
Proc. of the IFIP WG11.3 Workshop on Database Security,
Monterey, California, September 5-7, 1989

MANDATORY CONTROLS FOR

DATABASE INTEGRITY

Ravi Sandhu

Department of Information Systems and Systems Engineering
George Mason University
Fairfax, Virginia 22030-4444, USA

1 INTRODUCTION

Our goal is to develop a scienti�c understanding of the kinds of mandatory controls
needed to support data integrity. There is general consensus that integrity is an im-
portant problem and requires some kind of mandatory controls for its solution. At the
same time, inspite of considerable e�ort [17, 18, for instance], there is little consensus
on what is meant by the two key terms: mandatory controls and data integrity.

In this paper we outline our position on these issues and suggest avenues of research.
Our fundamental claims are as follows.

1. Mandatory controls for data integrity cannot be reduced to traditional lattice-
based controls [1, 2, 7] on read and write operations alone.

2. Data integrity requires a more sophisticated view of mandatory controls than
provided by the traditional black and white distinction between mandatory and
discretionary controls.

These claims �nd support to various degrees in the literature [3, 4, 14, 15, 19, 20, 24,
for instance]. Our objective is to consider their rami�cations for database management
systems. We actually believe that both claims also apply to data and information
secrecy, particularly the second one. However for the moment we choose to focus on
data integrity.

The paper relates most closely to the following research questions identi�ed by IFIP
WG 11.3 as being of current signi�cance.

Q1. What is a good framework for : : : stating database security policy requirements
(including application-dependent requirements : : : )? : : :

Q2. How can security considerations be integrated in software development method-
ologies used in database system development?

Q4. How can database audit information be generated and reviewed most e�ectively
to detect and discourage security violations?



2 BACKGROUND

Agreement on the meaning of integrity remains elusive. A recent workshop organized
by NIST [18] was unable to make much progress on this issue. For our purpose here
we simply accept the common viewpoint that integrity is concerned with information
modi�cation rather than information disclosure or availability. That is integrity is
something di�erent from con�dentiality or denial of service.

Recent interest in data integrity has been stimulated in large part by the seminal
paper of Clark and Wilson [4] who set out to establish that:

\First, there is a distinct set of security policies, related to integrity rather
than disclosure : : : Second, some separate mechanisms are required for en-
forcement of these policies, disjoint from those of the Orange Book [8]."

Contrast this with what might be called the traditional view, exempli�ed here by the
following quote from Gasser [9].

\Fortunately, techniques to protect against information modi�cation are
almost always the same as (or a subset of) techniques to protect against
information disclosure."

The techniques that Gasser talks about can be roughly summarized as follows:
impose application independent label-based mandatory controls with respect to read
and write operations (with append and execute sometimes included). Our objections
to this traditional view are given below.

1. The published examples of the use of such techniques for integrity [2, 10, 12, 13]
inevitably require trusted subjects who bypass the mandatory controls. In many
cases a signi�cant fraction of all subjects need to be trusted. One wonders what
is the point of imposing mandatory controls that are mostly bypassed.

2. Because reads and writes are the only point of control, the authors are obliged to
make the audit trail writable by everybody and therefore of low integrity. This
is disturbing since the whole point of an audit trail is to have high integrity.

3. The combination of independent integrity labels and con�dentiality labels does
not provide any additional power than obtained by each in isolation, i.e., precisely
the same controls can be enforced using integrity labels alone or con�dentiality
labels alone. So the Biba view of integrity [2] is essentially equivalent to lattice
based con�dentiality [1, 7].

Clark and Wilson [4] have suggested that we look for di�erent kinds of mandatory
controls to directly support the \two mechanisms at the heart of fraud and error control:
the well-formed transaction and segregation of duties." It is clear that, at the very
least, current label-based controls need to be extended in non-trivial ways to achieve
this e�ect.



3 MANDATORY CONTROLS

So we need a more general notion of mandatory controls which is not tied to lattice-
based labels. Consider the following quote from the �rst WIPCIS workshop [16]: \: : :
two types of mandatory controls are considered here|label-based mandatory controls
(enforcing separation based on hierarchical or lattice oriented labels, as in the Orange
Book) and general mandatory (which lies between label-based mandatory and discre-
tionary controls)." We are troubled by this characterization of general mandatory as
lying between label-based mandatory and discretionary controls. On the contrary we
propose that label-based mandatory controls should be a special case of whatever we
call general mandatory.

A reasonable working de�nition is given by Clark and Wilson [5] as follows: \: : :
the word \mandatory." In the paper, we want to use it in the more general way, to
describe any mechanism which is not put into place at the control of the owner of the
data, but which is a necessary part of the operation of the system." However there are
situations where mandatory controls are de�ned by the owner. For example the owner
of checks is responsible for de�ning the well-formed transactions which can operate on
checks as well as for de�ning the separation of duty requirements for processing checks.
Once these decisions are made the resulting controls are mandatory for all other users.
Clark and Wilson also have another working de�nition [6] as follows: \In this case we
de�ne mandatory as those controls which are unavoidably imposed by the operating
system between user and data." This is very broad and can be interpreted to include
discretionary controls.

We propose to de�ne mandatory controls as controls based on properties of the object
and/or the subject. This is as broad and open ended as the Clark and Wilson de�nitions
above. However it does suggest that one can categorize mandatory controls in terms of
the properties on which the controls are based. In the military non-disclosure context
these properties turn out to be best expressed as partially ordered labels. In other
contexts these properties are more naturally obtained in other ways. For instance
the type of an object determines what operations can be executed on that object.
Subjects are divided into two classes for this purpose: the type manager who can
execute arbitrary operations and all others who can only execute operations exported
by the type manager.

Label-based controls are obviously a special case of our de�nition. Identity based
discretionary controls are also a special case. We can explicitly exclude discretionary
controls by re�ning the de�nition of mandatory controls to be \controls based on prop-
erties of the object and/or the subject (excluding identity)." On the other hand it
is equally reasonable to consider discretionary controls as a special case of mandatory
controls. We believe the traditional black and white distinction between discretionary
and mandatory controls is inappropriate in many contexts. All authority in a system is
ultimately obtained by means of somebody's discretionary decisions [14, 15]. The real
di�erence is to what extent discretionary ability can be granted and acquired during the
normal operation of a system, and to what extent it gets �xed at system initialization.

Our proposal allows us to categorize mandatory controls along the following pro-
gression of properties on which the controls are based.



1. Controls based on identity. These include what are traditionally called discre-
tionary controls. We are assuming here that the identity of a subject or object is
an immutable property which can never change.

2. Controls based on static properties of the object and subject. These static proper-
ties are determined at creation and do not change thereafter. Label-based controls
of the Bell and LaPadula model [1] with strong tranquillity (i.e., labels are static)
are a well-known example. Various kinds of type based controls provide more
general examples [3, 19, 21, 23, 24].

3. Controls based on dynamic properties of the object and subject. That is the
properties on which the controls are based are themselves changeable, presumably
in some controlled manner requiring proper authorization. Controls based on the
history of an object and the role of a subject, such as enforced by transaction
control expressions [20], are one example. Another example is label-based controls
without tranquillity (i.e., labels can be modi�ed).

If we assume identity is immutable, 1 is a special case of 2. Similarly, 2 is a special case
of 3 if dynamic is interpreted to include static. So there is a logical progression. We can
make a �ner distinction regarding controls based on dynamic properties as follows.�

3a. Controls based on dynamic properties excluding data values.

3b. Controls based on dynamic properties including data values.

Group membership does not �gure in the above categorization. This is deliberate.
If group membership is a static attribute we could include it in 1 or 2 above. On
the other hand consider the dynamic policy that (1) a project group must have a
majority of members from within the department, and (2) only the project supervisor
can enroll outsiders. How does this policy relate to our characterization of mandatory
controls? The �rst requirement falls under 3b in that the project supervisor's discretion
is constrained by a value dependent rule. Classi�cation of the second requirement
depends on further details of the policy. If the assignment of project supervisors is
static then this is an example of 2. On the other hand if the designation of a project
supervisor is itself dynamic, say at the discretion of the department head, this would
be an example of 3a.

The point is that even the simplest situations exhibit interaction between di�erent
aspects of the overall policy. Which controls are discretionary and which mandatory
is a relative issue, depending on whose perspective is considered. A black and white
separation between discretionary and mandatory controls is therefore too simplistic.
With multilayered interacting discretionary and mandatory controls safety becomes a
major issue. That is we need to be able to predict what privileges can be acquired
by particular subjects given various assumptions about cooperation among themselves
and other subjects.

�A similar distinction might be made regarding controls based on static properties. However con-
trols based on static data values (i.e., constants) appear to confer little, if any, additional power over
controls based on static value independent properties.



4 TRANSACTION CONTROLS

We now briey consider some mechanisms for enforcing the progression of mandatory
controls identi�ed in the previous section. We take as our basis the standard concept
of a transaction from the database literature. We understand a transaction to be a
serializable and failure atomic unit of activity.

At the very least a DBMS should be able to enforce the restriction that only trans-
actions can update the database. This gives the minimum basis for avoiding incon-
sistencies due to concurrency control and failures. It is also clear that the ability to
create new transactions must be carefully regulated with a strong separation between
application programmers and production users. Such controls are relatively easy to
implement by static controls because it can be assumed that application programmers
and production users are disjoint.

We agree with Clark and Wilson [4] that production users must be further con-
strained in the transactions they can execute and the data to which these transactions
are applied. Clark and Wilson suggest two relations for stating these controls, but
the net e�ect is equally well speci�ed as an access-control triple of the form <user,
data-object, transaction>. Clark and Wilson seem to imply these relations or triples
be explicitly maintained. We would rather state these controls indirectly as <user-role,
data-object, transaction>. The power of a user is typically derived from his role (posi-
tion) in an organization rather than being a function of his individual self. If a user's
role changes so does his authority. Since such changes are inevitable it is appropriate to
explicitly relate authority and responsibility to positions rather than to the individuals
occupying them at a given moment.

Furthermore, a transaction is too elementary a unit for integrity purposes. For
example, consider a situation in which payment in the form of a check is prepared and
issued by the following sequence of events.

1. A clerk prepares the voucher.

2. The voucher is approved by a supervisor.

3. The check is issued by a clerk, who must be di�erent from the clerk in step 1.

From a concurrency control and recovery perspective this sequence is best viewed as
three separate transactions, one for each step. The activities they represent are sepa-
rated in time by unpredictable and possibly large intervals. For instance, the �rst two
steps may be performed on line while the third is executed in batch. Moreover di�erent
users have responsibility and authorization for these activities. On the other hand,
from an integrity perspective we must view this sequence as a single unit. The third
step, in particular, makes explicit the constraint that the clerk executing it be di�erent
from the clerk in the �rst step. So it will take collusion of two clerks and a supervisor
to perpetrate fraud. Since the check is presumably issued against some account the
above sequence is more properly expressed as follows.

1. A clerk prepares the voucher and assigns an account.

2. The voucher and account are approved by a supervisor.



3. The check is issued by a clerk who must be di�erent from the clerk in step 1.
Issuing the check has the side e�ect of debiting the account assigned in step 1.

That is the voucher contains a reference to an account, which is another information
object in the system. Strictly speaking for double entry accounting the reference should
be to two accounts, one to be debited and the other credited in step 3. The important
point for us is that transactions executed on the voucher have side e�ects on objects
such as accounts.

A voucher and an account are two rather di�erent kinds of objects. The voucher
is a transient object which comes into existence, has a �nite sequence of operations
applied to it and then disappears (possibly leaving a record in some archive). The
account on the other hand is a persistent object with a long life in the system with
a potentially unbounded sequence of credit and debit operations performed on it. Of
course, at some point the account may be closed. The key point is that we cannot
prescribe its history as a �nite sequence of actions. Both kinds of objects are essential
to the logic and correct operation of an information system. Transient objects embody
a logically complete history of transactions corresponding to a unit of service provided
to the external world. Persistent objects embody the internal records required to keep
the organization functioning with accurate correspondence to its interactions with the
external world.

Our fundamental thesis is that integrity can be achieved by enforcing controls on
transient objects, for the most part. The crucial idea, which makes this possible, is that
transactions should be executed on persistent objects only as a side e�ect of executing
transactions on transient objects. The details of our proposal are discussed in [21].
The basic idea is to associate a transaction control expression with each object. The
expression speci�es what transactions can be executed by what user (in terms of roles)
on that object. The expression is incrementally converted to a history (audit trail) as
the execution proceeds. This mechanism can enforce the controls required for the above
example as well as the additional requirement that a supervisor should not approve
checks for accounts created by himself. The history maintained with each object gives
us the necessary component of the audit trail to enforce sequencing of transactions and
separation of duties with respect to that object. Moreover the mechanism can be used
in an enforcement or detection mode. Finally it falls under 3a of our progression of
mandatory controls. In a DBMS context it can be easily extended to cover 3b also by
allowing the transaction control expression to be conditioned on data values.

Wemention that transaction control expressions were inuenced by Karger's work [11]
but they go well beyond his proposal. As stated by Karger himself for his proposal \: : :
the user interface for specifying separation of duties appears extremely complex." On
the other hand our proposal gives a natural notation and our transient objects cor-
respond to paper forms with initialed entries as the fundamental basis for control.
Moreover our viewpoint makes it clear that data integrity is not a property of the data
in isolation but is intimately tied to both data and transactions.



5 CONCLUSION

We have presented our position that mandatory controls for data integrity cannot
be reduced to lattice-based controls on read and write operations alone. Also that
data integrity requires a more sophisticated view of mandatory controls than provided
by the traditional black and white distinction between mandatory and discretionary
controls. We have proposed mandatory controls be de�ned to mean controls based
on properties of the object and/or the subject. We have given a characterization of
mandatory controls based on the nature of properties on which they depend. Finally
we have considered mechanisms to support the progression of mandatory controls thus
identi�ed.

References

[1] Bell, D.E. and LaPadula, L.J. \Secure Computer Systems: Uni�ed Exposition and
Multics Interpretation." MTR-2997, Mitre, Bedford, Mass. (1975).

[2] Biba, K.J. \Integrity Considerations for Secure Computer Systems." Mitre TR-
3153, Mitre Corporation, Bedford, Mass., April 1977.

[3] Boebert, W.E. and Kain, R.Y. \A Practical Alternative to Hierarchical Integrity
Policies." 8th National Computer Security Conference, 18-27 (1985).

[4] Clark, D.D. and Wilson, D.R. \A Comparison of Commercial and Military Com-
puter Security Policies." IEEE Symposium on Security and Privacy, 184-194
(1987).

[5] Clark, D.D. and Wilson, D.R. \Comments on the Integrity Model." In [17].

[6] Clark, D.D. and Wilson, D.R. \Evolution of a Model for Computer Integrity."
In [18].

[7] Denning, D.E. \A Lattice Model of Secure Information Flow." Communications
of ACM 19(5):236-243 (1976).

[8] Department of Defense National Computer Security Center. Department of De-
fense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD, (1985).

[9] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold (1988).

[10] Jueneman, R.R. \Integrity Controls for Military and Commercial Applications."
Fourth Aerospace Computer Security Applications Conference, 298-322 (1988).

[11] Karger, P.A. \Implementing Commercial Data Integrity with Secure Capabilities."
IEEE Symposium on Security and Privacy, 130-139 (1988).

[12] Lee, T.M.P. \Using Mandatory Integrity to Enforce \Commercial" Integrity."
IEEE Symposium on Security and Privacy, 140-146 (1988).



[13] Lipner, S.B. \Non-Discretionary Controls for Commercial Applications." IEEE
Symposium on Security and Privacy, 2-10 (1982).

[14] Mo�ett, J.D. and Sloman, M.S. \The Source of Authority for Commercial Access
Control." IEEE Computer 21(2):59-69 (1988).

[15] Murray, W. H. \On the Use of Mandatory." Position paper in [17].

[16] Parker, D.B. and Neumann, P.G. \A Summary and Interpretation of the Invita-
tional Workshop on Integrity Policy in Computer Information Systems." In [17].

[17] Report of the Invitational Workshop on Integrity Policy in Computer Information
Systems. NIST Special Publication 500-160 (1989).

[18] Report of the Invitational Workshop on Data Integrity. NIST Special Publication
500-168 (1989).

[19] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for
Acyclic Attenuating Schemes." Journal of ACM 35(2):404-432 (1988).

[20] Sandhu, R.S. \Expressive Power of the Schematic Protection Model." Computer
Security Foundations Workshop, 188-193 (1988).

[21] Sandhu, R.S. \Transaction Control Expressions for Separation of Duties." Fourth
Aerospace Computer Security Applications Conference, 282-286 (1988).

[22] Sandhu, R.S. \Terminology, Criteria and System Architectures for Data Integrity."
In [18].

[23] Sandhu, R.S. \Transformation of Access Rights." IEEE Symposium on Security
and Privacy, 259-268 (1989).

[24] Wong, R.M. and Ding, Y.E. \Providing Software Integrity Using Type Managers."
Fourth Aerospace Computer Security Applications Conference, 287-294 (1988).


