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Abstract. In this paper we present the design of a scalable and secure cryptographic service that can
be adopted to support large-scale networked systems, which may require strong authentication from a
large population of users. Since the users may not be able to adequately protect their cryptographic
credentials, our service leverages some better protected servers to help fulfill such authentication needs.
Compared with previous proposals, our service has the following features: (1) it incorporates a 3-factor
authentication mechanism, which facilitates compromise detection; (2) it supports immediate revocation of
a cryptographic functionality in question; (3) the damage due to the compromise of a server is contained;
(4) it is scalable and highly available.
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1 Introduction

Large-scale networked systems, such as peer-to-peer and grid systems, must be adequately protected;
otherwise they may be abused or exploited to do more harm than good — Distributed Denial-of-Service
(DDoS) attacks are just an example. An important aspect of secure large-scale networked systems is
to enforce strong authentication, which would require a large population of users to utilize some
cryptosystems such as digital signatures. Due to the very nature of cryptography, assurance offered
by such authentications perhaps cannot be any better than security (or secrecy) of the corresponding
cryptographic keys or functionalities. This is because compromise of a cryptographic key would allow
the adversary to perfectly impersonate the victim user. The threat is amplified by the fact that average
users often do not have the expertise or skill to secure their own computers, which may be justified
by the fact that there have been many Botnets that consist of many compromised computers.

1.1 Our Contributions

We present the design of a scalable and secure cryptographic service that can be adopted to support
large-scale networked systems, which require strong authentication from a large population of users.
Our approach leverages some better protected servers to help accommodate such authentication needs.
Specifically, the servers may provide cryptographic services to the users, perhaps for some economic or
social incentives. Compared with previous proposals for a similar purpose, our service has the following
features:

* It incorporates a 3-factor authentication mechanism so that a signature may be produced in a
certain way when a request: (1) presents a valid password (i.e., what you know); (2) is initiated
from a party having access to the user’s soft-token (i.e., what you have); (3) presents a valid fresh
one-time secret (i.e., whether you always have access to the soft-token). As a result, the resulting
service provides a compromise detection capability that may be of independent value.

* It supports a convenient key disabling that can be done using a standard username/password
authentication. This is useful, for instance, when a user’s device is stolen on a business trip, the
user can disable its private key without having access to a backup of the content on its stolen
device.



* The damage due to the compromise of a server is confined to a subset of the users subscribing to its
service. Furthermore, the users associated with a compromised server do not have to re-initialize
their private keys, unless they suspect that their own machines might have been compromised.

* It is scalable due to its “decentralized” nature (i.e., each server only serves a subset of users). It
is highly available since a single server is enough to help a user fulfill its task. While we do not
explore the details of utilizing the state machine approach [30] to securely replicate a server, it
should not be difficult to extend our solution to fulfill such replications. In particular, in a related
prior scheme we proposed [31], threshold cryptosystems have been adopted to fulfill distributed
password-based authentication and signing.

1.2 Related Work

The simplest approach to securing cryptographic keys or functionalities is to let each user utilize some
tamper-resistant hardware device. The industry has started to provide machines equipped with Trusted
Platform Module (TPM) as specified by the Trusted Computing Group (www.trustedcomputinggroup.com).
However, there are many legacy computers that need be better protected, meaning that alternate so-
lutions are still useful.

One alternate approach to protecting cryptographic keys is to encrypt a key with a password; this
is indeed widely deployed in real-life systems. However, the resulting security assurance is quite weak
because, once a computer is compromised, the adversary can obtain the cryptographic keys without
even conducting an off-line dictionary attack. Another approach is to let a user store its cryptographic
key in a remote server, and download the key from the server after a password-based authentication
[26]. This approach still allows the adversary, who can compromise a user’s computer, to obtain the
private key in question. Moveover, the remote server has to be trusted.

Our scheme follows the paradigm of “cryptography as a service” [13]. (This paradigm is different
from the server-aided protocols [25, 2], which were motivated to utilize a computationally powerful
server to help a computationally poor device conduct expensive cryptographic computations.) In
particular, we adopt as a starting point the proposal due to MacKenzie and Reiter [23], which follows
[10, 17]. The basic idea common to [23, 10, 17] as well as a similar result [9] is to split a private key
into two shares such that one share (often called “soft-token”) is stored at the user device, and the
other is stored at a remote server. The shares may be protected with some tricky methods. Unlike the
approaches mentioned above, the resulting scheme does not have any single point of failure.

For concreteness, we assume in our presentation that a service provider deploys a single server.
In practice, the server may deploy some advanced cryptographic constructs such as forward-security
cryptosystems [1, 3, 20], key-insulated cryptosystems [15] and intrusion-resilient cryptosystems [21].
Moreover, password authentications can also be extended to accommodate the case of multiple servers
[24, 31]. Such extensions are orthogonal to the approach of the present paper, meaning that they can
be seamlessly integrated together in practice for a better protection.

Outline: In Section 2 we present some necessary cryptographic preliminaries. In Section 3 we introduce
the soft-token system model. In Section 4 we present a building block, which is utilized in Section 5
to construct the full-fledged service scheme. We conclude the paper in Section 6.

2 Cryptographic Preliminaries

Let k be the main security parameter (e.g., k = 160), and λ be a secondary security parameter for
public keys (e.g., λ = 1024 means we use 1024-bit RSA moduli). Let H (with an additional subscript
as needed) be a hash function that, unless otherwise stated, is assumed to behave like a random oracle
[16, 5] with range {0, 1}k . A function ε : N → R

+ is negligible if for any c there exists κc such that
∀κ > κc we have ε(κ) < 1/κc.
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Pseudorandom functions. A pseudorandom function (PRF) family {fv} parameterized by a secret
value v has the following property [18]: It is computationally infeasible to distinguish an oracle for fv,
where v is uniformly chosen at random, from an oracle for a random function (with the same domain
and range).

Message authentication codes. We assume the standard property of message authentication codes
(MACs): If the key a is unknown, then given multiple pairs 〈mi,MACa(mi)〉 where the mi’s may be
adaptively chosen, it is computationally infeasible to compute any pair 〈m,MACa(m)〉 where m �= mi.

Public key cryptosystems. An public key cryptosystem E is a triple (GEN,E,D) of polynomial-
time algorithms, where the first two are probabilistic. GEN , taking as input 1λ, outputs a key pair
(pk, sk). E, taking as input a public key pk and a message m, outputs an encryption c for m. D, taking
as input a ciphertext c and a private key sk, returns a message m when c is valid and ⊥ otherwise. We
assume an encryption scheme that is secure against adaptive chosen-ciphertext attack [28]. Basically,
an attacker A is given pk and allowed to query the decryption oracle. At some point A generates two
equal length strings X0 and X1 and sends them to a test oracle, which chooses b ∈R {0, 1} and returns
Y = Epk(Xb). Then A continues querying the decryption oracle, with the restriction that it cannot
query the decryption of Y . Finally, A output b′. We say A succeeds if b = b′. Practical schemes are
available [6, 12].

Digital signature schemes. A digital signature scheme S is a triple (GEN,S, V ) of polynomial-time
algorithms, where the first two are probabilistic. GEN , taking as input 1λ, outputs a key pair (pk, sk).
S, taking as input a message m and a private key sk, outputs a signature σ for m. V , taking as input
a message m, a public key pk, and a candidate signature σ, returns b = 1 if σ is a valid signature for m
and b = 0 otherwise. We assume a signature scheme that is existentially unforgeable under adaptive
chose-message attack [19]: a forger is given pk; it is allowed to query a signature oracle on messages
of its choice; it succeeds if it outputs a valid signature for m that is not one of the messages signed
before.

3 Model and Goals

System model. There are a set of users and a set of servers that are operated by one or more
service providers. As in a standard Public Key Infrastructure (PKI), a server has a pair of public and
private keys, and so is a user. All the users and servers are modeled as probabilistic polynomial-time
algorithms. A user splits its private key into two shares after a certain cryptographic transformation;
roughly speaking, one share is stored on the user side (perhaps being encrypted with a password) and
the other is stored on a remote server. A soft-token is a data structure a user stores. A soft-token
(containing a user-side key share) may be stateful, so we may denote by token(i) the soft-token after
the ith transaction in which it is utilized.

A server has two interfaces: one for producing signatures and the other for disabling private keys.
The resulting signatures can be verified using the public keys of the users, and thus can be used for
authentication in higher-layer applications such as large-scale networked systems mentioned above.
In order for a user to produce a signature corresponding to its private key, the user conducts an
interaction with a server, which collaborates with the claimed user only when the user successfully
authenticates itself. In order for a user to disable its private key, the user needs to succeed in a certain
authentication operation. A server maintains a database for recording relevant information that would
allow the service provider to take actions (e.g., gathering payment when the service is payment-based).

Adversary. We consider an adversary who may have control over the network to some extent. The
adversary may compromise certain resources including a user’s soft-token, a user’s password, and a
server’s private key. The adversary may break into a user’s device when the client software is active,
which means that we consider an adversary that is strictly more powerful than the adversary considered
in previous soft-token systems. We assume that integrity of the server side (e.g., the database) is
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guaranteed, even if an adversary may be able to compromise the server’s private key. This also models
the situation where a semi-trusted server may be honest in performing the protocol, but curious about
the users’ private keys.
Goals. Let κ be the primary security parameter. A cryptographic service should have the following
properties:

* Abuse prevention. Consider a fixed pair of 〈user, server〉, where the user possesses a soft-token
token and a password pwd. Denote by ADV(R) the type of adversary who succeeds in capturing
the resource elements of R ⊆ {token, server, pwd}. When we say that an adversary ADV has
access to token we mean that token is always available to ADV; when we say that ADV has access
to �token(i) we mean that ADV does not have access to token(i) but perhaps has access to token(j)

for 0 ≤ j < i. Specifically,
1. An adversary of type ADV{server, pwd} can forge signatures that are valid with respect to

the user’s public key with a negligible probability in κ.
2. An adversary of type ADV{token, server} can forge signatures that are valid with respect to

the user’s public key only when the adversary succeeds in off-line dictionary guessing the user’s
password.

3. An adversary of type ADV{token} can forge signatures that are valid with respect to the user’s
public key with probability negligibly more than q/|D| after q invocations of the server, where
D is the dictionary from which the user’s password is randomly drawn.

4. An adversary of type ADV{token, pwd} can output — with only a probability negligible in κ
— signatures that are valid with respect to the user’s public key after the user’s private key is
disabled.

5. An adversary of type ADV{�token(i), pwd} can output — with only a probability negligible in
κ — signatures that are valid with respect to the user’s public key after the user finishes the
ith transaction and before the user initiates the (i+ 1)th transaction.

* Compromise detection. The system itself can detect the compromise that an adversary has succeeded
in impersonating the user for producing signatures.

* Immediate revocation. A user can request a server to disable its private key by executing a standard
username/password authentication.

* Compromise confinement. The impact due to the compromise of a server is contained to a subset of
the users subscribing to its service. Moreover, these users do not have to re-initialize their private
keys.

* Scalability. The system can serve a large population of users.
* High availability. The system is highly available, even if some servers are under DDoS attacks.

4 Building Block: A Single Server Soft-Token Scheme

In this section we present a building block, which is extended from a scheme presented in [23] and
will be incorporated into our full-fledged scheme in Section 5. Suppose the server’s public data (e.g.,
public key) are available to the users, and consider a fixed pair of 〈user, server〉. The user runs the
initialization process to generate a soft-token token(0) using its public and secret data as well as the
server’s public data. In the ith transaction (i = 1, 2, · · ·), the user, who has access to token(i−1) that
is generated in the (i− 1)th transaction or in the initialization process when i = 1, signs a message by
interacting with the server. The server collaborates with the claimed user only when the user presents
the password and the state information ϑ chosen by the server in the last transaction. At the end of the
ith transaction, the user obtains the signature, generates a new token token(i) using the cryptographic
state information ϑ chosen by the server, and erases token(i−1). Correspondingly, the server tracks the
changes of the ϑ’s in its database.

Denote a user’s public key by pkuser = 〈e,N〉 and private key by skuser = 〈d,N, φ(N)〉, where
ed = 1 mod φ(N), N is the product of two large prime numbers, and φ is the Euler totient function.
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In the standard encode-then-sign paradigm, the signature sig on message m is S〈d,N,φ(N)〉(m) = 〈r, s〉,
where r ∈R {0, 1}lenpad , s = (encode(m, r))d mod N for some encoding function encode. A signature
〈r, s〉 can be verified by checking if se = encode(m, r) mod N . The function encode could be either
deterministic (e.g., lenpad = 0 in the case of hash-and-sign [14]) or probabilistic (e.g., PSS [7]), these
types of signatures were proven secure against adaptive chosen-message attacks in the random oracle
model. The basic idea for splitting the private key d is to let d1 + d2 = d mod φ(N).

The scheme has the following components.

Token initialization. SupposeH1 : {0, 1}∗ −→ {0, 1}k and f : {0, 1}∗ → {0, 1}λ+k . The inputs are the
server’s public encryption key pkserver, the user’s password pwd, the user’s public key pkuser = 〈e,N〉
and private key skuser = 〈d,N, φ(N)〉. The initialization proceeds as follows.

uid = username
v ∈R {0, 1}k
a ∈R {0, 1}k
b = H1(pwd)
d1 = f(v, pwd)
d2 = d− d1 mod φ(N)
τ = Epkserver(〈a, b, uid, d2 , N〉)
ct = 0
st ∈R {0, 1}k
token = (ct, st, v, a, τ, e,N, pkserver)

The user chooses its own uid – a memorizable string such as its email address. The soft-token is
token = (ct, st, v, a, τ, e,N, pkserver), where ct is an incremental counter indicating the serial number
of a transaction (which is used for simplifying the description), st is the state information that will
be chosen by the server (for the time being of ct = 0, it is just a placeholder). All the other values,
including b, d, d1, d2, φ(N), and pwd, are erased.

Server database. The server maintains a database of Υ = (τ, uid, count, ϑ,m, r), which represents a
transaction corresponding to τ = Epkserver(〈a, b, uid, d2, N〉), where uid is obtained after receiving the
first service request, count is an incremental counter (with initialized value zero) maintained by the
server. There are two types of operations regarding the database. First, append(τ, uid, count, ϑ,m, r)
appends the tuple (τ, uid, count, ϑ,m, r) into the database. Second, last(τ, uid, count, ϑ,m, r) returns
either the tuple (τ, uid, count, ϑ,m, r) corresponding to the last transaction corresponding to τ , or
NULL meaning that the token corresponding to τ has never been used before.

Signing protocol. The user runs the client software, which prompts the user to enter the password
pwd, to get the to-be-signed message m as well as the soft-token token = (ct, st, v, a, τ, e,N, pkserver).
The protocol is depicted in Fig. 1. Let us briefly explain the functions of the protocol components:

* β is a value showing that the user knows the password pwd;
* ρ1 and ρ2 are two one-time pads chosen by the user, and will be used by the server to encrypt

the state information ϑ and the partial signature σ (produced using the partial private key d2),
respectively;

* ρ3 is a one-time message authentication key that allows the user to detect compromise of token
because, otherwise, the adversary could tamper with θ while keeping η intact;

* r is a lenpad-bit random string used in the encoding function;
* γ is the encryption of m, r, β, st, ρ1, ρ2, and ρ3;
* δ and ϕ are message authentication codes computed using a and ρ3, respectively. (Note that both
δ and ϕ are not for preventing abuses, but for detecting attacks.)

Key disabling protocol. In order to disable its private key, the user authenticates itself to the server
by conducting a standard username/password authentication protocol corresponding to uid/pwd. The
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USER SERVER

token = (ct, st, v, a, τ, e, N, pkserver), β = H1(pwd)

ρ1 ∈R {0, 1}k, ρ2 ∈R {0, 1}λ, ρ3 ∈R {0, 1}k, r ∈R {0, 1}lenpad

γ = Epkserver (〈m, r, β, st, ρ1, ρ2, ρ3〉)
δ = MACa(〈γ, τ 〉)

(γ, τ, δ)
→

abort IF τ has been disabled

〈a, b, uid, d2, N〉 = Dskserver (τ )
abort IF MACa(〈γ, τ 〉) �= δ
Υ = last(τ, uid, count, ϑ′, m′, r′)
〈m,r, β, st, ρ1, ρ2, ρ3〉 = Dskserver (γ)
abort IF β �= b
abort IF Υ �= NULL ∧ st �= ϑ′

σ = (encode(m,r))d2 mod N

ϑ ∈R {0, 1}k
θ = ϑ⊕ ρ1, η = σ ⊕ ρ2, ϕ = MACρ3(〈θ, η〉)
count = count + 1
append(τ, uid, count, ϑ,m, r)

(θ, η, ϕ)
←

abort IF MACρ3(〈θ, η〉) �= ϕ, σ = η ⊕ ρ2, d1 = f(v, pwd)

s = σ · (encode(m,r))d1 mod N
abort IF se �= encode(m, r)
st = θ ⊕ ρ1, ct = ct + 1, token′ = (ct, st, v, a, τ, e, N, pkserver)
erase β, d1, ρ1, ρ2, ρ3, θ, η, ϕ, ϑ, token

Fig. 1. Building block: a single-server scheme with stateful soft-tokens

server will query its database to get b = H1(pwd) from 〈a, b, uid, d2, N〉 = Dskserver(τ), where τ
corresponds to uid. Note that any secure password protocol (e.g., [8, 4, 11, 22]) can be used for this
purpose.

4.1 Discussions

On 3-factor authentication. Previous key-split schemes (such as [23]) employ a 2-factor authentica-
tion mechanism based on a password and a soft-token. Whereas, we employ a 3-factor authentication
mechanism so that a signature is produced when a request

1. presents a valid password (i.e., what you know),
2. is initiated from a party having access to the user’s soft-token (i.e., what you have), and
3. presents a valid fresh one-time secret (i.e., whether you always have access to the soft-token).

Indeed, the last factor helps achieve the newly introduced compromise detection and the enhanced
abuse prevention (see Section 4.2). Note that the newly offered compromise detection is not fulfilled
via an out-of-band intrusion detection system, which however may be deployed to implement another
layer of protection.
On atomicity of the transactions. We assumed that atomicity of the transactions is ensured. This
may be problematic when, for example, the servers are under a DDoS attack. This issue is addressed
via another layer of assurance for synchronization in Section 5.
On light-weight key disabling. Allowing a user to disable its private key via a standard user-
name/password authentication has the advantage that a user does not have to resort to its soft-token,
which may not be available (e.g., when the user’s device is stolen). Although this convenience seem-
ingly gives an adversary the chance to impose denial-of-service attack (i.e., the adversary can request
the server to disable the user’s private key), we argue that there are no sever consequences.
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1. An adversary knows nothing about a user’s token or password. In this case the adversary can con-
duct an on-line dictionary attack against the user’s password. This is sever if the on-line dictionary
attack can be launched by a software program. Fortunately, there exist some effective methods
(e.g., [27]) to force the adversary to conduct a manual on-line dictionary attack. It is likely that
no adversary would conduct a manual on-line dictionary attack.

2. An adversary knows a user’s token but not password. In this case, it is seemingly more attractive
for the adversary to manage to get the user’s password so that he can produce signatures (rather
than disable its private key). Moreover, the user might also have to disable its private key once
the user realized that its soft-token has been compromised.

3. An adversary knows a user’s password but not token. In this case, the adversary can always disable
the user’s private key. We argue that this is no severe consequence because the user may also have
to disable its private key once the user realized that its password has been compromised. Moreover,
it might be unlikely that an adversary knows a user’s password but not the user’s token because
the adversary could typically have had access to a user’s computer (and token thereof). This is
equivalent to the next case.

4. An adversary knows a user’s token and password. This means that the adversary is already able
to produce signatures by contacting the server, which is perhaps more attractive than to conduct
a denial-of-service attack by disabling the victim user’s private key.

4.2 Analysis

Our scheme does not incur any significant extra complexity, when compared with the starting-point
scheme in [23]. Specifically, a soft-token keeps some state information (e.g., 160 bits), and a server
keeps some state information linear to the number of users (which can be easily mitigated by letting
the server use a pseudorandom function). Moreover, no extra exponentiations are imposed on a user
or a server. Below we analyze the security properties.

Proposition 1. The single server scheme implements some of the requirements specified in Section
3 (the others will be fulfilled in the full-fledged scheme via another layer of protection).

* Abuse prevention. This is analyzed in Theorem 1-5. Note that the first four theorems as well as
their proofs are extended from [23], and Theorem 5 has no counterpart in [23].

* Compromise detection. Suppose atomicity of the transactions and integrity of the server are guar-
anteed. Lack of synchronization means that either an adversary had succeeded in impersonating the
user, or the token had been tampered with. Note that this assurance is not offered in the original
scheme in [23].

* Immediate revocation. This is true since the request for disabling a private key is authenticated by
pwd, whereas uid is also remembered by the user. Note that this assurance is not offered in the
original scheme in [23].

In order to prove the abuse prevention, we introduce the following formal security model. Denote
D-RSA[E ,D] the real-world single-server signing system based on an encryption scheme E for the
server and dictionary D. An adversary is given 〈e,N〉 where (〈e,N〉, 〈d,N, φ(N)〉) ←− GENRSA(1λ),
the public data generated in the initialization procedure, and certain secret data of the user and/or
server (depending on the type of the adversary). The goal of the adversary is to forge RSA signatures
with respect to 〈e,N〉. The adversary is allowed to have the following types of oracle queries:

1. start(m) – This results in a user to initiate the protocol. The oracle may execute according to the
protocol, maintain state as appropriate (i.e., there is an implicit notion of sessions), and return
(γ, τ, δ).

2. serve(γ, τ, δ) – This represents the receipt of a message ostensively from the user. The oracle may
execute according to the protocol to return (θ, η, ϕ).
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3. finish(θ, η, ϕ) – This represents the receipt of a response ostensively from the server. The oracle
may execute according to the protocol to return a valid signature.

An adversary of type ADV{server, pwd}, ADV{token, server}, or ADV{token} succeeds in break-
ing the scheme if it can output a valid signature 〈r, s〉 on message m and there was no start(m) query.
An adversary of type ADV{token, pwd} succeeds in breaking the scheme if it can output a valid signa-
ture 〈r, s〉 on message m and there was no serve(γ, τ, δ) query, where 〈m, ∗, ∗, ∗, ∗, ∗, ∗〉 = Dskserver(γ).
An adversary of type ADV{�token(i), pwd} succeeds in breaking the scheme if it can output a valid
signature 〈r, s〉 on message m after the user finishes the ith transaction and before the user initiates the
(i+ 1)th transaction, and there was no serve(γ, τ, δ) query such that 〈m, ∗, ∗, ∗, ∗, ∗, ∗〉 = Dskserver(γ).

Denote by quser the number of start(·) queries to the user, qserver the number of serve(·, ·, ·) queries
to the server. Let qh and qf be the number of queries to the random oracles h and f , respectively. Let
qo be the number of other oracle queries not counted above. Let q = (quser, qserver, qh, qf , qo). We also
denote by |q| = quser + qserver + qh + qf + qo as the total number of oracle queries.

We say an adversary (q, ε)-breaks D-RSA if it makes q oracle queries (of the respective types and to
the respective oracles) and succeeds with probability at least ε. In the following, “≈” means equality
within negligible factors.

We say an attacker A (q, ε)-breaks E if the attacker makes q queries to the decryption oracle and
2 ·Pr[A succeeds]− 1 ≥ ε, which implies Pr[A outputs 0|b = 0]−Pr[A outputs 0|b = 1] ≥ ε. Note that
if E uses random oracles, the oracles may be queried by the attacker along with the encryption oracle.

We say a forger (q, ε)-breaks a signature scheme if it makes q queries and succeeds with probability
at least ε. Note that if S uses random oracles, the oracles may be queried by the forger along with the
signature oracle.

Theorem 1. Suppose {fv} is a pseudorandom function family. If an adversary F of type ADV{server, pwd}
can (q, ε)-break D-RSA[E ,D] system, then there exists a forger F∗ able to (quser, ε′)-break the under-
lying RSA signature scheme, where ε′ ≈ ε.

Proof. (sketch) Suppose F∗ is given a RSA public key 〈e,N〉. The simulation goes as follows.

* F∗ generates a pair of public and private keys (pkserver, skserver) on behalf of the server, and chooses
a password pwd ∈R D on behalf of the user. It generates ct, st, uid, v, a, b, d1 = f(v, pwd) as in the
initialization protocol. However, it sets d2 ∈R Z∗

N . It also generates τ = Epkserver(〈a, b, uid, d2, N〉)
and outputs token = (ct, st, v, a, τ, e,N, pkserver). Finally, F∗ gives pkuser = 〈e,N〉, pkserver,
skserver, and pwd to F .

* F∗ responds to a start(m) query by querying the RSA signature oracle to get sig = 〈r, s〉 and
executing according to the protocol, except using r returned by the signature oracle. Finally, it
returns (γ, τ, δ).

* F∗ responds to a serve(γ, τ, δ) query as in a real execution by aborting or returning (θ, η, ϕ).
* F∗ responds to a finish(θ, η, ϕ) query corresponding to a start(m) query by checking ifMACρ3(〈θ, η〉) =
ϕ, computing σ = η ⊕ ρ2 and checking if σ = (encode(m, r))d2 mod N , where ρ2 and ρ3 are from
the start (m) query. If any of the two conditions is not satisfied, F∗ aborts the user as in a real
execution; otherwise, F∗ returns sig = 〈r, s〉 obtained from the signature oracle and generates a
new token as in a real execution.

Denote by ε′ the probability that F succeeds in forging a signature in the above simulation.
Consider an experiment in which fv is replaced with a random function. Denote by ε′′ the probability
that F succeeds in forging a signature in the experiment. Due to the statistical indistinguishability
between the simulation and the experiment, we have ε′ ≈ ε′′. Due to the pseudorandomness of fv, we
have ε ≈ ε′′. Therefore, F∗ succeeds in forging a signature with probability at least ε′ ≈ ε after quser
queries to the signature oracle. ��
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Theorem 2. Let h and f be random oracles. If an adversary F of type ADV{token, server} can
(q, ε)-break D-RSA[E ,D] system, then there exists a forger F∗ able to (quser, ε′)-break the underlying
RSA signature scheme, where ε′ ≈ ε− qh+qf

|D| .

Proof. (sketch) Suppose F∗ is given a RSA public key 〈e,N〉. The simulation goes as follows.

* F∗ generates a pair of public and private keys (pkserver, skserver) on behalf of the server, and
chooses a password pwd ∈R D on behalf of the user. It generates ct, st, uid, v, a, b, d1 = f(v, pwd)
as in the initialization protocol. However, it generates d2 by choosing d2 ∈R Z∗

N . It generates
τ = Epkserver(〈a, b, uid, d2, N〉) and outputs token = (ct, st, v, a, τ, e,N, pkserver). Finally, F∗ gives
token and skserver to F .

* F∗ responds to a start(m) query by querying the signature oracle to get sig = 〈r, s〉 and executing
according to the protocol, except using r returned by the signature oracle. Finally, it returns
(γ, τ, δ).

* F∗ responds to a serve(γ, τ, δ) query as in a real execution by aborting or returning (θ, η, ϕ).
* F∗ responds to a finish(θ, η, ϕ) query corresponding to a start(m) query by checking ifMACρ3(〈θ, η〉) =
ϕ, computing σ = η ⊕ ρ2 and checking if σ = (encode(m, r))d2 mod N , where ρ2 and ρ3 are from
the start (m) query. If any of the two conditions is not satisfied, F∗ aborts the user as in a real
execution; otherwise, F∗ returns sig = 〈r, s〉 obtained from the signature oracle, generates a new
token as in a real execution. The new token is also given to the adversary.

* F∗ responds to a h(pwd∗) or f(v∗, pwd∗) query as a normal random oracle, except that F∗ aborts
the simulation if pwd∗ = pwd in a h(·) query, or v∗ = v and pwd∗ = pwd in a f(·, ·) query.

The simulation is indistinguishable from the real-world execution, unless F hits pwd, which happens
with probability negligibly more than qh+qf

|D| . Therefore, Pr[F∗ succeeds] = Pr[F succeeds ∧ � F hits

pwd] ≥ ε− qh+qf
|D| . ��

Theorem 3. Suppose H1 has a negligible probability of collision over D. If an adversary A of type
ADV{token} can (q, ε)-break the D-RSA[E ,D] system for ε = qserver

|D| + ψ, then there exists either a

forger F∗ able to (quser, ε′)-break the underlying RSA signature scheme for ε′ ≈ ψ
2 , or an attacker A∗

able to (2qserver, ε′′)-break E for ε′′ ≈ ψ
2(1+quser) .

Proof. (sketch) We construct a simulation in which τ and all the γ’s are the encryptions of 0-string
of appropriate length. Define that an adversary A wins in the simulation if he succeeds in forging a
signature, or hits the pwd. By “A hits the pwd” we mean that, when A imposes a serve(γ, τ∗, δ) query,
one of the following happens.

* In the case that τ∗ = τ yet γ is not from a start(m) query, the following conditions are satisfied
simultaneously. Denote 〈m, r, β, st, ρ1, ρ2, ρ3〉 = Dskserver(γ) and Υ = last(τ, uid, count, ϑ′,m′, r′).
• δ = MACa(〈γ, τ∗〉), where a is the key chosen in the initialization protocol.
• β = b, where b is from the initialization protocol.
• st = ϑ′ if Υ �= NULL.

* In the case that τ∗ �= τ yet γ is from a start(m) query, the following conditions are satisfied simul-
taneously. Denote 〈a∗, b∗, uid∗, d∗2, N∗〉 = Dskserver(τ

∗) and Υ = last(τ∗, uid∗, count∗, ϑ′′,m′′, r′′).
• δ = MACa∗(〈γ, τ∗〉).
• b∗ = β, where β is from the start(m) query.
• st = ϑ′′ if Υ �= NULL, where st is from the start(m) query.

If Pr[A wins] ≥ qserver

|D| + ψ
2 , then there exists F∗ able to (quser, ε′)-break the underlying RSA

signature scheme for ε′ ≈ ψ
2 ; otherwise, there exists A∗ able to (2qserver, ε′′)-break E , where ε′′ ≈

ψ
2(1+quser) .

Now, we present the detailed simulation. Suppose F∗ is given a RSA public key 〈e,N〉.
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* F∗ generates a pair of public and private keys (pkserver, skserver) on behalf of the server, and chooses
a password pwd ∈R D on behalf of the user. It generates ct, st, uid, v, a, b, d1 = f(v, pwd) as in the
initialization protocol. However, it generates d2 by choosing d2 ∈R Z∗

N , sets τ = Epkserver(〈03k+2λ〉),
and outputs token = (ct, st, v, a, τ, e,N, pkserver). Finally, F∗ gives token to F .

* F∗ responds to a start(m) query by querying the signature oracle to get sig = 〈r, s〉 and executing
according to the protocol. However, it returns (γ, τ, δ) where γ = Epkserver(0

|m|+lenpad+4k+λ).
* F∗ responds to a serve(γ, τ∗, δ) query as follows.

1. (γ, τ∗, δ) is from a start(m) query. It returns (θ, η, ϕ) by computing θ = ρ1 ⊕ ϑ, η = ρ2 ⊕
((encode(m, r))d2 mod N), and ϕ = MACρ3(〈θ, η〉), where m, r, ρ1, ρ2, and ρ3 are from the
start(m) query, d2 is from the simulated initialization, and ϑ ∈R {0, 1}k .

2. γ is from a start(m) query, but τ∗ �= τ . Denote 〈a∗, b∗, uid∗, d∗2, N∗〉 = DECskserver(τ
∗) and

Υ = last(τ∗, uid∗, count∗, ϑ′′,m′′, r′′). It aborts the server if δ �= MACa∗(〈γ, τ∗〉) as in a real
execution. It aborts the simulation if either b∗ = β in the case of Υ = NULL, or the predicate
b∗ = β ∧ st = ϑ′′ is satisfied in the case of Υ �= NULL, where β and st are from the start(m)
query. Otherwise, it aborts the server as in a real execution since either b∗ �= β in the case of
Υ = NULL, or the predicate b∗ = β ∧ st = ϑ′′ is not satisfied in the case of Υ �= NULL.

3. γ and τ are from a start(m) query, but not δ. It aborts the server.
4. γ is not from a start(m) query, but τ∗ = τ . Denote 〈m, r, β, st, ρ1, ρ2, ρ3〉 = Dskserver(γ) and
Υ = last(τ, uid, count, ϑ′,m′, r′). It aborts the server if δ �= MACa(〈γ, τ∗〉), where a is from the
simulated initialization. It aborts the simulation if either β = b in the case of Υ = NULL, or the
predicate β = b ∧ st = ϑ′ is satisfied in the case of Υ �= NULL. Otherwise, it aborts the server
as in a real execution.

5. Neither γ is from a start(m) query, nor is τ∗ = τ . In this case, let the server behave according
to the protocol.

* F∗ responds to a finish(θ, η, ϕ) query corresponding to a start(m) query by checking ifMACρ3(〈θ, η〉) =
ϕ, computing σ = η ⊕ ρ2 and checking if σ = (encode(m, r))d2 mod N , where m, r, ρ2 and ρ3 are
chosen in the start(m) query. If any of the two conditions is not satisfied, F∗ aborts the user as in a
real execution; otherwise, F∗ returns sig = 〈r, s〉 obtained from the signature oracle and generates
a new token. The new token is also given to the adversary.

The probability that A hits pwd is negligibly more than qserver

|D| , disregarding the negligible proba-

bility of collision. Therefore, if A wins in the simulation with probability at least qserver

|D| + ψ
2 , F∗ can

(quser, ε′)-break RSA with probability at least ε′ ≈ ψ
2 , since Pr[F∗ succeeds] = Pr[A wins ∧ �A hits

pwd] ≥ ψ
2 .

Now, suppose A wins in the simulation with probability less than qserver

|D| + ψ
2 . Suppose A∗ is given

a public key pk′. A∗ can perfectly simulate the real-world system as follows. It generates the pair of
public and private keys on behalf of the user. It will also need to have access to the decryption oracle,
but at most 2qserver times since the decryptions of ciphertexts generated by A∗ have already been
known to A∗. According to the assumption, A succeeds in forging in this simulation with probability
at least qserver

|D| + ψ.
Consider the same simulation, except that τ and all γ’s generated by A∗ are all encryptions of

0-string of appropriate length. This simulation differs from the simulation by F∗ only in that it does
not abort in the case that A hits the password. Therefore, the probability that A succeeds in forging
in this simulation is at most qserver

|D| + ψ
2 .

In order to use the hybrid argument, define experiment EXPT j , where j ∈R {0, ··, quser + 1},
corresponding to the situation that the first j ciphertexts generated by A∗ are of normal messages,
and the rest are encryptions of 0-string of appropriate length. Let pj be the probability that A succeeds
in forging in EXPT j . Thus, p0 ≤ qserver

|D| + ψ
2 and pquser+1 >

qserver

|D| + ψ. For i ∈R {1, ··, quser + 1},
the probability that A can distinguish the encryption of a normal message from the encryption of
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0-string of the same length is Pr[A breaks E ] = 1
quser+1

∑quser+1
j=1 (pj − pj−1) ≥ ψ

2(1+quser) . So, let A∗

simply choose i ∈R {1, ··, quser + 1}, and run experiment EXPT i. In order to embed the challenge
into the ith encryption, let A∗ send a pair of messages (X0,X1) to the test oracle with respect to
E , where X0 is a normal message and X1 is 0-string of the same length. The challenge ciphertext
received from the test oracle is embedded as the ith encryption. Now, A∗ outputs 0 (meaning that the
encryption is of X0) if F succeeds in forging in EXPT i, and a random bit otherwise. Therefore, A∗

can (2qserver, ψ
2(1+quser))-break E . ��

Theorem 4. Suppose the underlying RSA signature scheme is deterministic. If an adversary A of
type ADV{token, pwd} can (q, ε)-break the D-RSA[E ,D] system, then there exists either a forger F∗

able to (qserver, ε′)-break the underlying RSA signature scheme for ε′ ≈ ε
2 , or an attacker A∗ able to

(2qserver, ε′′) -break E for ε′′ ≈ ε
2(1+quser) .

Proof. (sketch) We construct a simulation in which τ and the γ’s are the encryptions of 0-string of
appropriate length. An adversary A succeeds in the simulation, if he can forge a signature. We use a
new query coordinate(token) to model the capability that an adversary can maintain the consistence
of the state information between the user side and the server side.

Now, we present the detailed simulation. Suppose F∗ is given a RSA public key 〈e,N〉.

* F∗ generates a pair of public and private keys (pkserver, skserver) on behalf of the server, and
chooses a password pwd ∈R D on behalf of the user. It generates ct, st, uid, v, a, b, d1 = f(v, pwd)
as in the initialization protocol. However, it generates d2 by choosing d2 ∈R Z∗

N . It encapsulates
the data into τ = Epkserver(〈03k+2λ〉) and outputs token = (ct, st, v, a, τ, e,N, pkserver). Finally, F∗

gives A the token and pwd.
* F∗ responds to a start(m) query as in a real execution, except that it returns (γ, τ, δ) where
γ = Epkserver(0

|m|+lenpad+4k+λ).
* F∗ responds to a serve(γ, τ∗, δ) query as follows.

1. (γ, τ∗, δ) is from a start(m) query. Query the signature oracle to obtain signature 〈r, s〉. It returns
(θ, η, ϕ) by computing θ = ρ1⊕ϑ, η = ρ2⊕(s/(encode(m, r))d1 mod N), and ϕ = MACρ3(〈θ, η〉),
where m, r, ρ1, ρ2, and ρ3are from the start(m) query, d1 is from the simulated initialization,
and ϑ ∈R {0, 1}k .

2. γ is from a start(m) query, but τ∗ �= τ . It executes according to the protocol, but using m, r,
β, ρ1, ρ2, and ρ3 from the start(m) query.

3. γ and τ are from a start(m) query, but not δ. It aborts the server as in a real execution.
4. γ is not from a start(m) query, but τ∗ = τ . Denote 〈m, r, β, st, ρ1, ρ2, ρ3〉 = DECskserver(γ), and
Υ = last(τ, uid, count, ϑ′,m′, r′). It aborts the server if δ �= MACa(〈γ, τ∗〉) where a is chosen in
the simulated initialization protocol. It aborts the server if β �= b in the case of Υ = NULL, or
the predicate β = b ∧ st = ϑ′ is not satisfied in the case of Υ �= NULL. If nothing goes wrong,
it queries the signature oracle to obtain the signature sig = 〈r, s〉, and returns (θ, η, ϕ), where
θ = ρ1 ⊕ ϑ, η = ρ2 ⊕ (s/(encode(m, r))d1 mod N), ϕ = MACρ3(〈θ, η〉), and d1 is from the
simulated initialization protocol.

5. Neither γ is from a start(m) query, nor is τ∗ = τ . In this case, let the server behave as in a real
execution.

* F∗ responds to a finish(θ, η, ϕ) query corresponding to a start(m) query by checking ifMACρ3(〈θ, η〉) =
ϕ, computing σ = η⊕ρ2 and checking if σ = s/(encode(m, r))d1 mod N , where m, r, ρ2 and ρ3 are
chosen in the start(m) query, and d1 is from the simulated initialization protocol. If any of the two
conditions is not satisfied, F∗ aborts the user; otherwise, F∗ returns sig = 〈r, s〉 obtained from the
serve(γ, τ, δ) query and generates a new token that is also given to the adversary.

* F∗ responds to a coordinate(token) query by replacing the token at the user side with token.

IfA succeeds in forging a signature in the simulation with probability at least ε
2 , F∗ can (qserver, ε′)-

break RSA with probability at least ε′ ≈ ε
2 .
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Now, suppose the adversary A succeeds in forging a signature in the above simulation with
probability less than ε

2 . We construct A∗ that (2qserver, ε′′)-breaks the encryption scheme E , where
ε′′ ≈ ε

2(1+quser) . Suppose A∗ is given a public key pk′. A∗ can perfectly simulate the real world D-RSA
as follows. It generates the pair of public and private keys on behalf of the user. It will also need to
have access to the decryption oracle, but at most 2qserver times since the decryptions of ciphertexts
generated by A∗ have already been known to A∗. According to the assumption, A succeeds in forging
in this simulation with probability at least ε.

Now consider the same simulation, except that τ and all the γ’s generated by A∗ are encryptions
of 0-string of appropriate length. This simulation is equivalent to the simulation of F∗. Therefore, A
succeeds in forging in this simulation with probability at most ε

2 . By a similar argument as in Theorem
3, we know that A∗ can (2qserver, ε

2(1+quser))-break E . ��

Theorem 5. Suppose the underlying RSA signature scheme is deterministic. If an adversary A of
type ADV{�token(i), pwd} can (q, ε)-break the D-RSA[E ,D] system, then there exists either a forger
F∗ able to (qserver, ε′)-break the underlying RSA signature scheme for ε′ ≈ ε

2quser
, or an attacker A∗

able to (2qserver, ε′′)-break E for ε′′ ≈ ε
4quser

.

Proof. (sketch) Suppose there exists i, 1 ≤ i ≤ quser, such that A outputs a valid signature for a
new message with probability at least ε after the user finishes the ith transaction and before the user
initiates the (i + 1)th transaction. Consider an algorithm F∗∗ that is the same as F∗ in Theorem 4,
except that:

* Let τ be the encryption of 0-string of appropriate length, the first i− 1 γ’s be the encryptions of
normal messages, and the ith γ be the encryption of 0-string of appropriate length.

* A token is sent to A only when it issues a get() query, which is not allowed for the ith token
generated by the user in the ith transaction. Also, A can maintain the consistency between the
user side and the server side by issuing a coordinate(token) query.

Given the simulation generated by F∗∗, if Pr[A succeeds] ≥ ε
2 , then it is clear that there exists F∗

able to (qserver, ε′)-break the underlying RSA signature scheme, where ε′ ≈ ε
2quser

; otherwise, there
exists A∗ able to (2qserver, ε′′)-break E , where ε′′ ≈ ε

4quser
.

Consider an algorithm A∗∗ that is given a public key pk′. Now, A∗∗ can perfectly simulate the
real-world system as follows. It generates the pair of public and private keys on behalf of the user. It
need have access to the decryption oracle, but at most 2qserver times. Note that A is given a newly
generated token only when it issues a get() query, and that no get() query is allowed after the user
finishes the ith transaction and before the user initiates the (i+1)th transaction. Therefore, A succeeds
in forging with probability at least ε.

Now consider the same simulation, except that τ is the encryption of 0-string of appropriate
length, the first i − 1 γ’s are the encryptions of normal messages, and the ith γ is the encryption of
0-string of appropriate length. This simulation is equivalent to the simulation of F∗∗. Therefore, Pr[A
succeeds] < ε

2 .
A standard hybrid argument shows that A∗∗ can (2qserver, ε4)-break E , which means that there

exists A∗ able to (2qserver, ε
4quser

)-break E . ��

5 Full-Fledged Scheme

Now we present the full-fledged scheme, which is built on top of the building-block discussed in the
previous section. The basic idea underlying the scheme is the following. In order to achieve compromise
confinement, we augment b = H1(pwd) to b = H1(c, pwd), where c is a cryptographic secret. The
motivation is to ensure that b = H1(c, pwd) itself does not leak any significant information of a
password pwd. A drawback of this approach is that a user can not disable its private key using a
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standard username/password mechanism. Nevertheless, this can be resolved by letting a user choose
two passwords, one for generating signatures and the other for disabling its key. Specifically, this can
be done by further augmenting τ = Epkserver(〈a, b, uid, d2 , N〉) to τ = Epkserver(〈a, b, b∗, uid, d2, N〉)
such that b = H1(c, pwd) and b∗ = H2(π), where password pwd is for generating signatures, and
password π is for disabling the key.

Special care is also taken to address atomicity and availability issues. Suppose a server serveri
can not finish a transaction within a certain time interval. Then, it is reasonable to allow the user to
contact another server. This flexibility complicates the facilitation of transaction atomicity. We resolve
this issue by incorporating a simple “commit/rollback” mechanism. Moreover, a commit or rollback
request should be authenticated. This can be done by augmenting γ = Epkserver(〈m, r, β, st, ρ1, ρ2, ρ3〉)
to γ = Epkserver(〈m, r, β, st, ρ1, ρ2, ρ3, ρ4, ρ5〉), where ρ4 = H3(ρ∗4) is used for committing a transaction
and ρ5 = H3(ρ∗5) is used for rollbacking a transaction.

The scheme has the following components.

Token initialization. SupposeH1 : {0, 1}∗ −→ {0, 1}k ,H2,H3 : {0, 1}k −→ {0, 1}k , and f : {0, 1}∗ →
{0, 1}λ+k are appropriate hash and pseudorandom functions, respectively. A user chooses two pass-
words – pwd for generating signatures and π for disabling the private key, and a pair of public and
private keys (pkuser = 〈e,N〉; skuser = 〈d,N, φ(N)〉). A user chooses n servers as its service providers,
and each server has a public key pkserver,i, where 1 ≤ i ≤ n. The initialization process proceeds as
follows.

uid = username
vi ∈R {0, 1}k , 1 ≤ i ≤ n
ai ∈R {0, 1}k , 1 ≤ i ≤ n
ci ∈R {0, 1}k , 1 ≤ i ≤ n
bi = H1(ci, pwd), 1 ≤ i ≤ n
b∗ = H2(π)
d1,i = f(vi, pwd), 1 ≤ i ≤ n
d2,i = d− d1,i mod φ(N), 1 ≤ i ≤ n
τi = Epkserver,i

(〈ai, bi, b∗, uid, d2,i, N〉), 1 ≤ i ≤ n
cti = 0, 1 ≤ i ≤ n
sti ∈R {0, 1}k , 1 ≤ i ≤ n
tokeni = (cti, sti, vi, ai, ci, τi, e,N, pkserver,i), 1 ≤ i ≤ n

At the end of the initialization, the user erases all the other values and keeps n soft-tokens on its
device.

Server databases. Server serveri, 1 ≤ i ≤ n, maintains a database of Υi = (τ, uid, count, ϑ,m, r),
which represents a transaction corresponding to τ = Epkserver(〈a, b, b∗, uid, d2, N〉), where uid is ob-
tained after receiving the first service request, count is an incremental counter (with initialized
value zero) maintained by the server. There are two types of operations regarding the database.
First, append(τ, uid, count, ϑ,m, r) appends the tuple (τ, uid, count, ϑ,m, r) into the database. Sec-
ond, last(τ, uid, count, ϑ,m, r) returns either the tuple (τ, uid, count, ϑ,m, r) corresponding to the last
transaction corresponding to τ , or NULL meaning that the token corresponding to τ has never been
used before.

Signing protocol. The protocol is depicted in Figure 2. The user first sends a request to a (randomly
chosen) server. If the transaction can not be finished within certain time, the user contacts another
server. Note that such a switching process can be made transparent to the user.
Key disabling protocol. In order to disable its private key, the user authenticates itself to each of
the n servers by proving that it knows the password π corresponding to uid. This process is the same
as in the underlying single server protocol, and can be made automatic via an appropriate software
design (for ease of deployment).
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USER SERVER1, . . . , SERVERn

tokenj = (ctj , stj , vj , aj , τj , e,N, pkserver,j), 1 ≤ j ≤ n

trial = φ

REPEAT if a transaction cannot be finished within time ∆

choose i ∈ {1, 2, · · ·, n} − trial according to certain policy (e.g., random)

trial = trial ∪ {i}

user provides tokeni and γ = Epkserver,i(〈m, ri, βi, sti, ρ1,i, ρ2,i, ρ3,i, ρ4,i, ρ5,i〉).
The server executes as follows:

If sti matches the last “committed” transaction, execute the single server protocol;

if sti matches the last “pending” transaction,

change its status as “committed” and execute as specified;

otherwise, reject the request and inform “user compromised.”

UNTIL there is a successful transaction using tokenj

α = MACρ3,j (“commit”, τj , ρ
∗
4,j)

tokenj is updated

(“commit”, τj , ρ
∗
4,j , α)

�
jth server commits the transaction

trial = trial − {j}
FOR each i ∈ trial

α = MACρ3,i(“rollback”, τi, ρ
∗
5,i)

(“rollback”, τi, ρ
∗
5,i, α)

�
ith server rollbacks the transaction

Fig. 2. The full-fledged scheme

5.1 Analysis and Discussion

Since transaction atomicity plays an important role in our system, we must show that it has no
significant security consequence if atomicity is violated.

Proposition 2. Suppose there is no system crash resulting in the loss of system state information.
Suppose a server keeps a database of state information (τ, uid, count, ϑ,m, r). Then there is no denial
of service attack because of an out of synchronization between a user and a server.

Proof. Recall that a server classifies transactions into two categories: “committed” and “pending”.
Note that a successfully rollbacked transaction is treated as a “committed” one, but corresponding to
the last successfully committed transaction. This is so because that a rollbacked transaction can be
viewed as one where no actions have been taken whatsoever. So, when a user sends a request with
certain state information ϑ, there are three cases.

* ϑ matches the state information corresponding to a “committed” transaction T . There are further
two cases.
1. T is the last “committed” transaction. The This is the normal case and the protocol proceeds

as specified.
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2. T is not the last “committed” transaction. The server simply rejects this request. In this case,
the server could inform the user, perhaps via an out-of-band channel, that the user side might
have been compromised. This is so because in our design a user updates its state information
before sending a commitment request.

* ϑ matches the state information corresponding to a “pending” transaction T . There are further
two cases.
1. T is the last “pending” transaction. This means that the server did not commit the transaction

yet. Then the server can simply accept the request and change the “pending” transaction into
a “committed” one.

2. T is not the last “committed” transaction. This is impossible, because our design ensures that
whenever a server accepts a request (and sends new state information to a user), it always treat
the last transaction as committed.

* ϑ matches no state information in the server database at all. The server simply rejects the request.
In this case, the server could inform the user, perhaps via an out-of-band channel, that the user
side might have been compromised. This is so because in our design we let a server choose the
state information.

��

The above proposition implies that we can treat all transactions as atomic. Now we are ready to
look at the properties of the full-fledged scheme. We claim that the full-fledged scheme implements all
of the goals specified in Section 3. Informally, we observe the following:

* Abuse prevention. This can be formally analyzed by extending the theorems in the underlying single
server scheme.

* Compromise detection. Suppose atomicity of the transactions and integrity of the server are guar-
anteed. Lack of synchronization means either an adversary had successfully impersonated the user,
or the token had been tampered with. In either case, the user needs to disable her private key.

* Immediate revocation. This is true since the request for disabling a private key is authenticated by
π, whereas uid is also remembered by the user.

* Compromise confinement. Once it is known that a server has been compromised, only the users
who suspects that their tokens have been compromised need to re-initialize their keys, whereas the
others just need to erase their tokens corresponding to the compromised server (i.e., no need to
re-initialize their private keys). We notice that when a user knows that its password for disabling
its private key, namely π, may have been compromised after off-line dictionary attack — due to the
compromise of a server, the user can, if desired, execute an appropriate password-change protocol
(e.g., the one associated with the adopted password authentication scheme) to update π to some
π′. Such a process would be much more light-weight than a process for updating private keys. Note
that the password update process is not necessary from the perspective of the security of the user’s
signature scheme.

* Scalability. The system is scalable because the servers are decentralized, namely that the servers
are operated by possibly many service providers.

* High availability. The system is highly available since a single server is sufficient for the users to
generate signatures.

6 Conclusion and Future Work

We presented a scalable and secure cryptographic service, which has the following features: (1) it
incorporates a 3-factor authentication mechanism, which facilitates compromise detection; (2) it sup-
ports immediate revocation of a cryptographic functionality in question; (3) the damage due to the
compromise of a server is contained; (4) it is scalable and highly available.
Acknowledgement. We thank Philip MacKenzie for valuable feedback.
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