
A User-to-User Relationship-Based Access

Control Model for Online Social Networks�

Yuan Cheng, Jaehong Park, and Ravi Sandhu

Institute for Cyber Security, University of Texas at San Antonio
ycheng@cs.utsa.edu, {jae.park,ravi.sandhu}@utsa.edu

Abstract. Users and resources in online social networks (OSNs) are
interconnected via various types of relationships. In particular, user-to-
user relationships form the basis of the OSN structure, and play a sig-
nificant role in specifying and enforcing access control. Individual users
and the OSN provider should be allowed to specify which access can be
granted in terms of existing relationships. We propose a novel user-to-
user relationship-based access control (UURAC) model for OSN systems
that utilizes regular expression notation for such policy specification. We
develop a path checking algorithm to determine whether the required
relationship path between users for a given access request exists, and
provide proofs of correctness and complexity analysis for this algorithm.

Keywords: Access Control, Security, Social Networks.

1 Introduction

Access control in OSNs presents several unique characteristics different from tra-
ditional access control. In mandatory and role-based access control, a system-
wide access control policy is typically specified by the security administrator.
In discretionary access control, the resource owner defines access control policy.
However, in OSN systems, users may want to regulate access to their resources
and activities related to themselves, thus access in OSNs is subject to user-
specified policies. Other than the resource owner, some related users (e.g., user
tagged in a photo owned by another user, parent of a user) may also expect some
control on how the resource or user can be exposed. To prevent users from ac-
cessing unwanted or inappropriate contents, user-specified policies that regulate
how a user accesses information need to be considered in authorization as well.
Thus, the system needs to collect these individualized partial policies, from both
the accessing users and the target users, along with the system-specified policies
and fuse them for the overall control decision.

In OSN, access to resources is typically controlled based on the relationships
between the accessing user and the controlling user of the target found on the so-
cial graph. This type of relationship-based access control [10] takes into account
the existence of a particular relationship or a particular sequence of relationships

� This work is supported by grants from the US National Science Foundation.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 8–24, 2012.
c© IFIP International Federation for Information Processing 2012

A User-to-User Relationship-Based Access Control Model for OSNs 9

between users and expresses access control policies in terms of such user-to-user
(U2U) relationships.

Facebook-like systems allow users to specify access control policy to related re-
sources based on topology of the social graph, by choosing options such as “pub-
lic”, “private”, “friend” or “friend of friend”. Circles in Google+ allow users to
create customized relationships. In recent years, researchers have proposed more
advanced relationship-based access control models, such as [1–9, 11]. Policies in
[1–6, 8, 9] can be composed of multiple types of relationships. [4–6] also adopt
the depth and the trust value of relationship to control the spread of informa-
tion. Although only having the “friend” relationship type, [7] provides additional
topology-based policies, such as known quantity, common friends and stranger of
more than k distance. While these works have their own advantages, one of the
common drawbacks they share is that they do not allow different relationship
types and multiple possible types on each hop.

In this paper, we propose a novel user-to-user relationship-based access control
(UURAC) model and a regular expression-based policy specification language
which enable more sophisticated and fine-grained access control in OSNs. To the
best of our knowledge, this is the first relationship-based access control model
for OSNs with such capability.

2 Motivation and Related Work

This section discusses characteristics of access control in OSNs, related works,
our approach and shows our contributions.

2.1 Characteristics of Access Control for OSNs

Below, we discuss some essential characteristics [13, 14] that need to be supported
in access control solutions for OSN systems.

Policy Individualization. OSN users may want to express their own prefer-
ences on how their own or related contents should be exposed. A system-wide
access control policy such as we find in mandatory and role-based access control,
does not meet this need. Access control in OSNs further differs from discretionary
access control in that users other than the resource owner are also allowed to
configure the policies of the related resource. In addition, users who are related
to the accessing user, e.g. parent to child, may want to control the accessing
user’s actions. Therefore, the OSN system needs to collectively utilize these in-
dividualized policies from users related to the accessing user or the target, along
with the system-specified policies for control decisions.

User and Resource as a Target. Unlike traditional user access where the
access is against target resource, activities such as poking and friend recommen-
dations are performed against other users. User as a target is particularly crucial
for access control in OSNs since policies for users can specify rules for incoming
actions as well as outgoing actions.

10 Y. Cheng, J. Park, and R. Sandhu

User Policies for Outgoing and Incoming Actions. Notification of a par-
ticular friends’ activities could be bothersome and a user may want to block it.
This type of policy is captured as incoming action policy. Also, a user may want
to control her own or other users’ activities. For example, a user may restrict her
own access from any violent contents or a parent may not want her child to invite
her coworker as a friend. This type of policy is captured as an outgoing action
policy. In OSN, it is necessary to support policies for both types of actions.

Necessity for Relationship-Based Access Control. Access control in OSNs
is mainly based on relationships among users and resources. For example, only
Alice’s direct friends can access her blogs, or only user who owns the photo or
tagged users can modify the caption of the photo. Depth is another significant
parameter, since people tend to share resources with closer users (e.g., “friend”,
or “friend of friend”).

2.2 Prior Access Control Models for OSNs

Fong et al [7] developed a formal algebraic model for access control in Facebook-
like systems. This model generalizes the Facebook-style access control mechanism
into two stages: reaching the search listing of the resource owner and accessing
the resource. The model formalizes policies for accessing resources as well as poli-
cies for search, traversal and communications. The policy vocabulary supports
expressing arbitrary topology-based properties, such as “k common friends” and
“k clique”, which are beyond what Facebook offers.

In [8], Fong proposed a formal model for social computing applications, in
which authorization decisions are based on the user-to-user relationships. This
model employs a modal logic language for policy specification. Fong et al ex-
tended the policy language and formally characterized its expressiveness power
[9]. In contrast to [7], this model allows multiple relationship types and direc-
tional relationships. Relationships and authorizations are articulated in access
contexts and context hierarchy to support sharing of relationships among con-
texts. Bruns et al [1] later improved [8, 9] by using hybrid logic to enable better
efficiency in policy evaluation and greater flexibility of atomic formulas.

Carminati et al [4–6] proposed a series of access control solutions for OSNs
where the access rules are specified by the users at their discretion. The access
requirements that the accessing user must satisfy are specified as type, depth,
and trust metrics of the user-to-user relationships between the accessing user and
the resource owner. The system features a centralized certificate authority that
asserts the validity of the relationship path, while access control enforcement is
carried out on decentralized user side.

In [2, 3], an access control model for OSNs is proposed by Carminati et al
by utilizing semantic web technologies. Unlike many other works, this model ex-
hibits different relationships between users and resources. It defines three kinds
of access policies with the Web Ontology Language (OWL) and the Semantic
Web Rule Language (SWRL), namely authorization, administration and filter-
ing policies. Similar to [2, 3], Masoumzadeh et al [12] proposed ontology-based

A User-to-User Relationship-Based Access Control Model for OSNs 11

social network access control. Their model captures delegation of authority and
empowers both users and the system to express finer-grained access control
policies.

2.3 Comparison of Access Control Models for OSNs

The first four columns of Table 1 summarize the salient characteristics of the
models discussed above. The fifth column gives these characteristics for the new
UURAC model to be defined in this paper.

Table 1. Comparison of Access Control Models for OSNs

Fong [7] Fong [8, 9] Carminati
[6]

Carminati
[2, 3]

UURAC

Relationship Category
Multiple Relationship Types � � � �
Directional Relationship � � �
U2U Relationship � � � � �
U2R Relationship �
Model Characteristics
Policy Individualization � � � � �
User & Resource as a Target (partial) �
Outgoing/Incoming Action Policy (partial) �
Relationship Composition
Relationship Depth 0 to 2 0 to n 1 to n 1 to n 0 to n
Relationship Composition f, f of f exact type

sequence
path of
same type

exact type
sequence

path pattern of
different types

All the models deal only with U2U relationships, except [2, 3] also recognize
U2R (user-to-resource) relationships explicitly. U2R relationships can be cap-
tured implicitly via U2U with the last hop being U2R. Nevertheless, we believe
that explicit treatment of U2R and R2R (resource-to-resource) relationships is
important but leave it for future work.

2.4 Our Contributions

This paper develops a novel UURAC model for OSNs, using regular expres-
sion notation. UURAC supports policy individualization, user and resource as
a target, distinction of user policies for outgoing and incoming actions, and
relationship-based access control. It incorporates greater generality of path pat-
terns in its policy specifications than prior models, including the incorporation
of inverse relationships. We also provide an effective path checking algorithm for
access control policy evaluation, along with proofs of correctness and complexity
analysis.

3 UURAC Model Foundation

In this section, we develop the foundation of UURAC including basic notations,
access control model components and social graph model.

12 Y. Cheng, J. Park, and R. Sandhu

3.1 Basic Notations

We write Σ to denote the set of relationship type specifiers, where Σ =
{σ1,σ2,. . .,σn,σ

−1
1 ,σ−12 ,. . .,σ−1n }. Each relationship type specifier σ is represented

by a character recognizable by regular expression parser. Given a relationship
type σi ∈ Σ, the inverse of the relationship is σ−1i ∈ Σ.

We differentiate the active and passive forms of an action, denoted action
and action−1, respectively. If Alice pokes Bob, the action is poke from Alice’s
viewpoint, whereas it is poke−1 from Bob’s viewpoint.

3.2 Access Control Model Components

Fig. 1. Model Components

The model comprises five categories of com-
ponents as shown in Figure 1.

Accessing User (ua) represents a human
being who performs activities. An accessing
user carries access control policies and U2U
relationships with other users.

Each Action is an abstract function initi-
ated by accessing user against target. Given
an action, we say it is action for the access-
ing user, but action−1 for the recipient user
or resource.

Target is the recipient of an action. It can
be either target user (ut) or target resource
(rt). Target user has her own policies and U2U
relationship information, both of which are used for authorization decisions. Tar-
get resource has U2R relationship (i.e., ownership) with controlling users (uc).
An accessing user must have the required U2U relationships with the controlling
user in order to access the target resource.

Access Request denotes an accessing user’s request of a certain type of
action against a target. It is modeled as a tuple < ua, action, target >, where
ua ∈ U is the accessing user, target is the user or resource that ua tries to access,
whereas action ∈ Act specifies from a finite set of supported functions in the
system the type of access the user wants to have with target. If ua requests to
interact with another user, target = ut, where ut ∈ U is the target user. If ua

tries to access a resource owned by another user uc, target is resource rt ∈ R
where R is a finite set of resources in OSN.

Fig. 2. Access Control Policy Taxonomy

Policy defines the rules according
to which authorization is regulated.
As shown in Figure 2, policies can
be categorized into user-specified and
system-specified policies, with respect
to who defines the policies. System-
specified policies (SP) are system-
wide general rules enforced by the

A User-to-User Relationship-Based Access Control Model for OSNs 13

OSN system; while user-specified policies are applied to specific users and re-
sources. Both user- and system-specified policies include policies for resources
and policies for users. Policies for resources are used to control who can ac-
cess a resource, while policies for users regulate how users can behave regard-
ing an action. User-specified policies for a resource are called target resource
policies (TRP), which are policies for incoming actions. User-specified policies
for users can be further divided into accessing user policies (AUP) and target
user policies (TUP), which correspond to user’s outgoing and incoming access
(see examples in Section 2.1), respectively. Accessing user policies, also called
outgoing action policies, are associated with the accessing user and regulate
this user’s outbound access. Target user policies, also called incoming action
policies, control how other users can access the target user. Note that system-
specified policies do not have separate policies for incoming and outgoing actions,
since the accessor and target are explicitly identified.

3.3 Modeling Social Graph

As shown in Figure 3, an OSN forms a directed labeled simple graph1 with nodes
(or vertices) representing users and edges representing user-to-user relationships.
We assume every user owns a finite set of resources and specifies access control
policies for the resources and activities related to her. If an accessing user has
the U2U relationship required in the policy, the accessing user will be granted
permission to perform the requested action against the corresponding resource
or user.

We model the social graph of an OSN as a triple G =< U,E,Σ >:

– U is a finite set of registered users in the system, represented as nodes (or vertices) on the
graph. We use the terms user and node interchangeably from now on.

– Σ = {σ1, σ2, .., σn σ−1
1 , σ−1

2 , .., σ−1
n } denotes a finite set of relationship types, where each type

specifier σ denotes a relationship type supported in the system.
– E ⊆ U × U ×Σ, denoting social graph edges, is a set of existing user relationships.

Fig. 3. A Sample Social Graph

Since not all the U2U relationships in
OSNs are mutual, we define the relation-
ships E in the system as directed. For ev-
ery σi ∈ Σ, there is σ−1i ∈ Σ representing
the inverse of relationship type σi. We do
not explicitly show the inverse relation-
ships on the social graph, but assume the
original relationship and its inverse twin
always exist simultaneously. Given a user
u ∈ U , a user v ∈ U and a relationship
type σ ∈ Σ, a relationship (u, v, σ) expresses that there exists a relationship of
type σ starting from user u and terminating at v. It always has an equivalent
form (v, u, σ−1). G =< U,E,Σ > is required to be a simple graph.

1 A simple graph has no loops (i.e., edges which start and end on the same vertex)
and no more than one edge of a given type between any two different vertices.

14 Y. Cheng, J. Park, and R. Sandhu

4 UURAC Policy Specifications

This section defines a regular expression based policy specification language, to
represent various patterns of multiple relationship types.

4.1 Path Expression Based Policy

The user relationship path in access control policies is represented by regular
expressions. The formulas are based on a set Σ of relationship type specifiers.
Each specification in this language describes a pattern of required relationship
types between the accessing user and the target/controlling user. We use three
kinds of wildcard notations that represent different occurrences of relationship
types: asterisk (*) for 0 or more, plus (+) for 1 or more and question mark(?)
for 0 or 1.

4.2 Graph Rule Specification and Grammar

An access control policy consists of a requested action, optional target resource
and a required graph rule. In particular, graph rule is defined as (start, path
rule), where start denotes the starting node of relationship path evaluation,
whereas path rule represents a collection of path specs. Each path spec consists
of a pair (path, hopcount), where path is a sequence of characters, denoting
the pattern of relationship path between two users that must be satisfied, while
hopcount limits the maximum number of edges on the path.

Typically, a user can specify one piece of policy for each action regarding a
user or a resource in the system, and the path rule in the policy is composed of
one or more path specs. Policies defined by different users for the same action
against same target are considered as separate policies. Multiple path specs can
be connected by disjunction or conjunction. For instance, a path rule (f∗, 3) ∨
(Σ∗, 5) ∨ (fc, 2), where f is friend and c is coworker, contains disjunction of
three different pieces of path specs, of which one must be satisfied in order to
grant access. Note that, there might be a case where only users who do not have
particular types of relationships with the target are allowed to access. To allow
such negative relationship-based access control, a boolean negation operator over
path specs is allowed, which implies the non-existence of the specified pair of
relationship type pattern path and hopcount limit hopcount following ¬. For
example, ¬ (fc+, 5) means the involved users should not have relationship of
pattern fc+ within depth of 5 in order to get access.

Each graph rule usually specifies a starting node, the required types of rela-
tionships between the starting node and the evaluating node, and the hopcount
limit of such relationship path. A grammar describing the syntax of such policy
language is defined in Table 2. Here, GraphRule stands for the graph rule to
be evaluated. StartingNode can be either the accessing user ua, the target user
ut or the controlling user uc, denoting the given node from which the required
relationship path begins. Path represents a sequence of type specifiers from the
starting node to the evaluating node. Path will typically be non-empty. If path is

A User-to-User Relationship-Based Access Control Model for OSNs 15

Table 2. Grammar for graph rules

GraphRule ::= “(” < StartingNode > “, ” < PathRule > “)”
PathRule ::= < PathSpecExp > | < PathSpecExp >< Connective >< PathRule >
Connective ::= ∨|∧
PathSpecExp ::= < PathSpec > |¬ < PathSpec >
PathSpec ::= “(” < Path > “, ” < HopCount > “)”|“(” < EmptySet > “, ” < Hopcount > “)”
HopCount ::= < Number >
Path ::= < TypeExp > | < TypeExp >< Path >
EmptySet ::= ∅
TypeExp ::= < TypeSpecifier > | < TypeSpecifier >< Wildcard >
StartingNode ::= ua|ut|uc

TypeSpecifier ::= σ1|σ2|..|σn|σ−1
1 |σ−1

2 |..|σ−1
n |Σ where Σ = {σ1, σ2, .., σn, σ

−1
1 , σ−1

2 , .., σ−1
n }

Wildcard ::= “ ∗ ”|“?”|“ + ”
Number ::= [0− 9]+

empty and hopcount = 0 we assign the special meaning of “only me”. Wildcard
captures the three wildcard characters, which facilitate specifying more power-
ful and expressive path expressions. Given a graph rule from the access control
policy, this grammar specifies how to parse the expression and to extract the
containing path pattern and hopcount from the expression.

4.3 User- and System-Specified Policy Specifications

User-specified policies specify how individual users want their resources or ser-
vices related to them to be released to other users in the system. These policies
are specific to actions against a particular resource or user. System-specified poli-
cies allow the system to specify access control on users and resources. Different
from user policies, the statements in system policies are not specific to particular
accessing user or target, but rather focus on the entire set of users or resources
(see Table 3).

Table 3. Access Control Policy Representations

Accessing User Policy < action, (start, path rule)>
Target User Policy < action−1, (start, path rule)>

Target Resource Policy < action−1, rt, (start, path rule)>
System Policy for User < action, (start, path rule)>
System Policy for Resource < action, r.type, (start, path rule)>

In accessing user policy, action denotes the requested action, whereas (start,
path rule) expresses the graph rule. Similarly, action−1 in target user policy and
target resource policy is the passive form of the corresponding action applied to
target user. Target resource policy contains an extra parameter rt, representing
the resource to be accessed.

This paper considers only U2U relationships in policy specification. In general,
there could be one or more controlling users who have certain types of U2R
relationships with the resource and possess policies for the corresponding target
resource. For simplicity, we assume the only such U2R relationship is ownership.
To access the resource, the accessing user must have the required relationships
with the controlling user. The policies associated with the controlling users are
defined on the basis of per action per resource. For instance, when querying read
access request on rt, owner(rt) returns the list of users who have ownership

16 Y. Cheng, J. Park, and R. Sandhu

with rt. Access to rt is under the authority of all the controlling users who have
read policies for rt. Note that in this paper we are not introducing the policy
administration model, so who can specify the policy is not discussed.

System-specified policies do not differentiate the active and passive forms of
an action. System policy for users carries the same format as accessing user
policy does. However, when specifying system policy for resources, one system-
wide policy for one type of access to all resources may not be fine-grained and
flexible enough. Sometimes we need to refine the scope of the resources that
applied to the policies in terms of resource types r.type. Examples of resource
type r.type are photo, blog post, status update, etc. Thus, <read, photo, (uc,
f∗, 4)> is a system policy applied to all read access to photos in the system.

4.4 Access Evaluation Procedure

Algorithm 1. AccessEvaluation(ua, action, target)

1: (Policy Collecting Phase)
2: if target = ut then
3: AUP ← ua’s policy for action, TUP ← ut’s policy for action−1, SP ← system’s policy for

action
4: else
5: uc ← owner(rt), AUP ← ua’s policy for action, TRP ← uc’s policy for action−1 on rt,

SP ← system’s policy for action, r.type
6: (Policy Evaluation Phase)
7: for all policies in AUP , TUP/TRP and SP do
8: Extract graph rules (start, path rule) from policies
9: for all graph rules extracted do
10: Determine the starting node, specified by start, where the path evaluation starts
11: Determine the evaluating node which is the other user involved in access
12: Extract path rules path rules from graph rules
13: Extract each path spec path, hopcount from path rules
14: Path-check each path spec using Algorithm 2
15: Evaluate a combined result based on conjunctive or disjunctive connectives between path

specs
16: Compose the final result from the result of each policy

Algorithm 1 specifies how the access evaluation procedure works. When an
accessing user ua requests an action against a target user ut, the system will
look up ua’s action policy, ut’s action

−1 policy and the system-specified policy
corresponding to action. When ua requests an action against a resource rt, the
system will first find out the controlling user uc via owner(rt) and retrieve all
the corresponding policies. Although each user can only specify one policy per
action per target, there might be multiple users specifying policies for the same
pair of action and target. Multiple policies might be collected in each of the three
policy sets: AUP , TUP/TRP and SP .

Example Given the following policies and social graph in Figure 3:

– Alice’s policy PAlice: < poke, (ua, (f∗, 3))> < poke−1, (ut, (f , 1))> < read, (ua, (Σ∗, 5))>
< read−1, file1, (uc, (cf∗, 4))>

– Harry’s policy PHarry : < poke, (ua, (cf∗, 5) ∨ (f∗, 5))> < poke−1 , (ut, (f∗, 2))> < read−1,
file2, (uc, ¬(p+, 2)>

– System’s policy PSys: < poke, (ua, (Σ∗, 5))> < read, photo, (ua, (Σ∗, 5))>

A User-to-User Relationship-Based Access Control Model for OSNs 17

When Alice requests to poke Harry, the system will look up the following policies:
< poke, (ua, (f∗, 3))> from PAlice, < poke−1, (ut, (f∗, 2))> from PHarry, and
< poke, (ua, (Σ∗, 5))> from PSys. When Alice requests to read photo file2
owned by Harry, the policies < read, (ua, (Σ∗, 5))> from PAlice, < read−1,
file2, (uc, ¬(p+, 2)> from PHarry, and < read, photo, (ua, (Σ∗, 5))> from
PSys will be used for authorization.

For all the policies in the policy sets, the algorithm first extracts the graph
rule (start, path rule) from each policy. Once the graph rule is extracted, the
system can determine where the path checking evaluation starts (using start),
and then extracts every path spec path, hopcount (from path rules). Then, it
runs a path-checking algorithm (see the next section) for each path spec. The
path-checking algorithm returns a boolean result for each path spec. To get
the evaluation result of a particular policy, we combine the results of all path
specs in the policy using conjunction, disjunction and negation. At last, the final
evaluation result for the access request is made by composing all the evaluation
results of the policies in the chosen policy sets.

4.5 Discussion

The existence of multi-user policies can result in decision conflicts. To resolve
this, we can adopt a disjunctive, conjunctive, or prioritized approach. When a
disjunctive approach is enabled, the satisfaction of any corresponding policy is
sufficient for granting the requested access. In a conjunctive approach, the re-
quirements of every involved policy should be satisfied in order that the access
request would be granted. In a prioritized approach, if, for example, parents’
policies get a priority over children’s policies, the parents’ policies overrule chil-
dren’s policies. While policy conflicts are inevitable in the proposed model, we
do not discuss this issue in further detail here. For simplicity we assume sys-
tem level policies are available to resolve conflicts in user-specified authorization
policies and do not consider user-specified conflict resolution policies.

One observation from user-specified policies is that action policy starts from
ua whereas action−1 policy starts from ut. This is because at the time of policy
configuration, users are not aware of who are the other participants in the action
hence cannot specify graph rule starting from the other side. When hopcount =
0 and path equals to empty, it has special meaning of “only me”. For instance,
< poke, (ua, (∅, 0))> says that ua can only poke herself, and < poke−1, (ut,
(∅, 0))> specifies ut can only be poked by herself. The above two policies give
a complementary expressive power that the regular policies do not cover, since
regular policies are simply based on existing paths and limited hopcount.

As mentioned earlier, the social graph is modeled as a simple graph. Further
we only allow simple path with no repeating nodes. Avoiding repeating nodes
on the relationship path prevents unnecessary iterations among nodes that have
been visited already and unnecessary hops on these repeating segments. On the
other hand, this “no-repeating” could be quite useful when a user wants to
expose her resource to farther users without granting access to nearer users. For
example, in a professional OSN system such as LinkedIn, a user may want to

18 Y. Cheng, J. Park, and R. Sandhu

promote her resume to users outside her current company, but does not want
her coworkers to know about it. Note that the two distinct paths denoted by
(fffc) and (fc) may co-exist between a pair of users. The path specs fffc ∧
¬fc allows the coworkers of the user’s distant friends to see the resume, while
the coworkers of the user’s direct friends (fc) are not authorized.

In general, conventional OSNs are susceptible to the multiple-persona prob-
lem, where users can always create a second persona to get default permissions.
In a default-denial system, a new persona initially has no permission to access
others, thus allowing multiple new personas from the same user is safe to the
existing users. Our approach follows the default-denial design, which means if
there is no explicit positive authorization policy specified, there is no access per-
mitted at all. Based on the default-denial assumption, negative authorizations
in our policy specifications are mainly used to further refine permissions allowed
by the positive authorizations specified (e.g., f ∗ c∧¬fc). A single negative au-
thorization without any positive authorization has the same effect as there is
no policy specified at all. Nonetheless it is possible for the coworker of a direct
friend to have a second persona that meets the criteria for coworker of a distant
friend and thereby acquires access to the resume. Without strong identities we
can only provide persona level control in such policies.

5 Path Checking Algorithm

In this section, we present the algorithms for determining if there exists a qual-
ified path between two involved users in an access request.

As mentioned, in order to grant access, relationships between the accessor and
the target/controlling user must satisfy the graph rules specified in access control
policies regarding the given request. We formulate the problem as follows: given
a social graph G, an access request < ua, action, target > and an access policy,
the system decision module explores the graph and verifies the existence of a path
between ua and target (or uc of target) matching the graph rule < start, path
rule >.

Path checking is performed by Algorithm 2, which takes as input the social
graph G, the path pattern path and the hopcount limit hopcount specified by
path spec in the policy, the starting node s specified by start and the evaluating
node t which is the other user involved, and returns a boolean value as output.
Note that path is non-empty, so this algorithm only copes with cases where
hopcount �= 0. The starting node s and the evaluating node t can be either the
accessing user or the target/controlling user, depending on the given policy. The
algorithm starts by constructing a DFA (deterministic finite automata) from the
regular expression path. The REtoDFA() function receives path as input, and
converts it to a NFA (non-deterministic finite automata) then to a DFA, by using
the well-known Thompson’s Algorithm [16] and Subset Construction Algorithm
(also known as Büchi’s Algorithm) [15], respectively.

The algorithm uses a depth-first search (DFS) to traverse the graph, because
it requires only one running DFA and, correspondingly, one pair of variables

A User-to-User Relationship-Based Access Control Model for OSNs 19

Algorithm 2. PathChecker(G, path, hopcount, s, t)

1: DFA← REtoDFA(path); currentPath← NIL; d← 0
2: stateHistory ← DFA starts at the initial state
3: if hopcount 	= 0 then
4: return DFST(s)

Algorithm 3. DFST (u)

1: if d + 1 > hopcount then
2: return FALSE
3: else
4: for all (v, σ) where (u, v, σ) in G do
5: switch
6: case 1 v ∈ currentPath
7: break
8: case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state
9: d← d + 1; currentPath← currentPath.(u, v, σ)
10: currentState← DFA takes transition σ
11: stateHistory ← stateHistory.(currentState)
12: return TRUE
13: case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with

transition σ is not at accepting state
14: break
15: case 4 v /∈ currentPath and v 	= t and transition σ is invalid for DFA
16: break
17: case 5 v /∈ currentPath and v 	= t and transition σ is valid for DFA
18: d← d+ 1; currentPath← currentPath.(u, v, σ)
19: currentState← DFA takes transition σ
20: stateHistory ← stateHistory.(currentState)
21: if (DFST(v)) then
22: return TRUE
23: else
24: break
25: if d = 0 then
26: return FALSE
27: else
28: d← d− 1; currentPath← currentPath\(u, v, σ)
29: previousState ← last element in stateHistory
30: DFA backs off the last taken transiton σ to previousState
31: stateHistory ← stateHistory\(previousState)
32: return FALSE

keeping the current status and the history of exploration in a DFS traversal.
Whereas, a breadth-first search (BFS) traversal has to maintain multiple DFAs
and multiple variables simultaneously and switch between these DFAs back and
forth constantly, which makes the costs of memory space and I/O operations
proportional to the number of nodes visited during exploration. Note that DFS
could avoid a target node for a longer time, even if the node is close to the
starting node. If the hopcount is unlimited, a DFS traversal may pursue lengthy
useless exploration. However, activities in OSN typically occur among people
with close relationships. Hence, DFS with limited hopcount fits our model.

The variable currentPath, initialized as NIL, holds the sequence of the
traversed edges between the starting node and the current node. Variable
stateHistory, initialized as the initial DFA state, keeps the history of DFA
states during algorithm execution. The main procedure starts by setting d to 0
and launches the DFS traversal function DFST (), given in Algorithm 3, from
the starting node s.

20 Y. Cheng, J. Park, and R. Sandhu

Given a node u, if d + 1 does not exceed the hopcount limit, it indicates that
traversing one step further from u is allowed. Otherwise, the algorithm returns
false and goes back to the previous node. If further traversal is allowed, then the
algorithm picks up an edge (u, v, σ) from the list of the incident edges leaving u.
If (u, v, σ) is unvisited, we get the node v on the opposite side of the edge (u, v, σ).
Nowwe have five different cases. If v is on currentPath, we will never visit v again,
because doing so creates a cycle on the path. Rather, the algorithm breaks out of
for loop, and finds the next unchecked edges of u. When v is not on currentPath
and v is the target node t and DFA taking transition σ reaches an accepting state,
we find a path between s and t matching the pattern Path. We increment d by
one, concatenate edge (u, v, σ) to currentPath, and save the current DFA state
to history. If v is the target node but DFA with transition σ is not at an accept-
ing state, then the path from s to v does not match the pattern. When v is not on
currentPath and is not the target node, there are two cases depending on whether
the transition type σ is a valid transition for DFA. If it is not, we break out of for
loop and continue to check the next unchecked edge of u. Otherwise, the algo-
rithm increments d by one, concatenates e to currentPath, moves DFA to the
next state via transition type σ, updates the DFA state history, and repeatedly
executesDFST () from node v. If the recursive function call discovers a matching
path, the previous call also returns true. Otherwise, it checks next edge of node u.

After all the outgoing edges of u have been checked, the algorithm has to step
back to the previous node of u and reset all variables to the previous values. But
if d = 0, all the outgoing edges of the starting node are checked, thus the whole
execution completes without a matching path.

In Figure 3, suppose user Harry owns a resource rt and expresses the target
resource policy as (read−1, rt, (f ∗ cf∗,3)), where read is the permitted action,
(f ∗ cf∗, 3) is the path pattern and hopcount limit. Path pattern f ∗ cf∗ means
the accessing user and Harry must be either a pair of coworkers (c) or direct or
indirect friend (f) of a pair of coworkers. Hopcount 3 constrains the distance be-
tween the two users to be within three hops. Figure 4 shows the DFA accepting the
path pattern f ∗ cf∗. If Alice requests read access to the resource owned by Harry,
the algorithm starts exploration from node H (Harry) by checking all the edges
leaving H . If it picks the edge (H,D, f) or (H,D, c) first, it will eventually find
out that there exists a satisfiable path (H,D, f), (D,E, c), (E,A, f) or (H,D, c),
(D,B, f), (B,A, f) that also moves the DFA from the starting state π0 to the ac-
cepting state π3 in three hops. (H,G, f), (G,F, f), (F,C, c), (C,A, f) alsomatches
the path pattern, but it is invalid because it takes four hops to reach node A.

Fig. 4. DFA for f ∗ cf∗

Suppose Harry specifies a target user policy for him
as (poke−1, (f+, 2)). This implies only his friends or
indirect friends can poke him. Then, Bob, Dave, Ed,
Fred and George can poke Harry because the paths
between Harry and them contain relationship f and
are within depth of two. Carol and Harry do not have
friend relationship with Harry, while Alice is too far
away from Harry.

A User-to-User Relationship-Based Access Control Model for OSNs 21

6 Conclusions and Future Work

We proposed a UURACmodel and a regular expression based policy specification
language. We provided a DFS-based path checking algorithm and established its
correctness and complexity. Correctness of the algorithm is proved by induction
on hopcount. Due to the sparseness nature of social graph, given the constraints
on relationship types and hopcount limit in policy, the complexity of the algo-
rithm can be dramatically reduced. Proofs of correctness and complexity are
given in appendix.

While this work only uses user-to-user relationships for authorization, we plan
to extend our model to exploit user-to-resource and resource-to-resource relation-
ships. To improve the expressiveness of the model, we also plan to incorporate
some predicate expressions for attribute-based control and filtering users and
relationships. Another future direction is to capture some unconventional rela-
tionships in OSNs, such as temporary relationships (i.e., vicinity) and one-to-
many relationships (i.e., network, group). Last but not least, we will be working
on implementing our approach into a prototype and doing some experiments to
analyze the approach.

References

1. Bruns, G., Fong, P.W., Siahaan, I., Huth, M.: Relationship-based access control:
its expression and enforcement through hybrid logic. In: ACM CODASPY (2012)

2. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: A
semantic web based framework for social network access control. In: ACM SAC-
MAT (2009)

3. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.:
Semantic web-based social network access control. Computers and Security 30(2-
3) (2011); Special Issue on Access Control Methods and Technologies

4. Carminati, B., Ferrari, E., Perego, A.: Rule-Based Access Control for Social Net-
works. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops, Part
II. LNCS, vol. 4278, pp. 1734–1744. Springer, Heidelberg (2006)

5. Carminati, B., Ferrari, E., Perego, A.: A decentralized security framework for web-
based social networks. Int. Journal of Info. Security and Privacy 2(4) (2008)

6. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social
networks. ACM Trans. Inf. Syst. Secur. 13(1) (2009)

7. Fong, P.W.L., Anwar, M., Zhao, Z.: A Privacy Preservation Model for Facebook-
Style Social Network Systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 303–320. Springer, Heidelberg (2009)

8. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: ACM CODASPY (2011)

9. Fong, P.W., Siahaan, I.: Relationship-based access control policies and their policy
languages. In: ACM SACMAT (2011)

10. Gates, C.E.: Access control requirements for web 2.0 security and privacy. In: Proc.
of Workshop on Web 2.0 Security and Privacy, W2SP 2007 (2007)

11. Kruk, S.R., Grzonkowski, S., Gzella, A., Woroniecki, T., Choi, H.-C.: D-FOAF:
Distributed Identity Management with Access Rights Delegation. In: Mizoguchi,
R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 140–154.
Springer, Heidelberg (2006)

22 Y. Cheng, J. Park, and R. Sandhu

12. Masoumzadeh, A., Joshi, J.: Osnac: An ontology-based access control model for
social networking systems. In: IEEE Social Computing, SocialCom (2010)

13. Park, J., Sandhu, R., Cheng, Y.: Acon: Activity-centric access control for social
computing. In: Int. Conf. on Availability, Reliability and Security, ARES (2011)

14. Park, J., Sandhu, R., Cheng, Y.: A user-activity-centric framework for access con-
trol in online social networks. IEEE Internet Computing 15(5) (September-October
2011)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3 (April 1959)

16. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11 (June 1968)

A Proof of Correctness

Theorem 1. Algorithm 2 will halt with true or false.

Proof. Base case (Hopcount = 1): d is initially set to 0. Each outgoing edge
from the starting node s will be examined once and only once. If taking an
edge reaches the target node t and its type matches the language Path denotes
(case 2), the algorithm returns true. If the edge type matches the prefix of an
expression in L(Path) (lines 17-24), d increments to 1 followed by a recursive
call to DFST (). The second level call will return false, since incremented d has
exceeded Hopcount. In all other cases, the examined edge is discarded and d
remains the same. Eventually, if a matching edge is not found, the algorithm
will go through every outgoing edge from s and exit with false thereafter (lines
25-26).

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 1 is true.
When Hopcount is k+1, all the (k+1)th level recursive calls will examine every
outgoing edge from the (k+1)th node on currentPath. If visiting an edge reaches
t and the updated currentPath matches L(Path), the (k+1)th level call returns
true and exits to the previous level, making all of the previous level calls all the
way back to the first level exit with true as well. If an edge falls into case 5, d is
incremented to k+2 and a (k+2)th level recursive call invokes, which will halt
with false and return to the (k + 1)th level as d has exceeded Hopcount. After
all edges are examined without returning true, the algorithm will exit with false
to the previous level. In the kth level, when Hopcount = k + 1, edges without
taking a recursive call are treated the same as they are when Hopcount = k.
Since when Hopcount = k the theorem holds, the algorithm will terminate with
true or false when Hopcount = k + 1 as well.

Lemma 1. At the start and end of each DFST () call, the DFA corresponding
to Path is at currentState reachable from the starting state π0 by transitions
corresponding to the sequence of symbols in currentPath.

Proof. The proof is straightforward. New edge is added to currentPath only
when it reaches the target node (lines 8-12) or it may possibly lead to the target

A User-to-User Relationship-Based Access Control Model for OSNs 23

node by taking a recursive DFST () call (lines 17-24). In both cases the DFA
starting from π0 will move to currentState by taking the transition regarding
the edge. Removing the last edge on currentPath after all edges leaving the
current node are checked always accompanies one step back-off of the DFA to
its previous state (lines 28-32), which can eventually take the DFA all the way
back to the starting state π0.

Theorem 2. If Algorithm 2 returns true, currentPath gives a simple path of
length less than or equal to Hopcount and the string described by currentPath
belongs to the language described by Path (L(Path)). If Algorithm 2 returns
false, there is no simple path p of length less than or equal to Hopcount such
that the string representing p belongs to L(Path).

Proof. Base case (Hopcount = 1): At first, d = 0, currentPath = NIL, and
the DFA is at the starting state π0. When d = 0, case 1 requires that the edge
being checked is a self loop which is not allowed in a simple graph. DFST () only
returns true in case 2, where edge (s, t, σ) to be added to currentPath finds the
target node t in one hop. The transition σ moves the DFA to an accepting state.
Case 5 cannot return true, because incrementing d by one will exceed Hopcount
in the recursive DFST () run. When DFST() exits with true, due to Lemma
1, currentPath, which is (s, t, σ), can move the DFA from π0 to an accepting
state π1, implying that σ ∈ L(Path). If the first DFST () call returns false (lines
29-30), the algorithm has searched all the edges leaving node s. However, these
examined edges either do not match the pattern specified by L(Path) (case 2
and 3), or may possibly match L(Path) but require more than one hop (case 5).
Hence, Theorem 2 is true when Hopcount = 1.

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 2 is true.
For the same G, Path, s and t, executions of DFST () when Hopcount = k
and k + 1 only differ after invoking the recursive DFST () call in case 5. If an
edge being checked can make the algorithm return true when Hopcount = k,
currentPath is a string of length ≤ k which is in L(Path). When Hopcount is
k + 1, the same currentPath gives the same string and is of length < k + 1,
thus making the function exit with true as well. The only difference between
Hopcount = k and Hopcount = k + 1 is that adding edges that lie in case 5 to
currentPath and incrementing d by one may not exceed the larger Hopcount
during the recursive call. If taking one of these edges leads to the target node and
its corresponding transition moves the DFA to an accepting state, the algorithm
will return true. The new currentPath gives a simple path of length k + 1 that
connects node s and t. The algorithm only returns true in these two scenarios.
In both scenarios, based on Lemma 1, the DFA can reach an accepting state by
taking the transitions corresponding to currentPath, so the string corresponding
to currentPath is in L(Path). If the algorithm returns false when Hopcount =
k, there is no simple path p of length ≤ k, where the string of symbols in p is
in L(Path). When Hopcount is k + 1, given the same G, such a path still does
not exist. By taking a recursive DFST () call in case 5, the algorithm will go
through all 5 cases again to check all the edges leaving the new node. If the
recursive call returns false, it means there is no simple path of length k + 1

24 Y. Cheng, J. Park, and R. Sandhu

with its string of symbols in L(Path). Combining the results from all k+1 level
recursive calls, there exists no simple path of length ≤ k + 1 with its string of
symbols in L(Path). Hence, Theorem 2 is true when Hopcount = k + 1.

B Complexity

In this algorithm, every possible path from s to t will be visited at most once un-
til it fails to reach t, while every outgoing edge of a visited node may be checked
multiple times during the search. In the extreme case, where every relationship
type is acceptable and the graph is a complete directed graph, the overall com-
plexity would be O(|V |Hopcount). However, users in OSNs usually connect with
a small group of users directly, thus the social graph is actually very sparse. We
define the maximum and minimum out-degree of node on the graph as dmax
and dmin, respectively. Then, the time complexity can be bounded between
O(dminHopcount) and O(dmaxHopcount). Given the constraints on the relation-
ship types and hopcount limit in the policies, the size of graph to be explored
can be dramatically reduced. The recursive DFST() call terminates as soon as
either a matching path is found or the hopcount limit is reached.

	A User-to-User Relationship-Based Access Control Model for Online Social Networks
	Introduction
	Motivation and Related Work
	Characteristics of Access Control for OSNs
	Prior Access Control Models for OSNs
	Comparison of Access Control Models for OSNs
	Our Contributions

	UURAC Model Foundation
	Basic Notations
	Access Control Model Components
	Modeling Social Graph

	UURAC Policy Specifications
	Path Expression Based Policy
	Graph Rule Specification and Grammar
	User- and System-Specified Policy Specifications
	Access Evaluation Procedure
	Discussion

	Path Checking Algorithm
	Conclusions and Future Work
	References

