
ATTRIBUTE MUTABILITY IN USAGE CONTROL

Jaehong Park, Xinwen Zhang, and Ravi Sandhu
George Mason University

{ jpark2, xzhang6, sandhu)} @gmu.edu

Abstract The notion of Usage Control (UCON) has been introduced recently to extend
traditional access controls by including three decision factors calledauthoriza-
tions, obligations, andconditions. Usage control also recognize two important
decision properties ofcontinuityandmutability.

In access control literature, an authorization decision is commonly made by
utilizing some form of subject and object attributes. Identities, security labels
and roles are some examples of attributes. Traditionally these attributes are as-
signed to subjects and objects by a security officer and can be modified only by
administrative actions. However, in modern information systems these attributes
are often required to be changed as a side effect of subject’s usage on object. This
requirement of updates has been recognized and defined as mutability property
in usage control. In this paper, we discuss issues of this attribute mutability and
show how usage control can apply this mutability property in various traditional
and modern access control policies.

1. Introduction

The notion of usage control has been introduced recently in our previous pa-
pers [Park and Sandhu, 2002, Sandhu and Park, 2003, Park and Sandhu, 2004] .
A Usage control (UCON) model calledUCONABC has been defined to extend
traditional access control so it can cover modern access control systems. Al-
though the UCON study has been inspired largely from digital rights manage-
ment (DRM) whose main interest lies in commercial segment, usage control
is a general purpose, unified framework that covers traditional access control,
trust management and digital rights management and goes beyond them in its
scope.

Over the last thirty years, majority of access control literature has dealt with
authorizations mainly by utilizing some forms of subject attributes and object
attributes such as security labels or roles. Traditionally, these attributes as-
signed to subjects and objects are relatively static and can be modified only
by administrative actions. Although this approach might be adequate for some



2

traditional access control policies, this is no longer appropriate for access con-
trols in modern information systems. Often, today’s information systems uti-
lize more dynamic and complex decision policies that require certain modi-
fications on subject and object attributes as side effects of usages on digital
resources. This has been identified as attribute mutability in usage control.

In this paper we discuss attribute mutability issues in UCON’s perspective.
In section 2, we first describe the general idea of usage control and summarize
UCON components and a family of models based on the components. Then in
section 3 we explore attribute management and mutability issues and identify
taxonomy of attribute mutability. In section 4 we identify two types of mutable
attributes called temporary and persistent attributes. We discuss several varia-
tions that require attribute mutability property by using access control policy
examples. In section 5 we further discuss related issues on attribute mutability
and section 6 gives our conclusion.

2. Usage Control

Access control has been studied for more than 30 years now. Some well-
known access control models are access matrix model, lattice-based access
control model, and role-based access control model. These traditional access
control models have difficulty in addressing the needs of modern information
systems. One of the main reasons is that traditional access control models have
focused on authorization only. Here, authorization evaluates access requests
based on subject attributes, object attributes and requested rights. However,
modern information systems often require more than authorizations. For ex-
ample, one may have to fill out a certain form or click ‘yes’ button for license
agreement for usage allowance. We call these required actions asobligations.
Obligations are requirements that have to be fulfilled by obligation subjects
for usage allowance. Moreover, some digital objects can be played only on a
certain device or location. These environmental restrictions are called condi-
tions. Conditions are environmental and system-wide requirements that have
to be satisfied for access. Obligations and conditions are rarely discussed in
traditional access control models. In today’s highly dynamic, distributed envi-
ronment, obligations and conditions are also crucialdecision factorsfor richer
and finer controls on usage of digital resources.

Also in traditional access control models, authorization decision is made
before access is allowed and there is no further enforcement during the access.
Hence there is no ongoing control concept considered. Another shortcoming is
that consumable rights are not supported. In modern e-commerce system, it is
common to use consumable attributes or rights such as credit balance or limited
number of usages. More fundamentally, in traditional access control, rights
are pre-defined and granted to subjects. This means that subjects hold granted



Attribute Mutability in Usage Control 3

rights for indefinite time whether the subjects actually exercise the rights or
not. This might be fine for some authorization-based controls. However, this
is not acceptable in obligation-based or condition-based controls as well as in
other dynamic authorization controls.

Although these shortcomings are not new and have been recognized in re-
cent literature, these recent studies are problem-specific and only deal with
certain aspects of the issues. Usage control is a general purpose, unified frame-
work that resolves all these aspects in a systematic way. In our previous paper,
we have identified a family ofUCONABC models for next generation access
control by integrating obligations, conditions as well as authorizations, and
by including continuity and mutability properties. Here, continuity property
recognizes ongoing controls for relatively long-lived access or for immediate
revocation and mutability deals with updates on related subject or object at-
tributes as a consequence of access. We callUCONABC as a core model
since it captures only the essence of usage control while there are other impor-
tant issues uncovered such as administrative issues and delegation issues.

2.1 A Family of Usage Control Models

UCONABC models consist of eight components. As shown in Figure 1,
they are Subjects (S), Objects (O), Rights (R), Subject Attributes (ATT(S)),
Object Attributes (ATT(O)), and three decision factors called Authorizations
(A), oBligations (B), and Conditions (C). In access control, S, O, R are well
known concepts. In UCON, subjects are regarded as representing users for
simplicity. A subject holds rights on objects and is associated with subject
attributes. Objects are target resources that subjects hold rights on, and associ-
ated with object attributes either by themselves or together with rights. These
attributes are used for usage decision making.

Authorization (A) is a functional predicate that evaluates usage requests
based on subject attributes, object attributes and requested rights, and returns
either yes or no. This is a typical view of traditional access control. For ex-
ample, in Mandatory Access Control (MAC), a subject’s clearance is regarded
as a subject attribute and an object’s classification as an object’s attributes and
authorization is made based on simple or star security properties by utiliz-
ing these attributes. In addition to authorization, there are two other decision
factors called obligations (B) and conditions (C). Obligation is a functional
predicate that verifies if required obligation actions have been fulfilled or not.
Condition is a functional predicate that check environmental or system status.
Figure 1 shows these components ofUCONABC .

In addition to these three decision factors, ABC model also includes two
crucial properties called continuity and mutability. With continuity property,
decision can be made either before (pre) or during (ongoing) a usage. Muta-



4

Rights

(R)


Conditions

(C)


Usage

Decision


Obligations

(B)


Authoriza-

tions (A)


Subjects

(S)


Objects

(O)


Subject Attributes

(ATT(S))


Object Attributes

(ATT(O))


Figure 1. UCONABC Model Components

Usage


pre
 ongoing
 post


Continuity of

Decisions


pre
 ongoing


Before
 After


Mutability of

Attributes


Figure 2. Continuity and Mutability Properties

bility means mutability of attributes. With mutability property, attributes can
be either immutable or mutable. Immutable attributes can be modified by ad-
ministrative actions while mutable attributes can be modified as side-effects
of subject actions. InUCONABC , attribute updates can be made either be-
fore (preUpdate), during (onUpdate) or after (postUpdate) usages. These
continuity and mutability properties are shown in Figure 2.

Based on these three decision factors and two properties,UCONABC model
contains various sub-models. The details of this family of models have been
discussed in [Park and Sandhu, 2004]. Definition 1 shows the definition for
authorization model with pre-decision making. Please note that ongoing de-
cision model utilizesstopped(s, o, r). In Definition 1,allowed(s, o, r) means
a subjects is allowed to exercise a rightr on an objecto. The preA is a
pre-authorization predicate that has to be satisfied for usage allowance. Here,
preUpdate andpostUpdate are optional procedures to perform update oper-
ations onATT (s) or ATT (o). onUpdate is not shown here because it can be



Attribute Mutability in Usage Control 5

Self-controlled
 Non-self-controlled


Security Officer-controlled
 User-controlled


Admin-controlled

(Immutable)


System-controlled

(Mutable)


Attribute Management


Figure 3. Attribute Management Taxonomy

utilized only with ongoing decisions.

Definition 1 TheUCONpreA model has the following components:

S, O,R, ATT (S), ATT (O) andpreA;

allowed(s, o, r) ⇒ preA(ATT (s), ATT (o), r);

preUpdate(ATT (s)), preUpdate(ATT (o)),
postUpdate(ATT (s)), postUpdate(ATT (o)).

3. Attribute Management and Mutability

Usage control model includes several underlying presumptions. In usage
control, usage decision is request-based. This means rights are not pre-assigned
to subjects and usage decision is made at the time of usage request. Also, in
usage control, authorization decision is made based on subject attributes and
object attributes. Depending on access control policies, these attributes may
have to be updated. Naturally management of these attributes is a key con-
cern in usage control. Attribute management can be either‘admin-controlled’
or ‘system-controlled’. This section discusses these two categories. Figure 3
shows taxonomy of the attribute management.

3.1 Admin-controlled Attribute Management
(Immutable)

Administrator-controlled attributes can be modified by administrative ac-
tions. These attributes are modified by administrator discretion but are “im-
mutable” in that the system does not modify these automatically. Mutable
attributes are modified by the system automatically. Here the administrator



6

can be either asecurity officeror a user. In general, administrative actions
are made by security officers. Suppose a subject is assigned to a new security
label or to a new membership group because of management decision. Here,
updates on attributes are made by administrative actions. This is a typical ap-
proach in traditional access control policies such as MAC and RBAC. Static
separation of duty and user-role assignment in RBAC belongs in this category.
However, there are other cases where subject attributes are controlled by a
user. Thisuser-controlledattribute management can be further classified into
self-controlledandnon-self-controlled. An example of self-controlled attribute
management is a role activation. In RBAC, a user can activate or deactivate his
or her roles in a session. Here, the notion of a session corresponds to the notion
of a subject. Controlling users’ ability to update attributes (e.x., activated roles)
is also considered as an administrative issue. In non-self controlled cases, a
user other than the user of subjects or sessions controls attributes. For exam-
ple, in online music store, parents of a child may preset the child’s maximum
purchase limits as 20 dollars a month. This is done by controlling attributes of
the child. In UCON, all of these cases are considered as part of the administra-
tive model and are not included in this paper.

3.2 System-controlled Attribute Management (Mutable)

Unlike admin-controlled, in system-controlled attribute management, up-
dates are made as side effects of user’s usage on objects. For instance, a
subject’s credit balance has to be decreased by the value of the usage on an
object at the time of the usage. This is different from the update by an ad-
ministrative action because the update in this case is done by the system while
in admin-controlled management the update involves administrative decisions
and actions. Because of this, we call a system-controlled attribute as a muta-
ble attribute. Mutable attributes do not require any administrative actions for
updates. Therefore attribute mutability is considered as part of core models.
In both admin-controlled and system-controlled management, it is the security
officer who manages the ability of user updates and system updates. In this
paper our concern lies in the system-controlled mutability issue where updates
are made as side effects of users’ actions on objects since it is a main concern
of core model for usage control.

4. Attribute Mutability in UCON

In UCONABC model, attribute update can occur on both authorizations and
obligations models. As shown in Definition 1, attribute updates are realized by
adding update procedures within the model definition. In case of condition
model, because it evaluates subject and object independent environmental or
system-wide requirements, there is no update process required on attributes.



Attribute Mutability in Usage Control 7

In usage control, attributes can be either mutable or immutable. In case
of mutable models, there exist two kinds of attributes based on liveness of at-
tributes. They aretemporary attributesandpersistent attributes. In this section
we identify these two types of attributes. We further discuss several mutabil-
ity variations of traditional and modern access control policies that require
attribute mutability and show how these policy examples can be realized in
UCONABC models.

4.1 Mutable Attributes

Within mutable models, temporary attributes are alive only for a single us-
age while persistent attributes live longer for multiple usage decisions. Tem-
porary attributes are created at the time a usage is started and deleted at the
end of the usage. Suppose a system allows only 100 internet connection at the
same time and allowed internet connections are terminated based on longest
idle time to keep maximum 100 connections. The system has to keep the last
active time of each connection and the number of current connections for con-
tinuous usage decision. This example is shown in Example 1. In this example,
a subject’s last active time (lastActiveT ) exists only during the connection
to be used for the decision of continuous connection. This is an example of
temporary attributes. However, the system keeps the number of connections
(usageNum) for a relatively long period for multiple usages decisions. This
is considered as a persistent attribute. Persistent attribute is stateful and used
to keep certain property of subjects or objects for multiple usages while tem-
porary attribute is stateless and used for a single usage. Utilizing temporary
attributes are largely determined as a design decision and can be eliminated in
some cases. For example, Example 1 can be realized without using temporary
attributes. Here, if we utilize an object attribute that consists of a set of subject
ID and a last active time of each subject’s usage on the object, we can eliminate
subject’s temporary attributes.

Example 1Simultaneous connection, revocation using last activity time:
T is an ordered set of last activity times
UN is a set of concurrent usage numbers
N is a set of identification names
id : S → N , lastActiveT : S → T
usageNum : O → UN , activeId : O → 2N

ATT (s) : {id, lastActiveT}, ATT (o) : {usageNum, activeId}

allowed(s, o, r) ⇒ true
stopped(s, o, r) ⇐ (usageNum(o) > 100) ∧ (lastActiveT (s)
= min{t′|∃s′, t′ = lastActiveT (s′), id(s′) ∈ activeId(o)})



8

preUpdate(usageNum(o)) : usageNum(o) = usageNum(o) + 1
onUpdate(lastActiveT (s)), repeated updates onlastActiveT (s)
onUpdate(activeId(o)), repeated updates onactiveId(o)
postUpdate(usageNum(o)) : usageNum(o) = usageNum(o)− 1.

Temporary attributes exist only in mutable models while persistent attributes
exist in both mutable and immutable models. Within mutable models, tempo-
rary attributes can be utilized for two purposes. First, temporary attributes can
be used for ongoing decision processes (ongoing-authorization and ongoing-
obligation). A subject’s last active time in Example 1 is an example of tem-
porary attributes for ongoing authorization. Note that condition model does
not utilize subject or object attributes for usage decision. Although condi-
tion model may use subject or object attributes this is only to select condition
elements that have to be checked for a decision, not for the decision itself.
Also note that temporary attribute doesn’t have to be updated continuously. A
temporary attribute can be set at the time a usage is started and can remain
throughout the usage without any modification. Suppose in previous Exam-
ple 1 if a decision is made based on longest connection time, the system may
keep usage starting time throughout the usage so it can calculate usage time
of each usage for ongoing authorization. In this case, usage starting time is a
temporary attribute of a subject that doesn’t require an ongoing update.

Second, temporary attributes can be used so the result of them or the re-
sult derived from them can be reflected into persistent attributes. This can be
occurred in either pre-decision models or ongoing-decision models. Suppose
a long-distance phone call system updates total usage of a month at the end
of each phone call. The system may need to utilize start time to calculate the
usage time of each phone call. Here, start time is considered as a temporary
attribute and used to update total monthly usage. This is an example of pre-
authorization that requires temporary attributes for persistent attribute updates.
As shown in Example 2, if we use a prepaid phonecard to place a long dis-
tance call, the system will monitor if current usage time exceed allowed time
throughout the call. This requires two temporary attributes. One is to store
allowed time (allowedT ) that has been calculated based on card balance and
unit cost of the call and the other is a usage time (usageT ) of current call that
is continuously increased throughout the call. At the end of each phone call,
the card balance (cardBalance) has to be decreased by the cost of current
call. Here, the card balance is considered as a persistent attribute. This is an
ongoing-authorization example that requires temporary attributes for persistent
attribute updates. Note that the updates on persistent attributes to reflect the re-
sult of temporary attributes can be occurred either during (ongoing-update) or
after (post-update) usages.



Attribute Mutability in Usage Control 9

Example 2Long-distance call using Pre-paid phonecard
N is a set of natural number,value : O → N
cardBal : S → N , allowedT : S → N , usageT : S → N
ATT (s) : {cardBal, allowedT, usageT}, ATT (o) : {value}

allowed(s, o, connect) ⇒ cardBal(s) ≥ value(o)
stopped(s, o, connect) ⇐ usageT (s) > allowedT (s)
preUpdate(allowedT (s)) : allowedT (s) = cardBal(s)/value(o)
onUpdate(usageT (s)) : usageT (s) + 1
postUpdate(cardBal(s)) : cardBal(s)− (usageT (s) ∗ value(o))

4.2 Mutability Variations

In usage control, attribute mutability can occur in various situations. We
identify these variations based on the purpose of mutability usages in access
control policies. Some of these variations are mainly from traditional access
control policies while others are unique in usage control. This uniqueness is
largely because of UCON’s inclusion of obligations and continuity property as
well as its attribute-based authorizations and request-based decision process.

In general, attribute mutability is utilized for history-based usage decision.
This means that attributes have to be modified to reflect usage history of subject
on objects for either current or future usage decision. Some cases are only for
current usage decisions and others are only for future usage decisions while
there are other variations that can be used for both current and future usage
decisions.

In this section we identify five different variations based on the purpose of
attribute mutability. They are mutability forexclusive/inclusive attributes, con-
sumable/creditable attributes, immediate revocation, obligationanddynamic
confinement. Each variation is discussed with examples in UCON’s perspec-
tive. However, we do not aim to identify a complete list of mutability usages.
Rather we recognize several variations for well-known policies and relatively
new policies that require attribute mutability to show how attribute mutability
can be utilized in different policies and how these policies can be viewed in
usage control models.

Mutability for Exclusive/Inclusive Attributes. Mutable attributes can be
modified by a system to enforce exclusive rights or inclusive rights.Exclusive
attributesare used to resolve conflict of interests whileinclusive attributescan
be used to resolve consolidated interest. Suppose issuing a purchase order
requires three steps of prepare, approval, and issue. Here a purchase order
has to be approved by a user other than the preparer. This is an example of
exclusive rights. On the other hand, if the purchase order has to be issued by
the same user who has prepared the order this will be an example of inclusive



10

rights. Both require us to store subject’s usage on the object for future usage
decisions. Since both exclusive and inclusive attributes can be utilized in very
similar way, we show additional examples for exclusive attributes only.

The notion of exclusive attributes or rights is a well-defined concept and
shown in traditional access control policies. One of well-known access con-
trol policies for exclusive attributes is Dynamic Separation of Duty (DSoD).
DSoD has been studied extensively in access control literature [Simon and
Zurko, 1997, Gligor et al., 1998, Sandhu, 1988, Sandhu, 1990]. Simon and
Zurko [Simon and Zurko, 1997] distinguish DSoD into four categories from
simple to complex ones. Fundamentally all of these four categories require
attribute mutability property to store subjects’ activities on objects. Although
they use the term ‘history-based SoD’ for the most complex category, we can
view other simpler DSoD categories also as ‘history-based’ which require at-
tribute updates for certain level of mutual exclusion. Sandhu [Sandhu, 1988]
uses several examples to express transaction controls for DSoD by emphasiz-
ing history-based decisions.

The following example shows the object-based DSoD of Simon and Zurko.
Here conflicting roles can be assigned to a user at the same time, but no user is
allowed to access previously accessed objects. A subject is used to represent
a user. In this example, a subject may have both a ‘purchase clerk’ role and
‘account clerk’ role at the same time. However, the subject is not allowed to
issue a check that is prepared by himself. This example requires us to store
the history of subjects’ usage on objects for future usage decision to resolve
conflict of interest.

Example 3Object-based DSoD
ID is a set of identification number.T is a set of object type name.
ROLE is a partially ordered set of role names.
uid : S → ID, sRole : S → 2ROLE , type : O → T
prepareId : O → ID, issueId : O → ID, R : issue, prepare
ATT (s) = {uid, sRole}, ATT (o) = {type, prepareId, issueId}

allowed(s, o, prepare) ⇒ type(o) = ‘check’ , sRole(s) ≥ ‘purchaseClerk’
preUpdate(prepareId(o)) : prepareId(o) = uid(s)
allowed(s, o, issue) ⇒ type(o) = ‘check’ , sRole(s) ≥ ‘accountClerk’,

uid(s) 6= prepareId(o)
preUpdate(issueId(o)) : issueId(o) = uid(s)

Another traditional example is the Chinese Wall policy identified by Brewer
and Nash [Brewer and Nash, 1989]. Chinese Wall policy aims to prevent infor-
mation flows among companies in conflict of interest. Just like DSoD, Chinese
Wall policy requires updates on attributes to store subject’s usage history on



Attribute Mutability in Usage Control 11

objects for usage decision process. This is shown in the following Example
4. No temporary attribute is used in example 3 and 4. Sandhu has shown how
to express Chinese Wall policies in a lattice-based approach [Sandhu, 1992].
Both approaches can be easily realized in UCON models.

Example 4Brewer and Nash’s Chinese wall policy
clName is a set of conflict of interest class names.
coName is a set of company names.
cl : O → clName, co : O → coName
accessedCl : S → 2clName, accessedCo : S → 2coName

ATT (S) = {accessedCl, accessedCo}, ATT (O) = {cl, co}

allowed(s, o, read) ⇒ (co(o) ∈ accessedCo(s))∨ (cl(o) /∈ accessedCl(s))
preUpdate(accessedCo(s)) : accessedCo(s) = accessedCo(s) ∪ co(o)
preUpdate(accessedCl(s)) : accessedCl(s) = accessedCl(s) ∪ cl(o)
allowed(s, o, write) ⇒ ((co(o) ∈ accessedCo(s))∨

(cl(o) /∈ accessedCl(s)) ∧ (accessedCo(s) ∪ co(o) = co(o))
preUpdate(accessedCo(s)) : accessedCo(s) = accessedCo(s) ∪ co(o)
preUpdate(accessedCl(s)) : accessedCl(s) = accessedCl(s) ∪ cl(o)

Mutability for Consumable/Creditable Attributes. Mutability for con-
sumable or creditable attributes means that the value of an attribute has to be
either decreased (or consumed) or increased (or credited) as side effects of us-
ages for either current or future usage decisions. We can distinguish these two
as mutability forconsumable attributesand mutability forcreditable attributes.

In modern information systems, it is common to have a consumable rights or
attributes for usage control. Digital rights management (DRM) with payment-
based authorization is a typical example. With payment-based authorization,
each usage allowance requires updates on credit balance. Commonly, a sub-
ject’s credit balance has to be decreased by the amount of an object’s value.
Examples are a limited number of usages, a limited period of usage time, etc.
In the initial policy of Apple’s iTunes digital music service, a user is allowed
only 10 times of CD burnings for an identical list of music files. In this case,
we can consider the list of music files as an object and the object is associated
with an attribute that includes available number of CD burning. In the follow-
ing example, each burning reduces the number of available burnings by 1.

Example 5Mutability for consumable attributes, limited CD burnings
N is a set of natural number,available : O → N , ATT (o) : {available}
allowed(s, o, burn) ⇒ available(o) ≥ 1
preUpdate(available(o)) : available(o) = available(o)− 1



12

We can think of an opposite case of mutability for creditable attributes where
certain attributes are credited as a consequence of usages. This is categorized
as mutability for creditable attribute. Modern information systems often re-
quire attribute mutability for creditable attributes. Suppose, in a hospital infor-
mation system, a nurse has to have a minimum five times of operation observa-
tions to participate an operation. In the following example, this can be realized
by updating a subject attribute called ‘exp’ that stores ‘observation number’.

Example 6Mutability for creditable attributes, Hospital information system
ROLE is an unordered set of roles
TY PE is a set of object types
N is a set of subject’s total operation observation numbers
exp : S → N , sRole : S → 2ROLE , oType : O → TY PE
ATT (s) : {sRole, exp}, ATT (o) : {oType}

allowed(s, o, observe) ⇒ ‘nurse’ ∈ sRole(s), oType(o) = ‘operation’
preUpdate(exp(s)) : exp(s) = exp(s) + 1
allowed(s, o, participate) ⇒ ‘nurse’ ∈ sRole(s),

oType(o) = ‘operation’ , exp(s) ≥ 5

Mutability for Immediate Revocation. When used together with continu-
ity property, attribute mutability can be utilized to support immediate revoca-
tion of usage. With continuity property, usage decision can be made contin-
uously throughout usages. Hence, a system has to keep updating temporary
or persistent attributes to resolve current status of usages for immediate revo-
cation of current usage. Example 1 and 2 are examples that requires mutable
attributes for immediate revocation.

Mutability for Obligation. Obligation is one of the decision factors in us-
age control. In obligation-based usage decision, an obligation subject has to
fulfill required obligation actions for usage allowance. The result of obligation
fulfillment has to be reflected in a form of attribute update and can be used for
both current and future usage decisions. In the following example, a subject
has to click a license agreement button for usage. The result of this obligation
fulfillment is reflected in a subject attribute. This modified attribute is used for
usage decision.

Example 7License agreements for first time users only
OBS = S, OBO = {license agreement}, OB = {agree}
registered : S → {yes, no}
ATT (s) = {registered}
getPreOBL(s, o, r) =



Attribute Mutability in Usage Control 13

{
(s, license agreement, agree), if registered(s) =‘no’;
φ, if registered(s) =‘yes’.

allowed(s, o, r) ⇒ preFulfilled(getPreOBL(s, o, r))
preUpdate(registered(s)) : registered(s) = ‘yes’

Mutability for Dynamic Confinement. In usage control, attribute update
can occur for dynamic confinements. In this case, attributes are updated for
dynamic controls on usages. High-watermark property in mandatory access
control is a traditional example. With high-watermark property, although a
subject has top-secret clearance, the subject’s clearance is assigned with ‘un-
classified’ label at the beginning. However, as the subject accesses a secret
object, his clearance is increased to secret label and he is no longer able to
write on lower objects.

Example 8MAC policies with high watermark property
L is a lattice of security labels with dominance relation≥
clearance : S → L, maxClearance : S → L, classification : O → L
ATT (S) = {clearance, maxClearance}, ATT (O) = {classification}

allowed(s, o, read) ⇒ maxClearance(s) ≥ classification(o)
preUpdate(clearance(s)) : clearance(s) =

LUB(clearance(s), classification(o))

5. Discussion

Mutability variations that we have identified are not meant to be mutually
exclusive. Rather real world examples are likely to include attribute mutability
for multiple purposes. Suppose a subject has to click advertisement windows
at least once in every 20 minutes for continuous Internet services. In this case,
the system has to keep updating last click time of the subject throughout the
connection. This example requires attribute mutability for both obligations
and immediate revocations. Another example can be borrowed from [Sandhu,
1988] to show how one example can exhibit multiple mutability variations.
Suppose a check issuing process includes three order-dependent steps of ‘pre-
pare check’, ‘approve check’ and ‘issue check’. If each step has to be per-
formed by a different subject, this requires attribute mutability for exclusive
attributes. Also if 3 approvals on a check are required to issue the check or if
each step has to be performed in an ordered manner for the authorization of the
following steps, these require attribute mutability for creditable attributes.

For access control policies or rules that require attribute mutability, updates
can be made on either subject attributes or object attributes. For example,
consider Example 3, object-based DSoD. Here, once a subject has prepared



14

a check, subject ID is stored as an object attribute calledprepareId. Al-
though thisobject attribute updatemight be more intuitive, same result can
be achieved by implementing asubject attribute update. In this case, as shown
in Example 9, if we create a subject attribute calledpreparedObjId to store
prepared object IDs, usage decision for issuing a check can be made by check-
ing whether the currently requested object is found in the subject attribute
preparedObjId. Although one way may be preferred to the other for differ-
ent policy examples, this is likely to be a design decision rather than a concrete
preference rules between subject attribute update and object attribute update.

Example 9Object-based DSoD with subject attribute update
ID is a set of identification number.T is a set of object type name.
ROLE is a partially ordered set of role names.R = {issue, prepare}
oid : O → ID, sRole : S → 2ROLE , type : O → T
preparedObjId : S → 2ID, issuedObjId : S → 2ID

ATT (s) = {sRole, preparedObjId, issuedObjId}, ATT (o) = {type, oid}

allowed(s, o, prepare) ⇒ type(o) = ‘check’ , sRole(s) ≥ ‘purchaseClerk’
preUpdate(preparedObjId(s)) : preparedObjId(s) =

preparedObjId(s) ∪ oid(o)
allowed(s, o, issue) ⇒ type(o) = ‘check’ , sRole(s) ≥ ‘accountClerk’ ,

oid(o) /∈ preparedObjId(s)
preUpdate(issuedObjId(s)) : issuedObjId(s) = issuedObjId(s)∪oid(o)

6. Conclusion

In this paper we have defined a taxonomy for attribute management to show
how attributes can be controlled in usage control and how attribute mutability
has to be viewed in the context of attribute management. We have further
discussed mutable attributes and identified temporary and persistent attributes.
We have also discussed several attribute mutability variations based on the
purposes of mutability. Several examples has been discussed in UCON’s point
of view to show how mutable attributes are utilized in traditional and modern
access control policies.

Attribute mutability is not new and has appeared in several traditional access
control policies such as Dynamic Separation of Duty, Chinese Wall policy, or
mandatory access control with high watermark property. Each of these poli-
cies has been studied extensively but separately. In usage control these policies
are captured in a single framework together with other access control policies
for modern information systems such as digital rights management or hospital
information systems. When used together with continuity property and obli-
gations, attribute mutability property can be utilized for various purposes as



Attribute Mutability in Usage Control 15

shown in this paper. This paper is an initial step on this line of work and
only covers mutable attribute issues. Further research on both mutable and im-
mutable attributes is required. We believe the study has been done in this paper
provides a foundation for future research on attribute management and usage
control.

References

[Brewer and Nash, 1989]Brewer, D. and Nash, M. (1989). The Chinese Wall security policy.
In Proceedings of IEEE Symposium on Security and Privacy, pages 215–228.

[Gligor et al., 1998] Gligor, V., Gavrila, S., and Ferraiolo, D. (1998). On the formal definition
of separation-of-duty policies and their composition. InProceedings of IEEE Symposium
on Security and Privacy, pages 172 – 183.

[Park and Sandhu, 2002]Park, J. and Sandhu, R. (2002). Towards usage control models: be-
yond traditional access control. InProceedings of the seventh ACM symposium on Access
control models and technologies, pages 57–64. ACM Press.

[Park and Sandhu, 2004]Park, J. and Sandhu, R. (2004). TheUCONABC usage control
model.ACM Transactions on Information and Systems Security, 7(1):128–174.

[Sandhu, 1988]Sandhu, R. (1988). Transaction control expressions for separation of duties. In
Proc. of the Fourth Computer Security Applications Conference, pages 282–286.

[Sandhu, 1990]Sandhu, R. (1990). Separation of duties in computerized information systems.
In IFIP Workshop on Database Security, pages 179–190.

[Sandhu, 1992]Sandhu, R. (1992). Lattice-based enforcement of chinese walls.Computer and
Security, pages 753–763.

[Sandhu and Park, 2003]Sandhu, R. and Park, J. (2003). Usage control: A vision for next gen-
eration access control. InProceedings of The 2nd International Workshop on Mathematical
Methods, Models and Architectures for Computer Networks Security, pages 17–31.

[Simon and Zurko, 1997]Simon, R. T. and Zurko, M. E. (1997). Separation of duty in role-
based environments. InIEEE Computer Security Foundations Workshop, pages 183–194.

Biography

Jaehong Park is a post-doc in Lab for Information Security Technology
(LIST), George Mason University. His research interests include access con-
trol, digital rights management, and trusted computing.

Xinwen Zhang is a doctoral student in Lab for Information Security Tech-
nology (LIST), George Mason University. His research interests include access
control models and technologies, and distributed systems security.

Ravi Sandhu is a Professor in Dept. of Information and Software Engi-
neering, George Mason University, the director of Lab for Information Secu-
rity Technology (LIST), and the Chief Scientist of NSD Security. His research
areas include access control models, database security, network security, and
distributed system security.


