
Towards a Times-Based Usage Control Model

Baoxian Zhao1, Ravi Sandhu2, Xinwen Zhang3, and Xiaolin Qin4

1 George Mason University, Fairfax VA, USA
bzhao@gmu.edu

2 Institute for Cyber-Security Research, Univ. of Texas at San Antonio, USA
ravi.sandhu@utsa.edu

3 Samsung Information Systems America, San Jose, CA, USA
xinwen.z@samsung.com

4 Nanjing University of Aeronautics and Astronautics, Nanjing, China
qinxcs@nuaa.edu.cn

Abstract. Modern information systems require temporal and privilege-
consuming usage of digital objects. To meet these requirements, we pre-
sent a new access control model–Times-based Usage Control (TUCON).
TUCON extends traditional and temporal access control models with
times-based usage control by defining the maximum times that a privi-
lege can be exercised. When the usage times of a privilege is consumed
to zero or the time interval of the usage is expired, the privilege ex-
ercised on the object is automatically revoked by the system. Formal
definitions of TUCON actions and rules are presented in this paper, and
the implementation of TUCON is discussed.

Keywords: Access Control, Usage Control, Times-based Usage Control,
TUCON, Authorization.

1 Introduction

The rapid development in information technology, especially in electronic com-
merce applications, requires additional features for access control. In recent in-
formation systems, usage of a digital object can be not only time-independent
like read and write, but also temporal and times-consuming, such as payment-
based online reading metered by reading times or chapters, or a downloadable
music file that can only be played 10 times. In these applications, the access to
an object may decrease, expire, or be revoked along with the usage times of the
object.

Traditional and temporal access control models are not suitable for the above
requirements since the authorization decisions in these models are generally
made at the requested time but hardly recognize ongoing controls for times
constrained access or for immediate revocation. In order to meet these require-
ments in modern access control, this paper presents a new access control model,
called Times-based Usage Control (TUCON).

Compared to traditional models, TUCON features with the usage times of
privileges and valid periods for usage of digital objects, which enable the ability

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 227–242, 2007.
c© IFIP International Federation for Information Processing 2007

228 B. Zhao et al.

to express consumed privileges and define their period constraints. The usage
times can be triggered by active tasks in TUCON model. For example, once an
Internet user pays $10 for an on-line music system, he can enjoy 10 times on-line
listening privilege. When a subject is accessing the object in TUCON, the usage
times of this subject is decreased by 1. If the times is consumed to zero or the time
interval of usage is expired, authorization for the subject is revoked. With the
decreasing of usage times, authorizations can be updated during the whole access
process, and transferred among users without the problem of privilege chains
faced by current and traditional access control. Compared to authorizations in
traditional and temporal access control models, authorizations in TUCON are
mutable and flexible.

With usage times constraints in TUCON, system resources and privileges can
be prevented from being abused. It’s known that, through occupying too many
resources, some worms and viruses can attack computer systems, such as Code
Red [20] and Dukes [17]. If reasonable usage times are given for system resources,
such kinds of attacks can be avoided to a great extent [11].

The paper is organized as follows: In Section 2, some related work are dis-
cussed. Section 3 shows a simple motivating example, which traditional and tem-
poral access control models cannot support well. Section 4 presents the temporal
and times-based constraints in the proposed TUCON model. Authorizations and
authorization rules in TUCON are also discussed in this section. In Section 5, we
give the implementation of TUCON in practice. Section 6 concludes this paper
and presents our future work.

2 Related Work

The development of access control models has experienced a long history. There
are two main approaches in this field. One is about traditional access control
models. This approach is the earliest research work for access control and orig-
inates from the research of discretionary access control (DAC) [2,6,12,21]. A
classic paper by Lampson [2] introduced this basic ideas. Because DAC has an
inherent weakness that information can be copied from one object to another, it
is difficult for DAC to enforce a safety policy and protect against some security
attacks. In order to overcome the shortcoming of DAC, mandatory access con-
trol (MAC) was invented to enforce lattice-based confidentiality policies [4,5] in
the face of Trojan Horse attacks. MAC does not consider covert channels, but
covert channels are expensive to eliminate [22]. Sandhu et al presented Role-
based access control (RBAC) [23], which has been considered as a promising
alternative to DAC and MAC. There have been much progress in traditional
access control, but its core has largely remained unchanged and centered around
the access matrix model [2,3].

The other approach is about the research of temporal access control mod-
els, which introduce the temporal attributes into traditional access control with
temporal logic. The approach is based on traditional access control. A temporal
authorization model was first proposed by Bertino et al in [7], which is based

Towards a Times-Based Usage Control Model 229

on temporal intervals of validity for authorization and temporal dependencies
among authorizations. In [8,9], Bertino et al extended the range of temporal
intervals to temporal periods and suggested an access control model support-
ing periodicity constrains and temporal reasoning. Following the RBAC model,
the Temporal-RBAC (TRBAC) model was presented in [10], which supports
temporal dependencies among roles. At the same time, Avigdor et al suggested
another authorization model for temporal data called Temporal Data Autho-
rization Model (TDAM) [1]. TDAM extended the basic authorization model by
facilitating it with the capability to express authorizations based on the tem-
poral attributes associated with data, such as transaction time and valid time.
Recently, TRBAC is extended to the Generalized Temporal RBAC (GTRBAC)
in [13], which enables RBAC to express a wider range of temporal constraints.
All these temporal access control models primary consider authorization deci-
sions constrained by certain time periods.

Although many researchers in the field of access control have made great
contributions to the progress of access control, authorizations in these models
are still static authorization decisions based on subjects’ permissions on target
objects. Once an access to the object is permitted, the subject can access it
repeatedly at the valid time intervals.

Sandhu , Park et al have proposed the Usage Control (UCON) [14,15,24,27,28]
model to solve these problems. The UCON model considers this temporal and
consumed attributes as the mutable attributes of subjects or objects [15]. The
UCON model has unified traditional access control models and temporal access
models with its ABC (Authorizations, oBligations and Conditions) [14] core
models.

Our approach to solve these problems is different from the work of the UCON
model. In TUCON, we focus on periods and usage times of accessing rather than
a single access in UCON. In other words, usage times in TUCON is a sequence
of accesses. Temporal and consumed authorizations are enforced in TUCON,
which make access control simple and easy to be implemented. However, un-
til now, UCON hasn’t been put into the practice because the administration
of authorizations in UCON is potentially complex and difficult to implement.
Therefore, to meet new requirements in the modern access control, TUCON is
suitable for applications in the real world.

3 Motivating Example

In this section, a simple example is given to motivate the new features of TU-
CON. Current and traditional access models have difficulties, or lack flexibility
to specify policies in this application.

Consider a simple application with times constrained usage of digital objects,
where a registered user can enjoy on-line music for 10 times if only he/she has pre-
paid $10. Privileges for using objects can be transferred between two registered
users and their privileges will be revoked in the following two situations:

230 B. Zhao et al.

1. revocation by usage times: the usage times is zero during ongoing usage of
digital objects.

2. revocation by time interval: the time interval of authorizations is expired.

Based on this policy, three different attributes are required to meet these
authorizations:

1. The time interval. It includes the starting time and the end time. An access
is permitted when the usage times for digital objects is more than zero at
the starting time. Otherwise, at the end time, the usage privilege for using
objects is revoked.

2. The valid period. Only during the valid period of usage, an access to an
object can be permitted, otherwise, denied.

3. Usage times. It is the maximum value which restricts a subject accessing the
object. When the usage times of an object is zero, the subject is prohibited to
access this object and the privilege is automatically revoked by the system.

Through the above analysis, we give the state transition of times-based usage
control actions in Figure 1.

 denied revoke privilege

transfer privilege

trigger access request permit endaccess
Initial Authori

zation

Derived
Authori
zation

EndEnd

Deny Revoke

access request

Checkin
g

Accessi
ng

Fig. 1. The state transition of times-based usage control actions

The states and actions in Figure 1 are explained below.

1. Initial: the initial state of the system.
2. Triggers: triggering authorization of systems, which are requirements that

must be satisfied for granting access. In this example, triggers are the ac-
tions that a user must register himself in our system and pre-pay $10 before
enjoying this on-line service. Triggers are abstracted into logic expressions
in TUCON.

3. Authorization: granting privileges of service to users if users meet authoriza-
tion requirements of the system.

4. Transfer privilege: one can transfer his privilege of an object to another by
decreasing his usage times.

5. Derived authorization: authorizations are derived from transferring privileges
or exercising privileges.

6. Access request: the user requests to access digital objects. In section 5, the
formalization of an access request is given.

Towards a Times-Based Usage Control Model 231

7. Checking: checking the usage times and the period of the authorization .
8. Permitted and denied: If the usage times is more than zero and the time

interval is not expired during the valid period , an access to digital objects
is permitted, otherwise, denied.

9. Accessing: During this state, subjects are accessing digital objects. During
the state of accessing, the usage times of subjects need to be updated by
decreasing 1.

10. Revoke privilege and endaccess: If the usage times is not zero and the us-
age period is till valid after accessing, no updating is done by the system.
This case is the action of endaccess. Otherwise, the system will revoke some
subjects’ privileges and update some authorizations. This process is the ac-
tion of revoke privilege. The details of revoke privilege are introduced in
Section 5.

11. Deny, Revoke and End: three final states. Deny is the sate of refusing to
access without revoking privileges. Revoke is the finial state after the action
of revoke privileges, while End is the one after the action of endaccess.

From the analysis of states and actions in TUCON, it is obvious that an ac-
cess is not a simple action, which consists of a sequence of actions and active
tasks from a subject and the system. During the whole access process, autho-
rizations need to be updated. These requirements are far out of the scope that
traditional and temporal access models can deal with. In the following, TUCON
is introduced to solve these problems.

4 TUCON Model

TUCON consists of two aspects: times-based authorizations and authorization
rules. Before these aspects are discussed, some preliminaries are given.

4.1 Preliminaries

In order to keep the generality of TUCON and protect information of different
data models, no basic data assumption for TUCON is made here. Therefore it
is easy to apply TUCON to other data models.

Assume that U denotes the set of subjects (users), O set of objects, P set of
privileges for objects, N set of natural numbers, and T set of time intervals with
a total order relation ≤ .

Definition 1 (Periodic Expression [9]). A periodic expression is defined as
Q =

∑n
i=1 Oi .Ci � .Cd, where O1 ∈ 2N ∪ {all}, Oi ∈ 2N, i = 2, . . . , n, Ci and Cd

are calendars for i = 2, . . . , n, Cd ⊆ Cn, and d ∈ N.

Let D present the set of all valid periods, then Q ∈ D. Table 1 illustrates a set
of periodic expressions and their meanings. In order to simplify the following
discussion, all authorization tuples are given with the same privilege on the
same object, having the same time interval, and the same period. Since the
implementation of operations for periodical data [9,16,18] is not the focus of this
paper, any further discussion is not given in this paper.

232 B. Zhao et al.

Definition 2 (Times). Times is a set of natural numbers, formally defined as
{pt ∈ N}.

4.2 Authorizations

TUCON allows us to express times-based authorizations. That is, authorizations
for a user to access an object in specific time intervals are specified by a periodic
expression, as well as determined by times of privilege usage. Moreover, the usage
times of a privilege is a natural number associated with each authorization, and
a time interval is also associated with each authorization, imposing lower and
upper bounds to the potentially infinite set of instants denoted by the periodic
expression. We refer to an authorization together with its usage times as a times
authorization.

Definition 3 (Times Authorization). A times authorization is a 6-tuple (pt,
s, o, priv, pn, g), where pt ∈ N, s, g ∈ S, o ∈ O, priv ∈ P, pn ∈ {+, −}.

Tuple (pt, s, o, priv, pn, g) states that user s has been authorized (if pn = ‘+’)
or denied (if pn = ‘-’) for pt times privilege priv on object o by user g. For
example, the tuple (6, Tom, Sun, read, +, Sam) denotes that Sam authorizes
6 times privilege read on the book Sun to Tom.

For convenience, the symbol σ is used to project some appointed area of a
tuple. For example, with the tuple A=(pt1, s1, o1, priv1, pn1, g1), σA(s) = s1
denotes the s area of the times authorization A, and σA(s, g) = (s1, g1) denotes
a 2-tuple consisting of s and g areas.

In TUCON, all authorizations are uniformly authorized by the system. When
transferring privileges, the system can still be regarded as user g, who transfers
privileges to other users, since usage times of this user g are correspondingly
decreased. Consumed times reduces the transferring capability during transfer-
ring privileges. So revoking privileges, we only need to delete the privileges in
our system, which doesn’t have problems caused by transferring privileges in the
current and traditional access control models such as cascading.

Under some conditions, privileges on objects without times constrains are
needed. This kind of authorizations is referred as non-times authorizations.

Definition 4 (Non-Times Authorization). When pt = -1 in a times autho-
rization tuple, we call this times authorization as non-times authorization.

Table 1. Example of periodic expressions

Periodical expression Meaning

weeks {2,6}.Days Tuesday and Saturday

15.DaysMonths 15th of every month

Years 7.Months 2.Months
Summer vacation (July and
August of every year)

Weeks {1,...,5}.Days

Weeks {1,...,5}.Days 9.Hours 3.Hours

Workday

Each working day between
9.am and 12 a.m

Towards a Times-Based Usage Control Model 233

Notice that in TUCON, when pn = ‘-’ in an authorization tuple, it states that
this authorization is revoked, even though the usage times may not be zero.

Definition 5 (Times-Based Authorization). A times-based authorization
is a 3-tuple (time, period, auth), where time represents a time interval [ta, tb],
0 ≤ ta ≤ tb ∈ T , period is a periodical expression, and auth is a 6-tuple autho-
rization.

A 3-tuple ([ta, tb] ,d ,(pt, s, o, priv, pn, g)) states that user s has been authorized
(if pn = ‘+’) or denied (if pn = ‘-’) for pt times privilege priv on object o by
user g in the time interval [ta, tb] of the period d. When pt= ‘-1’, TUCON can
be reduced to the models discussed in [7,8,9].

For a times-based authorization ([1/12/2001 ,12/24/2005], Weeks+2.days, (6,
Tom, file, read, +, Sam)), it means that, between Jan. 12 , 2001 and Dec. 24,
2005, Tom has 6 times privilege read on object file, but he can operate this
privilege only on Tuesday each week.

4.3 Authorization Rules

In this section, authorization rules, with similar semantic as [27], are introduced
to organize authorizations. We start with the following predicate symbols.

1. A ternary predicate symbol, access, an authorization token. The first area
of access is a time interval time, the second is a periodical expression period,
and the third is a 6-tuple authorization auth. The predicate access represents
authorizations explicitly inserted by the administrator.

2. A ternary predicate symbol, deraccess, with the same semantic meaning
as access. The predicate deraccess represents authorizations derived by the
system using logical rules of inference.

3. A ternary predicate symbol, force access, with the same semantic meaning
as access. The predicate force access represents authorizations that hold for
each subject on each object. It enforces the conflict resolution policy.

4. A symbol Li(0 ≤ i ≤ n). It can represent all the above predicate symbols
and also trigger expressions required by the system.

First, a grant rule is given to express how to grant subjects authorizations.

Definition 6 (Grant Rule). A grant rule is defined as the form of:
access (time, period, auth) ← L1& . . .&Ln

where Li is a trigger condition expression. This expression can be developed from
specific requirements for the usage of digital objects. These conditions may be
triggers of some active tasks. All these depend on the requirements of the system.

Grant rules are specified to permit accesses to subjects. Whether this rule is
true or not is decided by whether or not the condition expressions are satisfied.
Note that in TUCON, an authorization is only permitted to grant a positive
one (pn = ‘+’), not a negative one (pn = ‘-’).

234 B. Zhao et al.

Example 1. In an application system Business system, if a registered
user Bob pre-pays $1000, he can enjoy a certain super-value service m for 6
times during every Friday since the time 09/12/2006. Let this privilege be
super. This authorization can be expressed by a grant rule as the following:
access([09/12/2006,+ ∞] , Weeks+5.days, (6, Bob , m, super, +, Busi-
ness system)) ← prepay(Bob,1000) & register(Bob)

Here prepay(Bob, 1000) means Bob pre-pays $1000 and register(Bob) Bob
is a registered user. Both of them are trigger condition expressions.

Definition 7 (Derived Rule). A derived rule is defined as the form of:
deraccess (time, period, auth) ← L1& . . . &Ln

where Li can be access with conditional expressions.
Derived rules can be used to update usage times during ongoing usage control.

When an access is performed, the usage times is decreased by 1. However, derived
rules only update times authorizations rather than non-times authorizations
after accessing, which is discussed in resolution rules,

Derived rules also support transferring times-based authorizations. In TU-
CON, transferring authorizations means consuming the usage times of privileges
on digital objects. When the usage times of a privilege decreases to zero, the
privilege is automatically revoked by the system.

Example 2. Now Bob wants to transfer 3 times for enjoying the service
m to another user Alice. These can be defined with derived rules as the
following:
deraccess([09/12/2006,+ ∞] , Weeks+5.days, (3, Alice , m, super, +, Busi-
ness system)) ←access ([09/12/2006,+ ∞] , Weeks+5.days, (6, Bob , m,
super, +, Business system)) & give(3, Alice, m, super, Bob) & less(3,6)
deraccess([09/12/2006,+ ∞] , Weaks+5.days, (3, Bob , m, super, +, Busi-
ness system)) ←access ([09/12/2006,+ ∞] , Weeks+5.days, (6, Bob , m,
super, +, Business system)) & give(3, Alice, m, super, Bob) & less(3,6)

where give(3, Alice, m, super, Bob) states that Bob transfers 3 times of privilege
super to Alice. less(m,n) states true if m is less than n.

Through above discussion, we can notice that multiple times authorizations can
be given for a subject to access the same object through applying grant and de-
rived rules. After transferring authorizations or accessing, the usage times of this
authorization can be decreased to zero. So we need a rule to resolve these conflicts.
A resolution rule, given below, forces a final unambiguous decision to be made.

Definition 8 (Resolution Rule). A resolution rule is defined as the form of:
force access (time, period, auth) ← L1& . . .&Ln

where Li can be access or deraccess or condition expressions. A resolution rule
states that a given subject must be allowed/forbidden to perform a privilege
on an object. Compared to grant and derived rules, which may cause autho-
rizations conflicts, resolution rules state which authorizations the system must
consider valid for each subject, on the basis of the existing granted or derived
authorizations.

Towards a Times-Based Usage Control Model 235

Resolution rules can be used to revoke authorizations, combine multiple
times authorizations, update non-times authorizations after accessing and solve
conflicts caused by times and non-times authorizations coexisting for a subject.

Example 3. In example 2, if Alice has 4 times super right on service m,
a resolution rule should be used to solve conflicts after Bob transfers rights to
Alice:
force access([09/12/2006,+ ∞] , Weaks+5.days, (7, Alice , m, super, +,
Business system)) ←access ([09/12/2006,+ ∞] , Weeks+5.days, (4, Alice , m,
super, +, Business system)) & deraccess ([09/12/2006,+ ∞] , Weeks+5.days,
(3, Alice , m, super, +, Business system))

If Alice has non-times right on service m, this resolution rule should be used:
force access([09/12/2006,+ ∞] , Weeks+5.days, (-1, Alice , m, super, +,
Business system)) ←access ([09/12/2006,+ ∞] , Weeks+5.days, (-1, Alice , m,
super, +, Business system)) & deraccess ([09/12/2006,+ ∞] , Weeks+5.days,
(3, Alice , m, super, +, Business system))

If Bob’s has 0 times right after transferring rights, another resolution rule is
added to revoke Bob’s authorization:
force access([09/12/2006,+ ∞] , Weeks+5.days, (0, Bob , m, super, -,
Business system)) ←deraccess ([09/12/2006,+ ∞] , Weeks+5.days, (0, Bob ,
m, super, +, Business system)) .

Depending on different situations, an administrator of the system can make a
forced authorization decision by this rule. For example, when a security ad-
ministrator notices that a user often sends many access requests without using
services, this administrator may take actions on this user to prevent denial of
service (DoS), such as revoking his authorization. Different applications have
different considerations for administrators. However, as a general model, TU-
CON does not take any specific application into consideration. All these can
be abstracted into condition expressions. Note that the conditions in resolution
rules are factors which violate the security policy of systems, while those in grant
rules are requirements, which must be satisfied for granting privileges.

Based on above given authorization rules, a set of rules are introduced to
enforce the policy in TUCON. In the following, we just write the tuple of auth
instead of the tuple of (time, period , auth), based on the assumption stated in
Section 4.1.

First, some symbols are explained to express rules as follows.

– s, s1, system ∈ S, where system is considered as the administrator and every
user is a legal (registered) one in the system;

– priv ∈ P ;
– o ∈ O ;
– Tri(i ∈ N) is the logic expression of a trigger;
– give(s, s1, o, priv, pt): indicating that user s gives his pt usage times of

privilege priv on object o to user s1 ;
– accessing(s, o, priv): indicating that user s is performing operation privilege

priv on object o;

236 B. Zhao et al.

– expired(current t): indicating that the current time is expired for the valid
time interval, current t ∈ T.

R1 auth(pt, s, o, priv, +, system) ← Tr1& . . .&Trn (0 ≤ i ≤ n)
R2a auth(pt1, s1, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & give(

s, s1, o, priv) & (pt ≥ pt1)
R2b auth(pt-pt1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) &

give(s, s1, o, priv) & (pt ≥ pt1)
R3a auth(pt-1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & ac-

cessing(s, o, prv)& pt > 0
R3b auth(-1, s, o, priv, +, system) ← auth(-1, s, o, priv, +, system) & accessing

(s, o, prv)
R4 auth(pt+pt1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) &

auth(pt1, s, o, priv, +, system) & (pt ≥ 0) & (pt1 ≥ 0)
R5 auth(-1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & auth(-1,

s, o, priv, +, system)
R6 auth(0, s, o, priv, -, system) ← auth(0, s, o, priv, +, system)
R7 auth(pt, s, o, priv, -, system) ← auth(pt, s, o, priv, +, system) & ex-

pired(current t)

– Rule R1, a grant rule, says that if user satisfies requirements Tri before
allowing access, he/she can get pt times for operating privilege priv on object
o from system.

– Rule R2a, R2b, two derived rules, implement that user can give his pt1 usage
times of privilege to user s1.

– Rule R3a, a derived rule, says that when user s with a times authorization
is accessing object o, his usage times should be decreased by 1. Rule R3b,
also a resolution rule, says that when user s with a non-times authorization
is accessing object o, there is no need to update his authorization.

– Rule R4, a resolution rule, says that when there exist two times-based autho-
rizations with the same user s for the same privilege priv on the same object,
usage times should be added between these authorizations to make the final
authorization decision. This rule is to solve authorizations from grant rules
and derived authorization rules.

– Rule R5, a resolution rule, solves the conflicts between a non-times autho-
rization and a times authorization for the same subject, object and privilege.
When there exists the above case, a non-times authorization to the subject
will be granted.

– Rule R6, a resolution rule, says that if usage times is zero, this authorization
will be revoked.

– Rule R7, a resolution rule, says that if the valid time is expired, this autho-
rization will be revoked.

4.4 Completeness

A set of the above rules can preserve the completeness property of the policy in
TUCON.

Towards a Times-Based Usage Control Model 237

Theorem 1 (Completeness). The policy in TUCON can be specified by a
non-empty set of TUCON rules.

Proof. If we can prove that there is no conflict decision by using these rules and
these rules specify all possible decisions during the usage process in TUCON,
the completeness of the policy in TUCON is guaranteed.

(1) no conflict decisions
By construction of these rules, resolution rules can be used to resolve the

conflictions caused by grant rules and derived rules. After using resolution rules,
there are no conflict access decisions since the resolution rule states that a subject
must be allowed/forbidden to performance a privilege on an object. So we can
safely conclude that there is no conflict decision made by using these rules.

(2) specifying all possible decisions
If the system state transitions in TUCON satisfy these rules, it can conclude

that these rules specifies all possible decisions during the usage process.
Based on Figure 1 in Section 2, the state transitions are constructed with the

following steps and illustrated in Figure 2.

 privilege
transfer access request

 ongoing
 trigger access request permited update endacess

 deny revoke revoke

S0 S8

S2

S3 S7S5S1

S4 S6

Fig. 2. State transitions

1. Initially the system state is S0. In the state S0, the subject s performs some
triggers satisfying with R1. Then s gets a new authorization and the system
state changes to S1.

2. In S1, if the subject s transfers some privilege to another subject, the system
state arrives S2. During changing of states, we can use R2a and R2b to
transfer privileges. When causing some conflict authorizations, R4 or R5
can be used to resolve them.

3. In S2 or S1, when receiving an access request, the system state changes to S3.
4. In S3, access requirements are satisfied, the access is permitted and the new

system state is S5. If usage times is zero, R6 is used to revoke this privilege
and new system state is S6. If the valid time is expired, R7 is used to revoke
this privilege and new system state is S6 ; Otherwise, the access is denied
and the system state changes to S4. Notice that in S4, the privilege is not
revoked by system.

238 B. Zhao et al.

5. In S5, after using R3a and R3b to update authorizations, the system new
state is S7.

6. In S7, if usage times is zero, we revoke the privilege with R6 and arrive at
the state S6. Otherwise, the system state is S8 after ending an access.

With simple model checking, we can verify that all the rules are satisfied
in these state transitions. That is, these rules specify all possible decisions in
TUCON.

Considering the two above factors, the policy in TUCON can be specified by
a non-empty set of the TUCON rules. �

5 Implementation of TUCON

In the above section, TUCON has been discussed in detail. Now, the implemen-
tation of TUCON in practice is given, which includes administration of autho-
rizations and implementation of access control.

5.1 Administration of Authorizations

In the implementation of access control models, the most important thing is
administration of authorizations. All authorizations in TUCON are derived from
grant, derived, and resolution rules. A set of authorizations is called a Times-
based Authorization Base (TAB). A TAB includes authorizations from access,
deraccess, and force access which are not conflict with each other.

In a TAB, operations of authorizations are to grant/revoke times and non-
times authorizations to/from users. In order to support these operations, the
following problems must be solved:

(a) How to deal with a situation when times and non-times authorizations co-
exist for a given object, subject, and privilege?

(b) How to deal with multiple times authorizations for a given object, subject,
and privilege?

We can deal with the above problems easily with the above Rule R4 and Rule
R5.

Next we discuss operations for revoking privileges. It includes two kinds of
manipulations: repeal non-times authorizations and automatically revoke times-
based authorization. First, we check an authorization tuple au = ([ta, tb], d,
(pt, s, o, priv, pn, g)) with respect to the current time. If the current time
current time > tb(current time ∈ T) then set pn = ‘-’ in the 6-tuple of autho-
rization; If ta ≤ current time ≤ tb, tuple au should be further checked to make
sure whether it is a times-based authorization or not, and then if σau(pt) = 0
set pn = ‘-’ in the 6-tuple authorization au. Finally, we delete the tuples with
pn = ‘-’ in TAB to form the new TAB. Otherwise, TAB will not be changed.

Towards a Times-Based Usage Control Model 239

5.2 Access Control

After a subject is granted with an authorization, an access request is needed to
access the object.

Definition 9 (Access Request). An access request is a 5-tuple (t, p, s, o,
priv) where t ∈ T is the time when the access is requested, p ∈ Q the current
period point, s ∈ S the user who requires the access, o ∈ O the object to be access,
and priv ∈ P a privilege exercised on object o.

As far as an authorization is concerned, the first step is to judge whether this
authorization is valid or not. So every access request is checked against the
current TAB to determine whether the access is authorized, which is checked by
the valid authorization function.

Definition 10 (Valid Authorization Function). The valid authorization
function is used to judge whether the current authorization is valid. It can be
expressed as the following:

G(r) =

⎧
⎨

⎩

au au ∈ TAB ∧ σr(t) ∈ σau(time)
∧σσau(auth)(s, o, piv) = σr(s, o, priv)

∅ others

where r is an access request. G(r) returns an authorization tuple. When it is ∅,
the authorization is illegal, otherwise is a legal authorization.

However, a valid authorization is not enough for an access request. The specific
period of the current request access should also be checked, which is valid or not
according to the period constraint of an authorization. A valid authorized access
request is a request for which an authorization exists in the current TAB, which
is checked by the following valid access function.

In order to express the definition of a valid access function conveniently, a
useful expression is given for the relationship between a period point and the
period. If a specific period point p ∈ Q belongs to the period per ∈ Q, it is
denoted as p =

∏
(per).

Definition 11 (Valid Access Function). The valid access function is used to
judge whether the access request is valid according to the current TAB. It can be
expressed as follows:

F (r) =
{

true ∃G(r)(σr(p) =
∏

(σG(r)(period)))
false others

where r is an access request. If F(r) is true, the access is valid.

After a subject submits an access request r and F(r) is true, this subject is
permitted to access the object. During the following process of accessing, there
are three kinds of situations that should be considered. If a requested autho-
rization tuple is a non-times authorization, the TAB remains unchanged. If it
is a times authorization, when the times is more than zero, the number of the

240 B. Zhao et al.

privilege times is subtracted by 1, and then the TAB by resolution rules is mod-
ified. If the number of times is zero, we delete this tuple from the TAB. The
concrete algorism is briefly described in the following, where the TAB is current
times-based authorization base, and r is an access request.

Access control(TAB, r)
{.

au = G(r); // use the valid authorization to return a set function of
// authorization tuple, and then judge whether the
//authorization is valid

if (au = ∅)
error(“Illegal Authorization ”);

if (σau(pt) = 0) // judge whether the privilege times is 0, in order
// to decide whether the authorization should be revoked or not.

{ revoke the authorization set pn =‘-’ in the 6-tuple
of authorization, and delete those derived authoriza-
tion tuples by resolution rules with pn =‘-1’, and
form the new TAB;
error (“This authorization does not exist ”);

}
k = F(r); // use the valid access function to return a

// boolean value, with which to judge
// whether the access is valid.

if (k = false)
error (“Illegal Access ! ”);

i = σσau
(pt); // the times of privilege.

if (i > 0)
{ get by subtracting 1 from au’s privilege times,
do some modifications in the TAB and then get
the new TAB

}
.

}

6 Conclusion and Future Work

To meet new requirements in recent information systems, this paper presents a
new access control model— the Times-based Usage Control (TUCON) Model,
TUCON supports both consumable and temporal authorizations, and persistent
authorizations with transferring authorizations. The key concept of TUCON is
the usage times of privileges, which makes the implementation of access control
more active and mutable, and protects resources from being abused.

TUCON has a vast range of applications in modern information society and can
effectively solve the problems of consumed privileges in the validity of the period,
especially in the times-metered systems and electronic commerce systems.

Towards a Times-Based Usage Control Model 241

TUCON can be viewed as one of the specific research problems for mutable
attributes [15] in modern access control. In order to clearly express our key point
of this model, we analyze TUCON with different usage times, just assuming that
the same privileges on the same digital objects have the same time interval and
the same period. It is an interesting research topic to consider the different
time intervals and different periods in TUCON. This research work is currently
under our way. Based on the current progress of TUCON, development of the
administration of authorizations in UCON is also future research work.

References

1. Gal, A., Atluri, V.: An Authorization Model for temporal Data. ACM Transactions
on Information and System Security 5(1) (Feburary 2002)

2. Lampson, B.W.: Protection. 5th Princeton Symposium on Information Science and
Systems, 1971. Reprinted in ACM Operating Systems Review, 8(1), 18-24 (1974)

3. Landwehr, C.: Protection (Security) Models and Policy. In: The Computer Science
and Engineering Handbook, pp. 1914–1928. CRC Press, USA (1997)

4. Bell, D.E., Lapadula, L.J.: Secure computer systems: Unified exposition and Mul-
tics interpretation. Technical Report ESD-TR-75-306,The Mitre Corporation, Bed-
ford, MA (March 1975)

5. Denning, D.E.: A lattice Model of secure information flow. Communications of
ACM. 19(5), 236–243 (1976)

6. Downs, D.D., Rub, J.R., Kung, K.C, Jordan, C.S.: Issues in discretionary access
control. In: In the procceding of IEEE Symposium on Research in Security and
Privacy, pp. 208–218. IEEE Press, NJ, New York (April 1985)

7. Bertino, E., Bettini, C., Samarati, P.: A Temporal Authorization Model. CCS ’94,
l/94 Fairfax Va, USA (1994)

8. Bertino, E., Bettini, C., Samarati, P.: A Temporal Access Control Mechanism for
Database Systems. IEEE Transactions on Knowledge and DataEngineering 8(1)
(Feburary 1996)

9. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An Access Control Model Sup-
porting Periodicity Constraints and Temporal Reasoning. ACM Transactionon
Database Systems 23(3) (September 1998)

10. Bertino, E., Bonatti, P.A, Ferrari, E.: TRBAC: A Temporal Role-based Access
Control Model. ACM Transactionon on Information and System Security 4(3),
191–233 (2001)

11. Kargl, F., Maier, J., Weber, M.: Protecting Web Servers from Distributed Denial
of Service Attacks. In: Proceedings of WWW ’10, pp. 514-525 (2001)

12. Graham, G.S., Denning, P.J.: Protection - Principles and Practice. In: Proceedings
of the AFIPS Srping Joint Computer Conference, vol. 40, pp. 417–429. AFIPS
Press (May 16-18, 1972)

13. James, B.D., Joshi, E., Bertino, U., Latif, A., Ghafoo, A.: A Generalized Temporal
Role-Based Access Control Model. IACM Transactionon on Knoledge and Data
Engineering 17(1), 4–23 (2005)

14. Park, J., Zhang, X., Sandhu, R.: The Usage Control Model. In: ACM Transactions
on Information and Systems Security, ACM Press, New York (Feburary 2004)

15. Park, J., Zhang, X., Sandhu, R.: Attribute Mutability in Usage Control. IFIP WG
11.3 (November 2004)

242 B. Zhao et al.

16. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
ACM 26 (November 1983)

17. Lo, J.: Denial of Service or ”Nuke” Attacks (March 12, 2005), http://www.
irchelp.org/irchelp/nuke/

18. Doerr, M., Yiortsou, A.: Implementing a Temporal Datatype. Technical Report
ICS-FORTH/TR-236 (November 1998)

19. Kudo, M., Hada, S.: XML Document Security based on Provisional Authorization.
In: CCS’00, Athens, Greece, ACM Press, New York (2000)

20. Weaver, N.: Warhol Worms: The Potential for Very Fast Internet Plagues,
http://www.cs.berkeley.edu/nweaver/warhol.html

21. Griffiths, G.S., Wade, B.W.: An authorization mechanism for a relational database
system. ACM Transactions On Database Systems 1(3), 242–255 (1976)

22. Sandhu, R.: Access Control: The Neglected Frontier (Keynote Lecture). In: Aus-
tralasian Conference on Information Security and Privacy (1996)

23. Sandhu, R.: Role Hierarchies and Constraints for Lattice-Based Access Controls.
In: European Symposium on Research in Security and Privacy (1996)

24. Sandhu, R., Park, J.: Usage Control: A Vision for Next Generation Access Con-
trol. In: Models and Architectures for Computer Networks Security. The Second
International Workshopon Mathematical Methods (2003)

25. Siewe, F., Cau, A., Zedan, H.: A Compositional Framework for Access Control
Policies Enforcement. In: Proceeding of the ACM Workshop on Formal Methods
in Security Engineering, ACM Press, New York (2003)

26. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A Logical Language for Express-
ing Authorizations. In: IEEE Symposium On Research in Security and Privacy,
Oakland, California (1997)

27. Zhang, X., Park, J., Parisi-Presicce, F., Sandhu, R.: A Logical Specification for Us-
age Control. In: 9th ACM Symposium on Access Control Models and Technologies
(SACMAT), ACM Press, New York (June 2-4, 2004)

28. Zhang, X., Parisi-Presicce, F., Park, J., Sandhu, R.: Formal Model and Policy
Specification of Usage Control. ACM Transactions on Information and System
Security (TISSEC) 8(4), 351–387 (2005)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.irchelp.org/irchelp/nuke/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.irchelp.org/irchelp/nuke/
http://www.cs.berkeley.edu/ nweaver/warhol.html

	Towards a Times-Based Usage Control Model
	Introduction
	Related Work
	Motivating Example
	TUCON Model
	Preliminaries
	Authorizations
	Authorization Rules
	Completeness

	Implementation of TUCON
	Administration of Authorizations
	Access Control

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

