
Proc. of the IFIP WG11.3 Workshop on Database Security, Vancouver, Canada,
August 19-21, 1992

Implementing the Message Filter Object-Oriented

Security Model without Trusted Subjects

Roshan K. Thomas and Ravi S. Sandhu1

Center for Secure Information Systems &
Department of Information and Software Systems Engineering
George Mason University
Fairfax, Virginia 22030-4444, USA

Abstract

We propose a new architectural framework and implementation scheme, for the message
�lter multilevel security model for object-oriented databases. Major complications in
implementing the model arise from the intrinsic nature of object-oriented computations
which are abstract and often involve arbitrarily complex write-up actions. Dealing with
the timing of write-up operations has broad implications on security (due to the potential
for signaling channels), integrity, and performance. A fundamental insight, gained in the
course of our research, has been to close these channels by allowing concurrent computa-
tions in what is otherwise a logically sequential computation. However in closing these
channels one has to meet the con
icting goals of integrity and performance. Our earlier
work investigated an architecture that called for a trusted subject (session manager) to
manage a tree of concurrent multilevel computations generated by a user session. In this
paper we provide an alternate achitecture that eliminates the need for trusted subjects
and the associated central coordination and management of concurrent computations.
This revised architecture is a kernelized one as no subject is exempted from the simple-
security and ? properties. Hence security comes for free while we continue to meet the
additional con
icting requirements for integrity and performance.

Keyword Codes: D.1.5; D.4.6; K.6.5
Keywords: Object-oriented Programming, Security and Protection

1The work of both authors was partially supported by the National Security Agency through contract

MDA904-92{C-5140. We are indebted to Howard Stainer and Mike Ware for making this work possible.

1 INTRODUCTION

A message �lter approach to integrating mandatory security in multilevel object-oriented
databases was originally proposed in [3]. The main elements of the model are objects and
messages. Security is enforced by a message �lter component that controls information

ow by mediating message exchanges. The original message �lter speci�cation is a step
in the right direction in modeling and integrating security in a way natural to the object-
oriented paradigm. However, it gives no clue as to how such a speci�cation model can
be implemented. This has led the authors to investigate implementation aspects of the
message �lter model [8, 9].

Although the message �ltering actions ensure that mandatory access controls cannot
be bypassed, they open up the potential for timing channels. In fact, these channels arise
due to the abstract nature of write-up computations in the object-oriented model. When
a message is sent upwards in the security lattice, the resulting computation (method) in
a higher level object may take an arbitrary amount of processing time before returning a
reply. Although the actual reply (in terms of its contents) cannot be returned to the lower
level, the timing of a substituted innocuous reply such as a NIL, can be exploited for timing
channels. A fundamental insight, gained in the course of investigating implementation
issues for the message �lter model, has been to close such channels by executing an
otherwise logically sequential computation, concurrently. In other words, a computation
in a sender object is no longer blocked waiting for a reply, but rather proceeds concurrently
with the corresponding computation invoked in a receiver object.

In our further discussions, we deliberately use the term (downward) signaling channel
rather than covert channel. A downward signaling channel is a means of downward
information
ow which is inherent in the data model and will therefore occur in every
implementation of the model. A covert channel on the other hand is a property of a
speci�c implementation and not a property of the data model. In other words, even if the
data model is free of downward signaling channels, a speci�c implementation may well
contain covert channels due to implementation quirks.

An architecture that was investigated earlier in [8] called for a trusted subject (ses-
sion manager) to manage and coordinate the concurrent computations initiated by a user
session. The session manager has to be trusted so that it can deal with multilevel compu-
tations. In this paper we give an alternate architectural and implementation framework
that eliminates the need for such trusted subjects. It turns out however, that concurrent
computations are still needed. This is because to execute computations sequentially, we
need to observe the termination times of higher level receiver computations and return
replies in order to resume lower level blocked computations. However only a multi-level
trusted subject that is exempted from the ? property can do this.

Thus in an architecture without trusted subjects, the only feasible implementation
scheme is to return replies independent of the termination of receiver computations. This
can be accomplished by returning the NIL reply either after some constant time inter-
val that represents an upper bound for completion times, or after some random delay,
or instantaneously when messages are sent. The �rst option incurs a heavy performance
penalty whenever computations wait unnecessarily. The second option may incur the same

performance penalty as the �rst, and further require synchronization of concurrent com-
putations. The third option while requiring synchronization for concurrent computations,
eliminates the need for sender computations to unnecessarily wait for time quantums to
expire.

In the revised architectural framework, the management and coordination of concur-
rent computations is no longer centralized, but rather achieved in a distributed (and
secure) fashion. This is because no system component has a global view of the concurrent
computations as they progress. The new framework o�ers obvious advantages. First, it
eliminates the need for operating system support for trusted subjects, and thus security
comes for free. This clearly makes security arguments easier for our implementation.
Secondly, the implementation allows us to meet the con
icting goals of integrity and
performance (without compromising security in the process).

The rest of this paper is organized as follows: Section 2 gives some background to the
message �lter model and its evolution. Section 3 presents a reworked architecture without
trusted subjects, and further describes how concurrent computations can be coordinated
in a distributed fashion. Section 4 discusses some informal proofs and section 5 concludes
the paper.

2 BACKGROUND TO THE MESSAGE FILTER

MODEL

In this section we give some background to the message �lter model and the original
implementation of the model with trusted subjects. Our presentation is limited to those
aspects relevant to the understanding of the results in this paper. For more comprehensive
details on the motivation and evolution of the model the reader should see [3, 8, 9].

2.1 The Message Filter Speci�cation

Objects and messages constitute the main entities in the message �lter model. Messages
are assumed, and required to be, the only means by which objects can communicate and
exchange information. Thus the core idea is that information
ow can be controlled by
mediating the
ow of messages. Consequently, even basic object activity such as access to
internal attributes, object creation, and invocation of local methods are to be implemented
by having an object send messages to itself (we consider such messages to be primitive
messages). The message �lter takes appropriate action upon intercepting a message and
examining the classi�cations of the sender and receiver of the message. It may let the
message pass unaltered or interpose a NIL reply in place of the actual reply; or set the
status of method invocations (as restricted or unrestricted). We emphasize that a reply
(NIL or other) must always be returned to prevent the sender of a message from blocking
inde�nitely.

Figure 1 illustrates the message �ltering graphically. The full algorithmic speci�cation
is given in �gure 2 (in this and other algorithms, % is a delimeter for comments). In case
(1), the sender and receiver are at the same security level and the message g1 and its reply

Figure 1: Illustrating message �ltering

are allowed to pass. In case (2) the levels are incomparable and thus the �lter blocks the
message from getting to the receiver object and further injects a NIL reply. Case (3)
involves a receiver at a higher level than the sender. The message is allowed to pass but
the �lter discards the actual reply and substitutes a NIL instead. In case (4) the receiver
object is at a lower level than the sender and the �lter allows both the message and the
reply to pass unaltered.

In cases (1), (3), and (4) the method in the receiver object is invoked at a security
level given by the variable rlevel. The rlevel needs to be computed for each receiver
method invocation and it is in turn derived from the rlevel of the method invocation in
the corresponding sender object. The intuitive signi�cance of rlevel is that it keeps track
of the least upper bound of all objects encountered in a chain of method invocations,
going back to the root of the chain. This is required to implement the notion of restricted
method invocations so as to prevent write-dowm violations. To be more precise, we say
that a method invocation ti has a restricted status if rlevel(ti) > L(oi). The application
of restricted invocations is explained below.

The cases (1) through (4) that we have seen so far deal with abstract messages.
However abstract messages will eventually result in the invocation of primitive messages.
These include READ, WRITE and CREATE 2. READ operations always succeed while
WRITE and CREATE succeed only if the status of the method invoking the operation is
unrestricted. Thus if a message is sent to a receiver object at a lower level (as in case (4)),
the resulting method invocation will always be restricted and the corresponding primitive
WRITE operation will not succeed. This will ensure that a write-down violation will not

2The DELETE operation has not been directly incorporated into the model. It can be viewed as a

particularly drastic form of WRITE.

% let g1 = (h1; (p1; : : : ; pk); r) be the message sent from o1 to o2

% let h1 be the message name, p1; : : : ; pk be the parameters in the message, r the return value

if o1 6= o2 _ h1 62 fREAD, WRITE, CREATEg then case
% i.e., g1 is a non-primitive message

(1) L(o1) = L(o2) : % let g1 pass, let reply pass

invoke t2 with rlevel(t2) rlevel(t1);
r reply from t2; return r to t1;

(2) L(o1) <> L(o2) : % block g1, inject NIL reply

r NIL; return r to t1;

(3) L(o1) < L(o2) : % let g1 pass, inject NIL reply, ignore actual reply

r NIL; return r to t1;
invoke t2 with rlevel(t2) lub[L(o2); rlevel(t1)];
% where lub denotes least upper bound

discard reply from t2;

(4) L(o1) > L(o2) : % let g1 pass, let reply pass

invoke t2 with rlevel(t2) rlevel(t1);
r reply from t2; return r to t1;

end case;

if o1 = o2 ^ h1 2 fREAD, WRITE, CREATEg then case
% i.e., g1 is a primitive message

% let vi be the value that is to be bound to attribute ai

(5) g1 = (READ; (aj); r) : % allow unconditionally

r value of aj ; return r to t1;

(6) g1 = (WRITE; (aj; vj); r) : % allow if status of t1 is unrestricted

if rlevel(t1) = L(o1)
then [aj vj ; r SUCCESS]
else r FAILURE;

return r to t1;

(7) g1 = (CREATE; (v1; : : : ; vk; Sj); r) : % allow if status of t1 is unrestricted relative to Sj

if rlevel(t1) � Sj

then [CREATE i with values v1; : : : ; vk and L(i) Sj ; r i]
else r FAILURE;

return r to t1;
end case;

Figure 2: Message �ltering algorithm

occur. Finally, the CREATE operation allows the creation of a new object at or above
the rlevel of the method invoking the CREATE. The creation of objects lower than rlevel
is again prevented by restricted invocations.

2.2 Implementation with Trusted Subjects

In our earlier work, we have presented the complications that arise due to downward
signaling channels in object-oriented computations [8, 9]. Let us review these brie
y.
Whenever messages are sent to objects at higher levels, the receiver method should not
be able to modulate the timing of the NIL reply. Hence we have no choice but to return
the NIL reply immediately, resume execution of the suspended sender, and further execute
the receiver object's method concurrently.

Thus the message �lter speci�cation calls for an underlying asynchronous implementa-
tion/execution model. This could lead to a tree of concurrent computations (methods) as
shown in �gure 3. Each computation is executed by a separate message manager process
that implements the message �ltering function (in our discussions we often use the terms
computations, methods, and message managers interchangeably). Such a tree represents
computations forked by a single user (at a single security level) within a single user ses-
sion. However, each message manager may be executing at a di�erent security level and
we thus have a single user but a multilevel tree of computations.

A key feature of an architecture investigated earlier (see �gure 5) was the use of a
session manager process to act as a trusted subject in order to manage and coordinate such
a tree. A session manager has to be a trusted subject as it is dealing with computations
at di�erent security levels and thus needs to bypass the usual mandatory access controls
(particularly the ? property) in a Bell-LaPadula framework. A session manager always
maintains a global snapshot of the entire tree of computations as it progresses.

Although conceptually a message sent to a higher level object results in the immediate
fork of a new concurrent message manager, the session manager limits the actual degree
of concurrency by scheduling computations in a secure and correct manner. Figure 4
illustrates the overall strategy used by the session manager in scheduling these concurrent
computations. It utilizes the following invariant in managing a tree of computations:

� Invariant: A computation is started if and only if all the current as well as
future computations to the left of it are guaranteed to execute at a higher level or
incomparable level.

Note that this invariant guarantees the following property: for every security level there
can exist at most one executing (active) computation at that level at any given time. In
other words, some forked computations may be temporarily queued for execution.

The derivation of this invariant is actually motivated by the dual requirements of
correctness and security. To see this, we observe that if security were our only objective, we
could allow maximum concurrency by enabling computations to unconditionally proceed.
However, ensuring correctness (equivalence to the intended logically sequential execution)
would then be di�cult, if not impossible. Thus the \only if" part of the above invariant is

Figure 3: A tree of concurrent message managers

Figure 4: Progressive execution of �gure 3

Figure 5: A kernelized architecture with trusted subjects

required for correctness. To do this we have to ensure that all writes performed by earlier
forked computations at or below the level of a computation say n, are made visible to n
(in accordance with sequential precedence). Thus by the time n starts, all these earlier
forked computations should have terminated.

The \if" part of the invariant is an artifact of our algorithm and intuitively maximizes
the degree of concurrency (as computations are not unnecessarily help up). In fact, we
conjecture that there are many algorithms allowing varying degrees of concurrency.

We illustrate one such algorithm that allows the least concurrency (but guarantees
correctness). The basic idea is to follow a level by level scheduling strategy. Thus given
a �nite set of actions at multiple levels, we �rst schedule and execute (to completion) all
the lowest level actions in the security lattice (one at a time, of course). This is followed
by actions at the next higher levels and we continue in this fashion until those at the
highest level in the lattice are scheduled last. It follows that whenever there are actions
at incomparable levels, they will be executed concurrently (to avoid a sideways signaling
channel). For example, given the security lattice in �gure 6 we would �rst schedule
and execute all the actions of message managers running at the lowest level unclassi�ed.
Upon completion, we would then execute concurrently the actions at the incomparable
levels (SfAg) and (SfBg). Finally when all actions at both these levels have completed,
those at the highest level (TSfA,Bg) are scheduled. Our focus in this paper will be on
implementing this simpler level by level scheduling strategy without the use of session
managers as trusted subjects.

Now back to our original invariant. The progressive execution of the tree in �gure

Figure 6: Level by level scheduling in a simple lattice

3 as governed by this \if and only if" invariant is shown in �gure 4. The terminated
message manager (node) which advances the computations to the next stage is highlighted.
Message manager 2 being the �rst to be forked is allowed to execute immediately. However
message manager 3 is queued up. Our invariant guarantees that message manager 3
remains queued (suspended) at least till such time as message manager 2 (and any future
children at level top secret) terminate. This action is necessary so that the writes by
message manager 2 and its children are made visible to the top secret message manager 3,
due to sequential precedence. Message manager 4 at level con�dential is allowed to execute
immediately on being forked, since all active as well as future message managers to the
left of it will be at levels higher than con�dential. We also notice that the termination of
message manager 2 results in the execution of message managers 3 and 6. In essence, our
invariant guarantees that the execution of a lower level message manager is never delayed
due to an earlier forked and executing message manager at a higher level.

2.3 Serial Correctness

As mentioned before, one of the key issues to be tackled with these concurrent computa-
tions is related to providing synchronization and ensuring serial correctness. We have to
ensure that the concurrent execution guarantees the same result (object states) as in the
original logically executed sequential (single) computation. A multiversioning scheme for
this purpose was presented in [9]. The scheme guarantees that high level methods would
read down object states at lower levels that were equivalent to the one in the sequential
execution. To enable this, versions identifying lower object states that existed at the time
a (higher) message manager was forked are maintained. When the forked high level mes-
sage manager becomes active, it has the necessary timestamps (in a local-stamp table)
identifying all versions of objects at lower levels that it will need to process read-down
requests. These entries are never modi�ed after a message manager starts. A write stamp

(WStamp) at the level of the message manager identi�es the next version that will be
written at its level. On start, a message manager increments this timestamp entry un-
conditionally before the �rst write/update operation and subsequently increments it after
every fork request made to the session manager.

3 IMPLEMENTATION WITHOUT TRUSTED

SUBJECTS

Having given a background to the trusted subject architecture and implementation frame-
work, we now address the issue of implementing the message �lter model without trusted
subjects. Thus we can no longer rely on the central control and coordination (of the
concurrent computations generated by a user session) that was provided by a session
manager. Rather, these computations would have to be managed in a distributed fash-
ion. This also follows from the fact that no system component would at any time ever have
a global snapshot of the set of computations in progress. In light of this, is distributed
management possible? We assert (and later demonstrate) the feasibility of this based on
the following observations:

� The decision to start or queue a computation can only be a�ected by other compu-
tations at a lower level. In other words, one only needs to look down to determine
this and thus will not violate mandatory security.

� The termination of a computation (message manager) can result in the subsequent
start-up of other computations only at higher levels. This can be accomplished by
sending messages upwards and without violating mandatory security or introducing
downward signaling channels.

3.1 The Revised Architecture

Figure 7 illustrates the reworked architecture without session managers acting as trusted
multilevel subjects. In comparison to the trusted subject architecture in �gure 5, a mul-
tilevel session manager is now replaced by single-level level managers. A level manager is
responsible for scheduling and coordinating all computations forked at its level. Message
managers are short-lived as they are created and terminated dynamically as the need
arises with fork requests. On the other hand, this architecture calls for the existence of a
long-lived level manager at every security level for which a computation can be potentially
forked.

As can be seen in �gure 7, this architecture is a layered one and consists of a storage and
an object layer. The security perimeter of the object layer consists of the following prim-
itive operations: SEND, QUIT, READ, WRITE, and CREATE. The READ, WRITE,
and CREATE are related to to the primitive messages discussed earlier. The SEND and
QUIT are system primitives used by message managers (methods) to send (non-primitive)
messages and replies. The message manager algorithms for these are shown in �gure 8. In

Figure 7: A kernelized architecture without trusted subjects

our original architecture with trusted subjects, the interface between a message manager
and its session manager consisted of two calls: (1) FORK issued by a message manager
to its session manager to request the creation of a new message manager and (2) TER-
MINATE issued by a message manager to its session manager to terminate itself. In our
revised architecture without trusted subjects, these calls form the interface between a
message manager and its local level manager.

3.2 Achieving Distributed Coordination

We now address the issue of coordinating a tree of concurrent computations to enable
overall progress. We begin by describing a few data structures.

Every message manager maintains the following information:

Local-stamp: a vector of timestamps to process read down requests;
Fork-stamp: a stamp identifying the message manager's fork order;
WStamp: the write stamp for versions written by the message manager;

Every level manager maintains the following data structure:

Current-WStamp: the current timestamp given to objects written;
Queue: a queue of message managers waiting to be activated;
Fork-history: a list of ordered pairs (fork-stamp, WStamp);

procedure SEND(g1; o1; o2)

% let g1 = (h1; (p1; : : : ; pk); r) be the message sent from o1 to o2 where

% where h1 is the message name, p1; : : : ; pk are message parameters, and r is the return value

% let p be the parameter set p1; : : : ; pk and let lmsgmgr be the level of the message manager

if o1 6= o2 _ h1 62 fREAD, WRITE, CREATEg then case % i.e., g1 is non-primitive

(1) L(o1) = L(o2) : push-stack(p); t2 select method for o2 based on h1; execute t2;

(2) L(o1) � L(o2) : write-stack(NIL); resume;

(3) L(o1) < L(o2) : append-local-stamp-vector(rstamps, WStamp);
FORK(lmsgmgr, lub[lmsgmgr; L(o2)], fork-stamp, rstamps);
WStamp WStamp + 1; write-stack(NIL); resume;

(4) L(o1) > L(o2) : push-stack(p); t2 select method for o2 based on g1; execute t2;

end case;

if o1 = o2 ^ h1 2 fREAD, WRITE, CREATEg then case % i.e., g1 is a primitive message

(5) h1 = READ : if L(o1) = lmsgmgr then v WStamp else v local-stamp (L(o1));
read o1 with maxfversion: version � vg;

(6) h1 = WRITE : write o1 with version WStamp;

% Let o be the object-identi�er of the new object created at level Sj

(7) h1 = CREATE : create o with L(o) Sj and version WStamp; write-stack(o);

end case;

end procedure SEND;

procedure QUIT(r)

pop-stack;
if empty-stack then TERMINATE(lmsgmgr,WStamp) else [write-stack(r); resume;]

end procedure QUIT;

Figure 8: Message manager algorithms for SEND and QUIT

Our focus in the remaining sections of the paper will be on algorithms to achieve
the simpler level-by-level scheduling strategy. Although this scheduling approach is not
optimal in terms of the degree of concurrency allowed, it gives valuable insights into how
a centralized coordination task can be carried out in a distributed, correct, and secure
manner in the multilevel context.

3.2.1 Maintaining Global Serial Order

As mentioned earlier, one of the di�culties in achieving distributed coordination can
be attributed to the lack of a global view of the computations as they progress. In
particular, without a global data structure such as a tree we would not know the relative
order in which message managers are forked (in a sequential execution) by a user session.

Figure 9: Hierachical generation of fork-stamps

Knowledge of such ordering is crucial in maintaining serial correctness.

To elaborate on the above, consider the tree in �gure 9. With a level-by level scheduling
strategy, the fork of message manager 10(TS) by 1(U) will be queued up at the top secret
level manager before the fork of 6(TS) by 2(C) (as 2(C) will not be started until 1(U)
terminates). However 10(TS) should be dequeued and executed only after the termination
of 8(TS) and message manager 8(TS) in turn should be executed only after the termination
of 6(TS). This is required to guarantee correctness as the updates of 10(TS) at level top
secret should not be visible to either 6(TS) or 8(TS) as they are both to the left of it. On
the other hand, we want to make the updates of 6(TS) visible to 8(TS) and the updates of
both message managers 6(TS) and 8(TS) in turn visible to 10(TS). Thus there is a need
to capture the information that 10(TS) is to the right of 8(TS) and 8(TS) is itself to the
right of 6(TS). One could be tempted to obtain the above ordering information by reading
o� a system low real-time clock, every time a message manager is forked. However, as
shown above, forks are not always generated (in real time) in the order consistent with a
sequential execution and thus a solution with real-time clocks will not work.

Our proposal here is to derive such an ordering from a hierarchical scheme to generate
fork-stamps. Every message manager on being forked is assigned a unique fork-stamp by
the parent issuing the fork. The actual fork-stamps generated for the tree in the above
example is also shown in �gure 9. A set of four digits are used for this example with
fork requests at levels U, C, S, TS, and TTS. The root message manager 1(U) at level
unclassi�ed (U) is given an initial fork-stamp of 0000. It is then required to increment
the most signi�cant (leftmost) digit for every fork request issued. Thus 1(U) assigns the

fork-stamps 1000, 2000, and 3000 to its children 2(C), 7(S), and 10(TS) respectively. Now
a message manager at con�dential such as 2(C) is required to increment the second most
signi�cant digit of its fork-stamp for every subsequent child it forks. In other words, with
increasing levels, a less signi�cant digit is incremented. Hence the top secret message
manager in our example will be required to increment the least signi�cant (rightmost)
digit (as shown by the fork-stamps assigned to the children of 10(TS)). Thus a message
manager in the subtree rooted at 2(C) will always have smaller fork-stamp than one in
the subtree rooted at either 7(S) or 10(TS).

In light of our earlier discussion of this example, we now see that 6(TS) will indeed
have a lower fork-stamp than 8(TS), and 8(TS) in turn will have one lower than 10(TS).
We are thus able to implicitly capture the fork order in these fork-stamps. Finally, we
note that an appropriate number of digits can be allocated for generating fork-stamps so
as to account for the maximum degree of a node as well as the maximum depth of a tree
of computations.

3.2.2 The Processing of FORK and TERMINATE requests

A tree of message managers (computations) advances to completion through the genera-
tion of FORK and TERMINATE events. Every FORK results in the creation of a new
message manager and every TERMINATE could release one or more message managers
for execution and subsequent completion. We now discuss the algorithms to coordinate
FORK AND TERMINATE events. In our exposition, we will highlight how schemes
to guarantee serial correctness are incorporated in these algorithms through the use of
multi-versioning techniques.

The algorithm to process FORK requests is shown in �gure 10. On receiving a FORK
request from a lower level, a level manager creates a new message manager process (com-
putation) and records the fork-stamp (passed on by the parent issuing the FORK) in the
message manager's data structure. Now comes the task of initializing the message man-
ager's local-stamp table entries. The timestamps for these entries are actually acquired
in two phases. The �rst phase is at FORK time and the second phase is deferred until
the message manager starts.

Consider for the moment the �rst phase. During this phase, a message manager's
local-stamp entries are initialized for all the levels of its ancestors on the path from the
root to itself. The timestamps for these entries are obtained from a vector of timestamps
passed on by the parent issuing the FORK request. In fact, every message manager is
required to save the timestamps in the vector (rstamps) it receives from its parent and on
issuing a FORK, to reconstruct a new vector to give to its child. This newly constructed
vector will contain the timestamps from the old vector appended with the write stamp
(WStamp) at the level of the issuing message manager (which identi�es the latest versions
written before the FORK was issued). Obviously, the number of entries in such a vector
that is incrementally constructed increases with the number of direct ancestors and the
number of security levels (i.e., with the depth of the computation tree).

To see why the timestamps acquired in the �rst phase preserve serial correctness,
consider the path from 1(U) to 5(TS) in the tree in �gure 4 (a). In a sequential execution,

Procedure FORK(level-parent, level-create, fork-stamp, rstamps)
f
%Let level-create be the level of the local message manager
Create a new message manager mm at level level-create;

%Record the fork-stamp passed on by the parent
mm.fork-stamp fork-stamp

%Begin phase 1 of acquiring local-stamp entries
For (every level l � level-parent)
do

initialize mm.local-stamp table entries from rstamps;
End-For

%This is a priority queue maintained in fork-stamp order
enqueue(mm);
g
end procedure FORK;

Figure 10: Level manager algorithm for FORK processing

Procedure TERMINATE(lmsgmgr, WStamp)
f
%Let tt be the message manager that just terminated at level lmsgmgr
%Let lm be the level manager at level lmsgmgr

%Update local current write stamp from tt
lm.current-wstamp tt.WStamp

%Update local fork-history with the fork-stamp and WStamp of tt
Append-fork-history(fork-stamp, WStamp);

If queue is not empty
then

dequeue(queue, mm);
start(mm);

Else

Send a WAKE-UP message to all immediate higher level managers;
End-If

g
end procedure TERMINATE;

Figure 11: Level manager algorithm for TERMINATE processing

when 5(TS) is forked the ancestor message managers 4(C) and 1(U) will be blocked
(waiting to resume execution). To be more precise, when 4(C) was forked its parent 1(U)
was blocked and when 5(TS) was forked 4(C) in turn was blocked. Hence the versions
that will be read by 4(C) at the lower level unclassi�ed will be the ones that existed
at the time 1(U) was blocked. In a similar fashion, the versions read by 5(TS) will be
those that existed at the time 4(C) was blocked. Also, the versions read by 5(TS) at
level unclassi�ed will be the same as those read by 4(C) since 1(U) remains blocked until
both 5(TS) and 4(C) terminate. Now the timestamps identifying these versions at levels
unclassi�ed and con�dential are precisely those passed along to 5(TS) when it was forked.
Thus equivalence (in read down operations) to a logically sequential execution is achieved.
Now for an intermediate level such as secret which is not the level of any of the direct
ancestors of 5(TS), the initialization of the secret local-stamp entry would have to be
delayed until 5(TS) is actually started (for execution). This is thus accomplished only in
phase 2. The timestamp for such an entry will identify the latest version written by the
last forked message manager at level secret (if any), that is to the left of 5(TS) in the
computation tree. If no message manager was ever forked for the user session at secret,
the timestamp for the initial version that existed at the start of the session is used.

Upon completing the �rst phase of initializing the local-stamp entries, the level
manager proceeds to queue up the newly created message manager in its local queue. It
is important to note that with our level-by-level scheduling strategy, we unconditionally
queue up fork requests. This di�ers from the strategy governed by the \if and only if"
invariant presented earlier, where a forked message manager may be immediately started
under certain circumstances (thus allowing more concurrency).

The processing of TERMINATE requests is shown in �gure 11. When a message
manager terminates, the write stamp (WStamp) identifying the latest versions written at
its level is recorded by the local level manager. Next the level manager's fork-history
data structure is appended with the ordered pair (fork-stamp, WStamp). This captures
the fact that a certain message manager was forked in the order given by fork-stamp,
and terminated writing versions with timestamp WStamp. Such a history is needed to
implement the multiversioning scheme and to guarantee serial correctness. Finally, a level
manager dequeues and starts the next message manager (if any) from the local queue. If
the queue is found to be empty, a WAKE-UP message is sent to all immediately higher
level managers in the security lattice. The receipt of this WAKE-UP message could
potentially initiate the execution of queued up message managers at these levels. The
processing of these WAKE-UP messages is described in the next subsection.

3.2.3 WAKE-UP Messages and Level by Level Activation

We now describe the semantics of processing WAKE-UP messages and how this achieves
the level-by-level activation of computations (see �gure 12). When a WAKE-UP message
is received, a level manager has to determine if it can release for execution, computations
queued up at its level. It can do this only if all activity at all lower levels in the security
lattice have ceased. A message manager can be certain of this only when it has received
a WAKE-UP message from all immediate lower levels in the security lattice. In other

Procedure WAKE-UP

f
%Proceed if the necessary condition has been met
If a WAKE-UP message has been received from all lower levels
then

If the queue is not empty
then

DEQUEUE(queue, nn);
START(nn);

else

Send a WAKE-UP message to all immediate higher levels;
End-If

End-If

g
end procedure WAKE-UP;

Figure 12: Level manager algorithm for processing WAKE-UP messages

Procedure START(nn)
f
%Let nn represent the message manager to be started
%Let lm represent the level manager managing nn

%Complete phase 2 of acquiring local-stamp entries
For (every level l lower than the level of nn for which no timestamp has
been obtained so far)
do

nn.local-stamp[l] mm.fork-stamp;
where mm is the message manager entry in the fork-history at level l
with maxffork-stamp: fork-stamp < nn.fork-stampg

End-For

%Update the write stamp (WStamp) from the level manager
WStamp lm.Current-WStamp + 1;

%Begin execution of the message manager nn
execute(nn);
g
end procedure START;

Figure 13: Level manager algorithm for START

Figure 14: A lattice with WAKE-UP forwarding through empty levels

words, this is a necessary (and su�cient) condition for releasing computations at any
level. Once this condition is met, a level manager sorts its queue of pending message
managers by ascending order of fork-stamps. This is necessary to ensure that message
managers are activated in the same order as in a logically sequential execution. After the
sort is �nished, the message manager at the head of the queue is dequeued and started.
Subsequent termination of this and other message managers will cause the queue to be
emptied in due time.

If on receiving a WAKE-UP message from all immediate lower levels, a level manager
�nds its queue to be empty, it simply propagates (or feeds forward) a WAKE-UP message
to all immediate higher levels in the lattice (see �gure 14 for an illustration). It can do
this because it is certain that the queue will remain empty for the rest of the duration of
the user session as no more FORK requests will be forthcoming from lower levels.

As illustrated so far, TERMINATE and WAKE-UP requests potentially result in the
release and start of queued up message managers (computations). Once dequeued, a
common START procedure (see �gure 13) is used to complete the second-phase (alluded
to earlier) of the task of initializing the local-stamp entries. Now for all lower levels
for which no entries were obtained at fork time, the level manager examines the fork
histories. The level manager does this to determine the versions written by the last
forked computations that terminated before the fork of the message manager that is to
be started. This can be accomplished by comparing the fork-stamps at lower levels to
the fork-stamp of the message manager to be started. At each level, the largest such
stamp that is less than the stamp of the message manager to be started is picked, and
the associated version/timestamp is read. Once the second phase is completed, the level
manager provides the Current-WStamp value at its level incremented by one, to the

message manager. This will enable the just started message manager to write the correct
versions of objects at its level. It is important to note the need for incrementing this value
by one, for otherwise older versions will initially be overwritten (and this would violate
serial correctness).

4 DISCUSSION

Having discussed a level-by-level scheduling strategy, we now brie
y and informally argue
proofs of correctness, termination, and security. Introducing formal machinery to do
this is beyond the scope of this paper and unnecessary as the arguments are simple and
straightforward.

� Correctness. As in the proof sketches given in [9] we argue serial correctness
by showing that the versions read (down) by a message manager are the same as
in a sequential execution, and that write operations at its level occur in the same
relative order. In phase 1 of the protocol to obtain these timestamps, we have seen
how these timestamps identify versions written by blocked ancestors. Since in a
sequential execution the ancestors are always blocked due to a running child message
manager, the equivalence of these versions follow. In phase 2, forkstamps are used to
identify the latest versions written by earlier forked terminated message managers
(that are not direct ancestors) at lower levels. Again equivalence follows from the
fact that in a sequential execution all lower level message managers that are not
direct ancestors of a starting message manager would have terminated. Finally, at
every level the message managers are executed in ascending fork-stamp order. Thus
the relative order of write operations would be the same in a history generated by
our level-by-level scheduling strategy when compared to a second history generated
by the logically equivalent sequential execution.

� Termination. The proof that with a level-by-level scheduling and execution strat-
egy the entire set of computations will eventually terminate, can be argued from the
following: (1) Once a message manager starts, it runs uninterrupted to completion
(although the forks it issues may be accumulated for later scheduling). Thus the
time needed to empty the queue at any level is bounded; (2) A WAKE-UP message
is sent only when the local queue at a level is empty and hence the receipt of a
WAKE-UP message is a guarantee that all the computations at the lower sender's
level have terminated; (3) There exists no cyclical wait-for relations for WAKE-UP
messages among level managers in a security lattice.

� Security. This follows from the fact that all subjects are indeed single-level and
mandatory access control is never bypassed in our architecture. Thus the potential
for a multi-level trusted subject to open up signaling chanels is also eliminated.

As mentioned before, we have opted to present the simpler level-by-level scheduling
strategy in this paper. But, what does it take to implement the more optimal scheduling
strategy governed by the \if and only if" invariant? A FORK request may now im-
mediately result in the start of a new computation. The major complication arises in

determining when to release computations at a higher level. When a computation termi-
nates at a level, say l, we may have to send WAKE-UP messages to higher levels even
when there are pending forked computations at l (to allow maximum concurrency). We
are currently developing the algorithms formally to achieve this within the architectural
framework of single level message managers coordinated by single-level level managers.

5 CONCLUSION

In this paper we have reworked a kernelized architecture for implementing the message
�lter model so as to eliminate the need for trusted subjects. The centralized management
of computations now had to be done in a distributed fashion. The new architecture is in
line with the true spirit of kernelized approaches to providing security, and would make
the message �lter model more acceptable to commercial implementation e�orts. Having
laid the above groundwork, we will be looking into issues involved in supporting multiple
user sessions. In particular, we will be investigating the impact of concurrent computa-
tions from multiple users on concurrency control and transaction management schemes.
Addressing and solving these issues would be critical to the evolution of the message �lter
model as a full
edged solution for multilevel secure object-oriented databases.

References

[1] W. Kim et al. Features of the ORION object-oriented database system. In W. Kim and
F. Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, Addison-
Wesley Publ. Co., Inc., Reading, MA, 1989.

[2] D. Fisherman. IRIS: An object-oriented database management system. ACM Transactions

on O�ce Information Systems, 5(1):pp. 48{69, January 1987.

[3] S. Jajodia and B. Kogan. Integrating an object-oriented data model with multi-level secu-
rity. Proc. of the 1990 IEEE Symposium on Security and Privacy, pp. 76{85, May 1990.

[4] T.F. Keefe and W.T. Tsai. Prototyping the SODA security model. Proc. 3rd IFIP WG

11.3 Workshop on Database Security, September 1989.

[5] T.F. Keefe, W.T. Tsai, and M.B. Thuraisingham. A multilevel security model for object-
oriented systems. Proc. 11th National Computer Security Conference, pp. 1{9, October
1988.

[6] D. Maier. Development of an object-oriented DBMS. Proc. 1st Intl. Conf. on Object-

Oriented Programming Systems, Languages and Applications, pp. 472{482, 1986.

[7] J.K. Millen and T.F. Lunt. Secure Knowledge-based Systems. Technical Report, Computer
Science Laboratory, SRI International, August 1989.

[8] R.S. Sandhu, R. Thomas, and S. Jajodia. A Secure Kernelized Architecture for Multilevel
Object-Oriented Databases. Proc. of the IEEE Computer Security Foundations Workshop

IV, pp. 139-152, June 1991.

[9] R.S. Sandhu, R. Thomas, and S. Jajodia. Supporting timing-channel free computations in
multilevel secure object-oriented databases. Proc. of the IFIP 11.3 Workshop on Database

Security, Sheperdstown, West Virginia, November 1991.

[10] M.B. Thuraisingham. A multilevel secure object-oriented data model. Proc. 12th National

Computer Security Conference, pp. 579{590, October 1989.

