facts will get hidden. It is therefore inherent that
users at di�erent levels see di�erent versions of reality. This naturally complicates
the meaning of multilevel relations relative to the meaning of relations as ordinarily
considered in a single level world.

Various approaches to extending the standard relational model to deal with mul-
tilevel relations have been proposed. A major issue is how access classes are assigned
to data stored in relations. The proposals have ranged from assigning access class

�The work of Sushil Jajodia was supported by the U.S. Air Force, Rome
Air Development Center through subcontract # RI-64155X of prime
contract # F30602-88-D-0028, Task B-9-3622 with Univ. of Dayton.

yBoth authors are also with the Center of Excellence for Command,
Control, Communications, and Intelligence at George Mason Univer-
sity. The Center receives general support via grants from the Virginia
Center for Innovative Technology, MITRE, the Defense Communica-
tions Agency, and PRC/ATI.

1



to relations (as in [10]), assigning access classes to individual tuples in a relation (as
in [9]), or assigning access classes to individual attributes of a relation (as in [11]).

The most ambitious and exciting proposal has come from the SeaView (Secure
Data Views) project to assign security classi�cations to individual data elements of
the tuples of a relation. This project began as a joint e�ort by SRI International and
Gemini Computers with the goal of designing and prototyping a multilevel secure
relational database management system that satis�es the Trusted Computer System
Evaluation Criteria for Class A1 [7]. SeaView researchers have considerably advanced
the state of the art in multilevel database security and the project itself has moved
to a prototype implementation phase using GEMSOS as the underlying TCB along
with the ORACLE relational DBMS [14]. SeaView has been extensively described [4,
5, 6, 13, 14, 15, 16, 17, 18, for instance].

Perhaps the most signi�cant contribution of SeaView is the realization that mul-
tilevel relations at the logical level can be decomposed into single level base relations
which are then physically stored in the database. Completely transparent to users,
multilevel relations can be reconstructed from these base relations on user demand.
The practical advantages of being able to decompose and store a multilevel real rela-
tion by a collection of single level base relations are obvious. In particular the TCB
can enforce mandatory controls with respect to the single level base relations which
allows the DBMS to execute largely as an untrusted application on the TCB.

Another crucial contribution of SeaView is the formulation of polyinstantiation
as a fundamental property of multilevel relations. Much as most programmers are
more comfortable with sequential programs and face considerable di�culty in dealing
with concurrent programs, we believe polyinstantiation makes multilevel relations
that much more di�cult to deal with than standard single level relations. We are
sympathetic with Denning's observation [6] that \polyinstantiation is an intrinsic
problem of multilevel systems." We would state the concern a little di�erently to say
that \polyinstantiation is an intrinsic phenomenon of multilevel systems."

Our objective in this paper is to identify some properties of polyinstantiation that
have been overlooked or oversimpli�ed in the SeaView work. Our major contribution
is to show that polyinstantiation integrity (PI) as de�ned in SeaView is needlessly
restrictive. Speci�cally SeaView de�nes PI by a functional dependency component
and a multivalued dependency component. We show that the latter component can
be dropped while still preserving the very desirable property that multilevel relations
can be stored as single level base relations. We also demonstrate that SeaView's
multivalued dependency component of PI prohibits many relation instances which
are of obvious practical value.

Our contribution is a positive one in that we not only point out shortcomings in
SeaView's current de�nitions but also show how these can be �xed. Among the most
encouraging aspects of our work is that the recovery of multilevel relations from single
level base relations is accomplished by using the natural join operator rather than the

2



outer joins proposed in SeaView. As a result we avoid the theoretical complications
and pitfalls which arise with outer joins.

The paper is organized as follows. Section 2 presents examples of several relations
which are intuitively very reasonable yet are ruled out by SeaView. Section 3 formal-
izes the informal discussion of section 2. It also reviews the standard relational model
and SeaView to the extent required for our objective. Section 4 formulates and prove
correct a lossless decomposition of multilevel relations into single level ones with our
revised de�nition of PI. The proofs turn out to be quite subtle underscoring the need
for careful analysis in this regard. Section 5 concludes the paper with a discussion of
future work that remains to be done.

The reader should note that we have relied on the SeaView �nal report [16] as the
de�nitive description. Some aspects of SeaView have since been changed or clari�ed,
as a result of an earlier draft of this paper and our conversations with Teresa Lunt.
Nevertheless the modi�cations we have seen [17, 18] do not resolve all the problems
we point out in this paper.

2 MULTILEVEL RELATIONS

The purpose of this section is to argue on intuitive grounds, by means of a simple
example, that SeaView's de�nition of polyinstantiation integrity is too restrictive.
We de�ne a single relation and consider several di�erent instances of this relation as
enumerated in table 3. Each instance has a realistic and useful interpretation. A
general data model should certainly allow any one of the eight instances to occur
if this is deemed appropriate in an application. However SeaView allows only two
combinations of these eight instances within a single relation scheme. Speci�cally a
SeaView relation can accommodate either instances 1, 2, 3, 8 or 1, 4 within a single
scheme.

We begin by considering an ordinary relation which has three attributes, Starship,
Objective and Destination with Starship being the key. For each starship there is at
most one tuple in this relation giving us that starship's unique objective and unique
destination. For example, the tuple <Enterprise, Exploration, Talos> denotes that
the starship Enterprise has set out to explore Talos. We say that this entire tuple
gives us the mission of the Enterprise.

Next consider a multilevel relation which attempts to represent the same informa-
tion, i.e., the objective and destination of starships, but in a multilevel world where
some facts are classi�ed. Assume there are just two levels, U for unclassi�ed and S for
secret. Following SeaView we now have a classi�cation attribute associated with each
of the original attributes of the above mentioned ordinary relation. To simplify the
example let us say the Starship attribute is always unclassi�ed. So the classi�cation
range of the Starship attribute has lower and upper bounds of U. On the other hand

3



let the classi�cation range of the Objective and Destination attributes have a lower
bound of U and upper bound of S. This allows a starship to have a secret objective
and/or a secret destination. Let us call the resulting relation SOD with the scheme
summarized in table 1. The Tuple-Class attribute, abbreviated as TC, gives us the
classi�cation of the entire tuple. TC is a redundant attribute whose value is the least
upper bound of the attribute classi�cations for the individual attributes in a tuple.
The range of TC is derived in an obvious way from the classi�cation ranges of the
individual attributes.

The apparent primary key of SOD is speci�ed as Starship. Intuitively this means
that if only unclassi�ed data is stored in SOD then Starship would be the actual
primary key of the relation. Similarly, if only secret data is stored in the Objective
and Destination attributes Starship would be the actual primary key. On the other
hand if a mix of secret and unclassi�ed data is stored in these attributes the actual
primary key of SOD is Starship along with the attribute classi�cations. This point
gets to the crux of the question we are addressing in this paper and is formally stated
in the next section. The intuition can be appreciated by considering instance 8 of
table 3. This instance contains four tuples for the starship Enterprise. What makes
each tuple distinct is the classi�cation of the Objective and Destination attributes.

An instance of SOD will contain di�erent tuples at di�erent levels. So we distin-
guish between the U-instance of SOD, visible to unclassi�ed users, and the S-instance,
visible to secret users. The inter-instance property of SeaView roughly speaking re-
quires that the S-instance be a superset of the U-instance. This is most reasonable
since increasing a user's clearance should keep all previously visible information in-
tact and perhaps add some new facts visible only at the higher level. To be concrete
consider the U-instance of SOD given in table 2. It contains exactly one tuple telling
us that, as far as unclassi�ed users are concerned, the starship Enterprise has set out
to explore Talos. In table 3 we enumerate eight di�erent S-instances of SOD, all of
which are consistent with the U-instance of table 2. Their common property is that
the single tuple of the U-instance appears in all eight S-instances. We regard each
tuple in an instance of SOD as de�ning a mission for the starship in question. A U-
instance of SOD allows only one mission per starship. S-instances on the other hand
allow up to four missions per starship, three of which are secret and one unclassi�ed.

We now demonstrate there is a practically useful and intuitively reasonable in-
terpretation for each of the eight S-instances of table 3. Consider each S-instance in
turn as follows.

1. The S-instance is identical to the U-instance. There is therefore no secret aspect
to the Enterprise. This is the simplest case and needs little explanation.

In each of the next three cases there is a single tuple in the S-instance in addition
to the tuple of the U-instance. This secret tuple de�nes a secret mission for the
Enterprise in addition to its unclassi�ed mission.

4



2. The S-instance reveals the secret mission to be spying on Talos. Presumably
the unclassi�ed exploration mission to Talos is a cover story to hide the secret
spying mission. To maintain the integrity of the cover story, the Enterprise
will probably expend resources on exploring Talos. Conceivably the bulk of its
resources might be devoted to useful exploration of Talos with the secret spying
mission added on as a low pro�le, low marginal cost and opportunistic e�ort.
We obviously cannot resolve this issue without further knowledge about the
real situation, such as a competent user might have. The main point is that
the Enterprise does have two distinct missions: the unclassi�ed one of exploring
Talos and the secret one of spying there.

3. The S-instance reveals the secret mission to be exploration of Rigel. This case
is very similar to the previous one in that only one attribute has a secret value.
Clearly the desire to explore Rigel under cover of exploring Talos is a realistic
one, not only in the national security arena but also in a competitive commercial
context.

4. The S-instance reveals the secret mission to be spying on Rigel. This case is
similar to the previous two in that there is only one secret mission. It is dif-
ferent in that the objective and destination of the secret mission are now both
classi�ed.

Each of the three preceding cases presents a distinctly di�erent secret mission|
secretly spying on Talos, secretly exploring Rigel and secretly spying on Rigel. These
three secret missions do share the common property that exploring Talos is an ac-
ceptable unclassi�ed cover story. The next three cases present situations where two
of these three secret missions are concurrently in progress.

5. The S-instance reveals two secret missions|to explore Rigel and to spy on Rigel.
Both secret missions are concerned with Rigel. Whether the principal one is
to explore it or spy there or the two missions are equally important, cannot be
ascertained without further information. The secret exploration of Rigel may
simply be a convenient damage control story, should the secret destination of
the Enterprise be leaked. Conversely, spying on Rigel may be an opportunistic
and relatively unimportant add on to its secret exploration.

6. The S-instance reveals two secret missions|to spy on Talos and to spy on Rigel.
This is similar to the previous case and once again we cannot a priori decide
which, if any, is the principal secret mission.

7. The S-instance reveals two secret missions|to spy on Talos and to explore Rigel.
This may appear strange at �rst, but it is perfectly proper. For instance, there
may be no life-forms on Rigel worth spying on while there are indications of
vast quantities of Uranium. This S-instance does point out problems with simple

5



rules such as \give the value with the highest classi�cation for each attribute."
Such a rule would manufacture the secret mission of spying on Rigel which does
not exist in the relation.

As the reader may have guessed by now our �nal S-instance speci�es that the three
secret missions identi�ed in instances 2, 3 and 4 are all concurrently in progress.

8. The S-instance reveals three secret missions|to spy on Talos, to explore Rigel

and to spy on Rigel. As before, without further information and knowledge, we
cannot say very much about the relation of these three secret missions to one
another. All we know is that they share the same cover story of exploring Talos.

Now consider that a SeaView relation can accommodate either instances 1, 2, 3,
8 or 1, 4 of table 3 within a single scheme. In the former event our position is simply
that S-instances 5, 6 and 7 are as meaningful as instance 8, and therefore should
not be ruled out by �at. SeaView however does exactly this since the multivalued
dependency component of its de�nition of polyinstantiation integrity is not satis�ed
by instances 5, 6 and 7. In the latter event, which admits instances 1 and 4, SeaView
requires the Objective and Destination attributes to be uniformly classi�ed (i.e., either
both are classi�ed U or both S). We �nd it particularly troublesome that instance 4
cannot be accommodated without such a major assumption. After all the whole point
of SeaView is to have element level classi�cation. Requiring uniform classi�cation in
order to accommodate instance 4 amounts to defeating this basic objective.

In absence of the uniform classi�cation constraint, consider that a secret user at-
tempts to go from S-instance 1 to S-instance 4 by inserting the secret tuple specifying
the secret mission of spying on Rigel. SeaView will interpret this as a request to
go from S-instance 1 to S-instance 8, thereby manufacturing two bogus missions for
the Enterprise. Unfortunately, the higher the clearance of a user the greater is the
potential for such bogus information being retrieved from the database. It is easy to
see that, in the worst case, the number of spurious tuples materialized by SeaView
grows at the rate of jsecurity-latticejk where k is the number of non-key attributes
in the relation. For instance, table 4 shows a TS-instance of a relation similar to
SOD, except that it has a range of four security levels for the Objective and Desti-
nation attributes. The particular TS-instance shown there describes 4 missions for
the Enterprise, one each at the unclassi�ed, con�dential, secret and top-secret levels.
Seaview will require that this information be represented by the 16 missions shown
in table 5. Users with clearance U, C, S and TS will respectively see 1, 4, 9 and
16 missions with the SeaView approach rather than the 1, 2, 3 and 4 missions they
would respectively see with our proposal.

6



3 POLYINSTANTIATION

INTEGRITY

Our objective in this section is to formalize the concepts discussed intuitively thus
far. Until we arrive at the critical step of de�ning polyinstantiation integrity, this
amounts to a review of SeaView's de�nitions. Our review is necessarily limited to the
issues of concern in this paper and is not intended to be a complete description of
either the relational model or SeaView.

The standard relational model [1, 2, 3] is concerned with data without security
classi�cations. Data are stored in relations which have well de�ned mathematical
properties. Each relation R has two parts as follows.

1. A state-invariant relation scheme R(A1; A2; : : : ; An), where each Ai is an at-

tribute over some domain Di which is a set of values.

2. A state-dependent relation instance R, which is a set of distinct tuples of the
form (a1; a2; : : : ; an) where each element ai is a value in domain Di.

Let X and Y denote sets of one or more of the attributes Ai in a relation scheme. We
say Y is functionally dependent on X, written X ! Y , if and only if it is not possible
to have two tuples with the same values for X but di�erent values for Y . A candidate

key of a relation is a minimal set of attributes on which all other attributes are
functionally dependent. It is minimal in the sense that no attribute can be discarded
without destroying this property. It is guaranteed that a candidate key always exists,
since in the absence of any functional dependencies it consists of the entire set of
attributes. There can be more than one candidate key for a relation with a given
collection of functional dependencies.

The primary key of a relation is one of its candidate keys which has been specif-
ically designated as such. The primary key serves the purpose of selecting a speci�c
tuple from a relation instance as well as of linking relations together. The standard re-
lational model incorporates two application independent integrity rules, called entity

integrity and referential integrity, respectively to ensure these purposes are properly
served. Entity integrity in the standard relational model simply requires that no tuple
in a relation instance can have null values for any of the primary key attributes. This
property guarantees that each tuple will be uniquely identi�able. In this paper our
focus is on single relations, so referential integrity is not relevant.

Moving on to a multilevel world, we follow the lead of SeaView in extending the
standard relation model to de�ne a multilevel relation R as consisting of the following
two parts.

1. A state-invariant multilevel relation scheme

R(A1; C1; A2; C2; : : : ; An; Cn; TC)

7



where each Ai is as before a (data) attribute over domain Di, each Ci is a
classi�cation attribute for Ai and TC is the tuple-class attribute. The domain
of Ci is speci�ed by a range [Li;Hi] which de�nes a sub-lattice of access classes
ranging from Li up to Hi. The domain of TC is [lubfLig; lubfHig].

2. A collection of state-dependent relation instances Rc, one for each access class
c in the given lattice. Each instance is a set of distinct tuples of the form

(a1=c1; a2=c2; : : : ; an=cn; tc)

where each ai 2 Di, c � ci and tc = lubfcig. Moreover, if ai is not null then
ci 2 [Li;Hi]. We require that ci be de�ned even if ai is null, i.e., a classi�-
cation attribute cannot be null. In such cases ci is equal to the classi�cation
of the apparent primary key (see below). Since tc is computed from the other
classi�cation attributes we will include it or omit it as convenient.

These multiple relation instances are, of course, intended to represent the version of
reality appropriate for each access class. SeaView de�nes an inter-instance integrity
property to ensure this objective is achieved. Roughly speaking as we go up to higher
classes a tuple t that was already visible at a lower class should continue to be visible,
although null elements of t may be replaced by non-null values in the higher-class
instances. Furthermore a tuple should be visible at the lowest class allowed by its
classi�cation attributes. More precisely SeaView de�nes the following property. (This
property has since been modi�ed [17] in response to the problems pointed out in the
next section. The new SeaView property is essentially the same as our property 5.)

Property 1 [Inter-Instance Integrity] A collection of relation instances for a
given multilevel relation scheme satis�es the inter-instance integrity property if and
only if t 2 Rc implies

1. 8c0 > c 9t0 2 Rc0 such that

(a) t[Ai] 6= null) t0[Ai; Ci] = t[Ai; Ci]

(b) t[Ai] = null) t0[Ci] � t[Ci]

2. t 2 Rt[TC]. 2

The notation t[Ai] denotes the value of the Ai attribute in tuple t. More generally a
set of attributes in the rectangular parenthesis following t is a \sub-tuple" of t with
the values of these attributes.

Because a multilevel relation has di�erent instances at di�erent access classes it is
inherently more complex than a standard relation. It is most important to understand
what constitutes the full primary key of a multilevel relation. In a standard relation
the de�nition of candidate keys is based on that of functional dependencies. In a

8



multilevel setting the concept of functional dependencies is itself clouded because
a relation instance is now a collection of sets of tuples rather than a single set of
tuples. Rather than trying to resolve this complex issue here, we follow the lead of
SeaView and assume there is a user speci�ed primary key AK consisting of a subset
of the data attributes Ai. This is called the apparent primary key of the multilevel
relation scheme. Henceforth we understand the term primary key as synonymous
with apparent primary key.

In general AK will consist of multiple attributes. Entity integrity from the stan-
dard relational model prohibits null values for any of the attributes in AK. SeaView
extends this property to multilevel relations as follows.

Property 2 [Entity Integrity] Let AK be the apparent key of R. Instance Rc of
R satis�es entity integrity if and only if for all t 2 Rc

1. Ai 2 AK ) t[Ai] 6= null.

2. Ai; Aj 2 AK ) t[Ci] = t[Cj], i.e., AK is uniformly classi�ed. De�ne CAK to be
the classi�cation of the apparent key, i.e., t[Ci] = t[CAK] for all Ai 2 AK.

3. Ai 62 AK ) t[Ci] � t[CAK]. 2

The �rst requirement is an obvious extension from the standard relational model and
ensures that no tuple in Rc has a null value for any attribute in AK. The second
requirement says that all AK attributes have the same classi�cation in a tuple, i.e.,
they are either all U or all S and so on. This will ensure that AK is either entirely
visible or entirely null at a speci�c access class c. The �nal requirement states that
in any tuple the class of the non-AK attributes must dominate CAK. This rules
out the possibility of associating non-null attributes with a null primary key. These
requirements seem quite reasonable. Further intuitive justi�cation for them is given
in [4, 8]. Hereafter we assume all multilevel relations satisfy property 2.

We are now ready to address polyinstantiation. Polyinstantiation arises in several
di�erent ways. In a standard relation there cannot be two tuples with the same
primary key. In a multilevel relation we will similarly expect that there cannot be
two tuples with the same full primary key. However, the user speci�ed primary key is
only the apparent primary key and secrecy considerations compel us to allow multiple
tuples with the same apparent primary key. For instance, consider the scheme of
table 1 with the classi�cation range of its apparent key (Starship) modi�ed to be [U,S].
Table 6 shows an S-instance of this relation with the Enterprise polyinstantiated at the
U and S levels. Polyinstantiation is unavoidable because existence of the secret tuple
with Enterprise/S cannot prevent insertion of the unclassi�ed tuple with Enterprise/U
without introducing a covert channel. We saw several examples of polyinstantiation
for non-AK attributes in the previous section. Here again polyinstantiation serves to
close covert channels. It moreover ful�lls the real need for cover stories.

9



Although polyinstantiation is inevitable its e�ect must be controlled. SeaView
proposes to do so by means of a new application independent integrity property, called
polyinstantiation integrity. This property actually has two distinct parts. Since our
objective is to argue against the second part we will review the SeaView de�nition
in two pieces. The �rst part consists of a functional dependency component whose
e�ect is to prohibit polyinstantiation within the same access class.

Property 3 [Polyinstantiation Integrity] Let AK be the apparent key of R. R
satis�es polyinstantiation integrity if and only if for every Rc

AK;CAK; Ci ! Ai 2

This property allows all the S-instances of SOD shown in table 3 while ruling out the
S-instance of table 7. This S-instance is clearly improper in light of the fact that the
user has speci�ed Starship as the apparent primary key.

The second part of SeaView's de�nition consists of a multivalued dependency
component stated as follows.

Property 4 [MVD Polyinstantiation Integrity] Let AK be the apparent key of
R. R satis�es MVD polyinstantiation integrity if and only if for every instance Rc,
for all Ai 62 AK

AK;CAK !! Ai; Ci 2

As we demonstrated in the previous section this prohibits coexistence of the eight
S-instances of table 3 within a single relation scheme. We also saw that with this
requirement the four missions of table 4 can be stored only by materializing the 16
missions of table 5, or by the major restriction that Objective and Destination be
uniformly classi�ed. Moreover the SeaView literature does not give any intuitive
reason for requiring this property and does not exhibit any example of an undesirable
situation ruled out by it.

10



4 LOSSLESS DECOMPOSITION

In this section we develop and prove correct a lossless decomposition of a multilevel
relation into single level ones. There are numerous pitfalls in this endevour as evident
from a close examination of the SeaView decomposition. As we have pointed out
at some length in section 2 the SeaView decomposition fails to be lossless for many
instances which are intuitively reasonable and practically useful. But this is at least
clearly formalized in SeaView. Unfortunately the proposed SeaView decomposition
has not been stated or analyzed with the same rigor devoted to other aspects of
SeaView. As a result there are many subtle and non-trivial issues which have been
overlooked.

In analyzing the SeaView decomposition we �nd two fundamental problems which
it is our goal to correct here.

1. Seaview does not base its decomposition on the full primary key of a multilevel
relation but rather bases it on the apparent primary key.

2. Seaview does not store null values explicitly but attempts to pick them up by
outer joins.

The concept of the full primary key is recognized in the SeaView literature. Indeed
it is implicit in the de�nition of polyinstantiation integrity. The full primary key is
AK [CAK [CR where AK is the set of data attributes constituting the user speci�ed
primary key, CAK is the classi�cation attribute for data attributes in AK and CR

is the set of classi�cation attributes for data attributes not in AK. Note that every
classi�cation attribute is part of the full primary key. We base our decomposition
on the full primary key to guarantee that the recovery is lossless. Moreover we store
null values in our decomposition explicitly. This has the great bene�t of allowing
us to recover the multilevel relation instances by using natural joins. Natural joins
have a simpler behavior than outer joins. We understand that the outer join may be
needed if we allow arbitrary insertions and deletions in the decomposed relations [14].
However we strongly urge they not be used without careful rigorous analysis. The
results of this paper make it clear that such analysis is non-trivial and subtle even
with the natural join.

4.1 Filter Function

We begin by formulating a new inter-instance integrity property to eliminate an ambi-
guity in the SeaView de�nitions. (As noted earlier, SeaView has since been modi�ed
to incorporate our property [17].) To be speci�c consider the TS-relation R1 and the
S-relation R2 shown in tables 8 and 9 respectively. These have often been used as
examples in the SeaView literature [4, 13, 16] where they are described respectively as

11



the TS- and S-instances of the same relation. The SeaView de�nitions actually permit
a second S-instance, R3 shown in table 10 which is consistent with the TS-instance
R1. In particular R1 satis�es the inter-instance property with respect to both R2 and
R3.

Our inter-instance property is based on the de�nition of a �lter function which
maps a multilevel relation to di�erent instances, one for each descending access class
in the security lattice. The �lter function limits each user to that portion of the
multilevel relation for which he or she holds a clearance.

De�nition 1 [Filter Function] Given the c-instance Rc of a multilevel relation the
�lter function � produces the c0-instance Rc0 = �(Rc; c

0) for c0 � c. A tuple t0 2 Rc0

if and only if t0 can be derived from some t 2 Rc as follows:

t0[AK;CAK] = t[AK;CAK]

and for i 62 AK

t0[Ai; Ci] =

(
t[Ai; Ci] if t[Ci] � c0

< null; t[CAK] > otherwise

2

For example, �(R1; S) for the TS-relation R1 as shown in table 8, gives us the S-
relation R2 of table 9.

It is important to clarify the semantics of null values in this context. We say t
subsumes s if for every attribute Ai, either t[Ai; Ci] = s[Ai; Ci] or s[Ai] = null and
t[Ai] 6= null. That is t and s agree everywhere except possibly for some attributes
where s has a null value and t a non-null value with the same classi�cation. Rc is
said to be subsumption free if it does not contain two tuples such that one subsumes
the other. Subsumption of null values is required for example to have � produce
the U-instance of table 2 from the S-instances 2 through 8 of table 3. In the sequel,
we assume that all multilevel relation instances and their decompositions are made
subsumption free by exhaustive elimination of subsumed tuples.

The following properties of � are easily veri�ed.

1. �(Rc; c) = Rc

2. For c00 < c0 < c, �(�(Rc; c
0); c00) = �(Rc; c

00)

The �rst property states that �ltering a relation instance at its own level has no e�ect.
The second states that �ltering twice successively at descending levels has the same
e�ect as �ltering directly to the second level. Both properties are natural ones to
expect of a �lter function.

The �lter function describes how the various instances Rc of a relation scheme are
related as follows.

12



Property 5 [Inter-Instance Property] Let Rc and Rc0 be two relation instances
of a given relation scheme R such that c0 < c. Then we have that �(Rc; c

0) = Rc0: 2

It is easy to see that this requirement implies the inter-instance property of SeaView
(i.e, property 1). The converse is of course not true as demonstrated by tables 8, 9
and 10.

4.2 Additional Concepts and Notation

Before describing the decompositions we need to de�ne some notation. We will con-
sider multilevel relations of the form R(A1, C1, A2, C2, : : : , An, Cn). Each Ai

represents a collection of attributes that are uniformly classi�ed (i.e., in any tuple of
Rc, the values for attributes in Ai have identical security classi�cation), and Ci is the
classi�cation attribute for Ai. We require that the Ai's be mutually disjoint. The
allowable range for each Ci is denoted by [Li, Hi] where Li denotes the lowest possible
access class and Hi is the highest possible access class for Ai. Let H = lub[Hi]. The
instance RH is the one where all tuples of R are visible. The c-instance Rc at access
class c � H is therefore �(RH; c).

We assume the attribute group A1 is the user speci�ed primary key, i.e.,A1 = AK.
Note that entity integrity requires every tuple in Rc be A1-total and that A1 be
uniformly classi�ed. Let X be a subset of the data and/or classi�cation attributes of
a relation R. The notation R[X] denotes the projection of R on the attributes in X.
Finally, let L = L1. L is the lowest access class at which tuples of R can be visible.

The nature of functional dependencies with null values needs clari�cation. Let
X and Y be subsets of A1; : : : ; An. A tuple t is X-total if it has no null value for
attributes in X. We say the null-valued functional dependency (NFD) X ! Y is
satis�ed by G if for all X-total tuples t; t0 2 G such that t[X] = t0[X], we have that
t[Y ] = t0[Y ]. Note that t[Y ] and t0[Y ] may contain nulls, and nulls are equal only
to other nulls. Henceforth we understand the term functional dependency to mean
NFD.

We require one �nal property regarding the semantics of null values. The reason
for this property can be appreciated by considering the two S-instances shown in
table 11. Here M1 and M2 are two incomparable labels dominated by S. Instance 2
does not reduce to instance 1 by the subsumption rules we have de�ned. At the same
timeRM1

and RM2
are identical with respect to either S-instance. Since no additional

data is revealed at the S level, one would expect the lower level information at M1 and
M2 to uniquely determine the higher level instance at S. We resolve this ambiguity in
favor of instance 1 by imposing the following property, which invalidates instance 2.

Property 6 [Null Integrity] R satis�es null integrity if and only if for every in-
stance Rc, we have for all t; t

0 2 Rc such that t[AK;CAK] = t0[AK;CAK]:

t[Ai] = null, t0[Ai] = null; 8Ai 62 AK 2

13



In words, two polyinstantiated tuples for the same entity must either both be null or
both non-null in any given non-key attribute, independent of the access class.

14



4.3 The Replicated Decomposition

We now present our decomposition and recovery algorithms along with proofs of
correctness. It is convenient to do this in two steps. Our �rst decomposition is
a highly redundant one in that a stored relation at access class c has data for all
access classes dominated by c. This amounts to replication of low data at higher
classes. This decomposition is relatively straightforward to state and prove correct.
The second decomposition is an optimized one in that a stored relation at access class
c has only that data which by security considerations cannot be stored below c. This
decomposition can be further optimized in several ways. For the sake of simplicity
and clarity we have chosen to state it so the proof will be analogous in outline to that
of our �rst decomposition.

The replicated decomposition stores a multilevel relation as a collection of primary
key groups relations and attribute group relations de�ned as follows.

De�nition 2 [Primary Key Group Relations] Given the H-instance RH of a
multilevel relation, construct Q1;c for c 2 [L;H] as follows:

Q1;c = �(RH ; c)[A1; C1; C2; : : : ; Cn] 2

De�nition 3 [Attribute Group Relations] Given the H-instance RH of a multi-
level relation, construct Qi;c for 1 < i � n and c 2 [L;H] as follows:

Qi;c = �(RH; c)[A1; C1; Ai; Ci] 2

It is obvious that this decomposition has considerable redundancy. It is almost, but
not quite precisely, the case that Qi;c0 � Qi;c for c0 < c. The di�erence is that null
values in a tuple of �(RH; c

0) may become non-null in �(RH; c). Nevertheless it is clear
there is a great deal of redundancy. Each Qi;c only has data elements at or below c so
Qi;c can be stored in a storage object with label c. The reader might wonder why we
do not store �(RH ; c). The point of course is that this is not suggested as a practical
decomposition but is rather a convenient theoretical device for understanding the
nature of a lossless decomposition of RH .

The formula to recover the c-instance of the multilevel relation is remarkably
simple.

De�nition 4 [Recovery Formula] Recover instance Rc from this decomposition as
follows, where 1 is the natural join:

Rc = Q1;c 1 Q2;c 1 : : : 1 Qn;c 2

To prove the correctness of these decomposition and recovery formulas we use the
following result, which is a slight generalization of a well-known theorem of Risan-
nen [20] to allow for null values. We say that a relation is X-total if all its tuples are
X-total, i.e., null values are not allowed for attributes in the set X.

15



Lemma 1 Let G(X;Y;Z) be an X-total general relation over the mutually disjoint
sets of attributes X, Y and Z. Then

X ! Y _X ! Z ) G = G[XY ] 1 G[XZ] 2

Proof: Since G is X-total, it is easy to show that G � G[XY ] 1 G[XZ]. To
establish the reverse inclusion consider tuple t 2 G[XY ] 1 G[XZ]. So there exist
tuples u 2 G[XY ], and v 2 G[XZ] such that t[X] = u[X] = v[X], t[Y ] = u[Y ], and
t[Z] = v[Z]. Since G[XY ] and G[XZ] are projections of G, there must be tuples
t0; t00 2 G such that t0[XY ] = u[XY ] and t00[XZ] = v[XZ]. Since X ! Y or X ! Z
holds in G it follows that t0[Y ] = t00[Y ] or t0[Z] = t00[Z]. In the former case t = t00 and
in the latter case t = t0, so t 2 G: 2

The converse of this lemma is also true but its proof would be a digression from our
main objective so we omit it. Correctness of the recovery formula follows by repeated
application of lemma 1.

Theorem 1 The recovery formula of de�nition 4 is correct.

Proof: From the de�nitions of Q1;c, Qi;c and � it is obvious that the recovery formula
can be rewritten as

Rc = Rc[A1; C1; C2; : : : ; Cn] 1

Rc[A1; C1; A2; C2] 1 : : : 1 Rc[A1; C1; An; Cn]

We prove this by repeated application of lemma 1. For the �rst application let

X = fA1; C1; C2g

Y = fA2g

Z = fA3; C3; : : : ; An; Cng

Note that Rc is X-total due to entity integrity and non-null classi�cation, and that
X ! Y due to polyinstantiation integrity. So by lemma 1 we have

Rc = Rc[A1; C1; A2; C2] 1

Rc[A1; C1; C2; A3; C3 : : : ; An; Cn]

Now consider the second term on the right hand side and again for purpose of applying
lemma 1 let

X = fA1; C1; C3g

Y = fA3g

Z = fC2; A4; C4; : : : ; An; Cng

16



Again note that Rc is X-total due to entity integrity and non-null classi�cation, and
that X ! Y due to polyinstantiation integrity. So now by lemma 1 we have

Rc = Rc[A1; C1; A2; C2] 1 Rc[A1; C1; A3; C3] 1

Rc[A1; C1; C2; C3; A4; C4 : : : ; An; Cn]

The theorem follows by n � 1 applications of this procedure and �nally using the
commutative and associative properties of the natural join to rearrange the resulting
rightmost term to be the leftmost one. 2

17



4.4 An Optimized Decomposition

In this section we de�ne an optimized decomposition as follows.

De�nition 5 [PrimaryKey Group Relations]GivenRH constructD1;c(A1; C1; C2; : : : ; Cn)
for c 2 [L;H] as follows: for every tuple t 2 RH if either t[C1] = c or t[C1] <
c ^ (9j)t[Cj] = c then insert t0 in D1;c with

t0[A1; C1] = t[A1; C1]

t0[Ci] =

(
t[Ci] if t[Ci] � c
t[C1] otherwise

for 1 < i � n

2

De�nition 6 [Attribute Group Relations]GivenRH constructDi;c(A1; C1; Ai; Ci)
for 1 < i � n and c 2 [L;H] as follows: for every tuple t 2 RH such that either
t[C1] = c or t[C1] < c ^ t[Ci] = c insert t0 in Di;c with

t0[A1; C1] = t[A1; C1]

t0[Ai; Ci] =

(
t[Ai; Ci] if t[Ci] = c
< null; t[C1] > if t[Ci] > c

2

It is evident that each Di;c has tuples for which at least one classi�cation attribute
is c. Such tuples cannot be stored at an access class less than c. In this sense the
decomposition is optimal. An example of the decomposition is given in table 12 for
the TS-relation instance of table 8.

The recovery algorithm is now more complicated than for the replicated decom-
position. For the sake of clarity and simplicity in our proofs we have resisted the urge
to make numerous obvious optimizations. Our primary goal is to enable a rigorous
proof of correctness.

De�nition 7 [Recovery Algorithm] Recover instance Rc from this decomposition
as follows:

1. Pi;c =
S
c0�cDi;c0 .

2. Let Rc = P1;c 1 P2;c 1 : : : 1 Pn;c. 2

An example of this algorithm applied to the decomposition of table 12 is shown in
table 13. The example shows recovery of both the S- and TS-instances which are
exactly R2 of table 9 and R1 of table 8 respectively. The reader may wish to verify
that the algorithm applied to the decomposition of the TS-relation of table 4 will
materialize exactly 1, 2, 3 and 4 tuples respectively in recovering the U-, C-, S- and
TS-instances.

The proof of correctness is based on the following observations.

18



1. P1;c =
S
c0�cQ1;c.

2. For 1 < i � n, Pi;c = Qi;c.

The proof then follows from theorem 1 and the fact that the additional tuples in P1;c

as compared with Q1;c do not contribute any new tuples to the computation of Rc.
The details of establishing these properties are quite intricate and non-trivial. They
are omitted here for lack of space.

19



5 CONCLUSION

In summary, we propose that the MVD component of polyinstantiation integrity in
SeaView be dropped to allow for a larger class of multilevel relations than currently
permitted. We have shown that the additional relations allowed by doing this are
practically useful. We have also shown that the very desirable result of SeaView that
multilevel relations can be stored as single level base relations continues to be true,
and can in fact be achieved by using natural joins for recovery.

In terms of future work much remains to be done. The e�ciency of the recovery
algorithm is clearly crucial to the query response time. It is therefore important to
consider further optimizations to our recovery algorithm. Our immediate goal in this
paper has been not so much to �nd a better, perhaps optimal, recovery algorithm,
but to provide a conceptual framework for dealing with multilevel real relations as a
collection of single-level base relations.

Since we decompose a multilevel real relation as a collection of single-level base
relations, it remains to show that an update to a multilevel relation can be correctly
translated into equivalent updates to base relations, and conversely. This will provide
a formal basis for the updatability of multilevel relations vis-a-vis base relations. A
formal consideration of updates is also necessary to show that the data model does
not contain covert channels.

We are also examining a completely di�erent approach of decomposing multilevel
real relations into single level base relations. The solution involves associating a
unique tuple identi�er with each tuple in a multilevel real relation. The approach is
promising and works correctly for the cases we have examined, although a thorough
analysis is yet to be performed.

Acknowledgement

We are indebted to John Campbell, Joe Giordano, and Sylvan Pinsky for their support
and encouragement, making this work possible. We also wish to thank Teresa Lunt
and Gary Smith for their helpful comments and conversations. The opinions expressed
in this paper are of course our own and should not be taken to represent the views
of these individuals.

20



References

[1] Codd, E.F. \A Relational Model of Data for Large Shared Data Banks." Com-

munications of ACM 13(6): (1970).

[2] Codd, E.F. \Extending the Relational Database Model to Capture More Mean-
ing." ACM Transactions on Database Systems 4(4): (1979).

[3] Date, C.J. An Introduction to Database Systems. Volume I, Addison-Wesley,
fourth edition (1986).

[4] Denning, D.E., Lunt, T.F., Schell, R.R., Heckman, M., and Shockley, W.R. \A
Multilevel Relational Data Model." IEEE Symposium on Security and Privacy,
220-234 (1987).

[5] Denning, D.E., Lunt, T.F., Schell, R.R., Shockley, W.R. and Heckman, M. \The
SeaView Security Model." IEEE Symposium on Security and Privacy, 218-233
(1988).

[6] Denning D.E. \Lessons Learned from Modeling a Secure Multilevel Relational
Database System." In [12], 35-43 (1988).

[7] Department of Defense National Computer Security Center. Department of De-

fense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD, (1985).

[8] Gajnak, G.E. \Some Results from the Entity-Relationship Multilevel Secure
DBMS Project." Aerospace Computer Security Applications Conference, 66-71
(1988).

[9] Garvey C. \Multilevel Data Storage Design." TRW Defense Systems Group
(1986).

[10] Grohn M.J. \A Model of a Protected Data Management System." Technical
Report ESD-TR-76-289, I.P. Sharp Associates Ltd., (1976).

[11] Hinke T.H. and Schaefer M. \Secure Data Management System." Technical Re-
port RADC-TR-75-266, System Development Corporation (1975).

[12] Landwehr, C.E. (Editor) Database Security: Status and Prospects. North-
Holland (1988).

[13] Lunt, T.F., Denning, D.E., Schell, R.R. Heckman, M. and Shockley, W.R.
\Element-Level Classi�cation with A1 Assurance." Computers & Security, Feb.
1988.

21



[14] Lunt, T.F., Schell, R.R., Shockley, W.R., Heckman, M. and Warren, D. \A Near-
Term Design for the SeaView Multilevel Database System." IEEE Symposium

on Security and Privacy, 234-244 (1988).

[15] Lunt, T.F. and Whitehurst, R.A. \The SeaView Formal Top Level Speci�ca-
tions." SRI Project 1143, A007: Final Report, Volume 3A (1989).

[16] Lunt, T.F., Denning, D.E., Schell, R.R. Heckman, M. and Shockley, W.R. \Se-
cure Distributed Data Views. Volume 2: The SeaView Formal Security Policy
Model." SRI-CSL-88-15 (1989).

[17] Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M. and Shockley, W.R. \The
SeaView Security Model." IEEE Transactions on Software Engineering, to ap-
pear.

[18] Lunt, T.F. and Hsieh, D. \The SeaView Secure Database System: Some Critical
Issues." Unpublished manuscript, SRI International (1989).

[19] Maier, D. The Theory of Relational Databases. Computer Science Press (1983).

[20] Rissanen, J. \Independent Components of Relations." ACM Transactions on

Database Systems 2(4):317-325 (1977).

22



Table 1: A scheme for the multilevel relation SOD.

Table 2: A U-instance of SOD.

Table 3: Some S-instances of SOD consistent with the U-instance of table 2.

Table 4: A TS-instance of SOD with 4 missions.

Table 5: The SeaView materialization with 16 missions.

Table 6: An S-instance of SOD with 2 starships.

Table 7: An S-instance of SOD violating polyinstantiation integrity.

Table 8: Relation R1.

Table 9: Relation R2.

Table 10: Relation R3.

Table 11: Relation R3.

Table 12: Decomposition of relation R1.

Table 13: Recovery of the S- and TS- instances.

23


