
Attribute-Aware Relationship-Based Access
Control for Online Social Networks

World-Leading Research with Real-World Impact!

Yuan Cheng, Jaehong Park and Ravi Sandhu
Institute for Cyber Security

University of Texas at San Antonio
7/14/2014

28th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security and Privacy (DBSec 2014)

1

• Relationship-based Access Control (ReBAC)
• Motivation
• UURACA Model
• Algorithm
• Conclusion

© Ravi Sandhu 2World-Leading Research with Real-World Impact!

Outline

 Users in OSNs are connected by social
relationships (user-to-user relationships)

 Owner of the resource can control its release
based on such relationships between the
access requester and the owner

 Access conditions are usually based on type,
depth, or strength of relationships

Relationship-based Access Control

Related Work

Fong 2009 Fong 2011 Carminati 2009a Carminati 2009b UURACA

Relationship Category
Multiple Relationship
Types

√ √ √ √

Directional
Relationship

√ √ √

Model Characteristics
Policy
Individualization

√ √ √ √ √

User & Resource as a
Target

(partial) √

Outgoing/Incoming
Action Policy

(partial) √

Relationship Composition
Relationship Depth 0 to 2 0 to n 1 to n 1 to n 0 to n
Relationship
Composition

f, f of f Exact type
sequence

Path of same
type

Exact type
sequence

Path pattern of
different types

Attribute-aware Access Control
Common-friendsk √ √
User Attributes (partial) √
Relationship
Attributes

(partial) √

− Passive form of action allows outgoing and incoming action policy
− Path pattern of different relationship types makes policy specification more

expressive
− Attribute-aware access control based on attributes of users and relationships

Motivation

 ReBAC usually relies on type, depth, or strength of
relationships, but cannot express more complicated
topological information

 ReBAC lacks support for attributes of users,
resources, and relationships

 Useful examples include common friends, duration of
friendship, minimum age, etc.

UURACA Model

 Extended from the UURAC model (DBSec 12)
 Social graph is modeled as a directed labeled

simple graph G=<U, E, Σ>
− Nodes U as users
− Edges E as relationships
− Σ={σ1, σ2, …,σn, σ1

-1, σ2
-1,…, σn

-1}
as relationship types supported

UA: Accessing User
UT: Target User
UC: Controlling User
RT: Target Resource
AUP: Accessing User Policy
TUP: Target User Policy
TRP: Target Resource
Policy
SP: System Policy

• Policy Individualization
• User and Resource as a Target
• Separation of user policies for

incoming and outgoing actions
• Regular Expression based path

pattern w/ max hopcounts (e.g.,
<ua, (f*c,3)>)

U2U Relationship-based Access Control
(UURAC) Model

 Access Request <ua, action, target>
− ua tries to perform action on target
− Target can be either user ut or resource rt

 Policies and Relationships used for Access
Evaluation
− When ua requests to access a user ut

 ua’s AUP, ut’s TUP, SP
 U2U relationships between ua and ut

− When ua requests to access a resource rt
 ua’s AUP, rt’s TRP, SP
 U2U relationships between ua and uc

Access Request and Evaluation

Policy Representation

 action-1 in TUP and TRP is the passive form since it
applies to the recipient of action

 TRP has an extra parameter uc to specify the controlling
user
− U2U relationships between ua and uc

 SP does not differentiate the active and passive forms
 SP for resource needs r.typename, r.typevalue to refine

the scope of the resource

Example

• Alice’s policy PAlice:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, 𝑓𝑓 ∗, 3 >,< 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1, 𝑢𝑢𝑡𝑡, 𝑓𝑓, 1 >,
• < 𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟, 𝑢𝑢𝑎𝑎, Σ ∗, 5 >

• Harry’s policy PHarry:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, 𝑐𝑐𝑓𝑓 ∗, 5 ˅ 𝑓𝑓 ∗, 5 >,< 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1, 𝑢𝑢𝑡𝑡, 𝑓𝑓 ∗, 2 >

• Policy of file2 Pfile2:
• < 𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟 − 1, 𝐻𝐻𝑎𝑎𝑟𝑟𝑟𝑟𝐻𝐻, (𝑢𝑢𝑐𝑐, ¬ 𝑝𝑝+, 2 >

• System’s policy PSys:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, Σ ∗, 5 >
• < 𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟, (𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡𝐻𝐻𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝), 𝑢𝑢𝑎𝑎, Σ ∗, 5 >

Attributes in OSNs

• Node attributes
• Define user’s identity and characteristics: e.g., name, age,

gender, etc.
• Edge attributes

• Describe the characteristics of the relationship: e.g., weight,
type, duration, etc.

• Count attributes
• Depict the occurrence requirements for the attribute-based

path specification, specifying the lower bound of the
occurrence of such path

• <quantifier, f(ATTR(N), ATTR(E)), count ≥ i>

+0 +1 +2 -2 -0-1

+1 +2 -2 -1

∀[+1, -2], age(u) > 18
∃[+1, -1], weight(e) > 0.5
∃{+1, +2, -1}, gender = “male”

-2

World-Leading Research with Real-World Impact!

Attribute-based Policy

12

• Strategy: DFS
• Parameters: G, path, hopcount, s, t

World-Leading Research with Real-World Impact!

f

п0

п1

п2

п3

f

f

c

c

f

DFA for f*cf*

Access Request: (Alice, read, rt)

Policy: (read-1, rt, (f*cf*, 3))

Path pattern: f*cf*
Hopcount: 3

Path-checking Algorithm

13

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

c

f

f

f

f

f

f

f

c

c
c

п0

п1

п2

п3

f

f

c

c

f

d: 0
currentPath: Ø
stateHistory: 0

Path pattern: f*cf*
Hopcount: 3

Harry

п0

Dave п1

d: 1
currentPath: (H,D,f)
stateHistory: 01

Case 1: next node is
already visited, thus
creates a self loop

d: 2
currentPath: (H,D,f)(D,B,f)
stateHistory: 011

f

Bob

Alice

Case 3: currentPath
matches the prefix of the
pattern, but DFA not at
an accepting state

d: 2
currentPath: (H,D,f)(D,B,c)
stateHistory: 012

п2

п3

d: 3
currentPath: (H,D,f)(D,B,c)(B,A,f)
stateHistory: 0123

Case 2: found a matching
path and DFA reached an
accepting state

14

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

f

f

f

f

f

f

f

f

f

<access, (ua, ((f*, 4): ∃[+1, -1], occupation = ‘student’, count ≥ 3)))>

Occupation
= ‘student’

+1

+1

-1+1

-1

Occupation
= ‘teacher’

Occupation
= ‘student’

Occupation
= ‘teacher’

Occupation
= ‘student’

Occupation
= ‘student’

World-Leading Research with Real-World Impact!

Example: Node Attributes

15

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

f

f

f

f

f

f

f

f

f

<read, Photo1, (ua, ((f*, 3): ∀[+1, -1], duration ≥ 3 month, _)))>

Since =
June, 2013

Since =
Feb, 2014

Since =
Aug, 2010

Since =
May, 2009

Since =
Aug, 2008

World-Leading Research with Real-World Impact!

Example: Edge Attributes

16

Complexity

 Time complexity is bounded between
[O(dminHopcount),O(dmaxHopcount)], where dmax and
dmin are maximum and minimum out-degree of
node
− Users in OSNs usually connect with a small group of

users directly, the social graph is very sparse
− Given the constraints on the relationship types and

hopcount limit, the size of the graph to be explored can be
dramatically reduced

− Attribute-based check introduces overhead costs when it
finds a possible qualified path, which are proportional to
the amount of attributes as well as the type of attribute
functions considered

Conclusion

• Presented an extended UURAC model for OSNs

• Formalized the attribute-based policies and the
grammar for policy specifications

• Enhanced the path checking algorithm with attribute-
awareness

Questions

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

