
On Data Provenance in Group-centric Secure

Collaboration

Institute for Cyber Security

Oct. 17, 2011

CollaborateCom

Jaehong Park, Dang Nguyen and Ravi Sandhu

Institute for Cyber Security

University of Texas at San Antonio

1

Group-centric Collaboration

2

Group Collaboration Operations

• Administrative operations

– Establish/disband groups, join/leave/substitute

users, add/remove object versions to/from a

group, import/merge object versions from a group group, import/merge object versions from a group

to an org

• Usage operations

– Read/update/create object versions

3

Towards Assured Data Provenance

Data Provenance Security & Data Provenance Security &

Trustworthiness

Some AssuranceProvenance Data

e.g. Provenance

Access/Usage Control

e.g. Provenance

Access/Usage Control

4

Target Domain

Data Provenance

Model/System

Group Collaboration

GC Provenance

Some UtilitiesOperations for Provenance

Data Provenance

• Utilities of data provenance

– Pedigree, Usage tracking, Versioning capability

– Trustworthiness, Accountability, Compliance

– Depend on the kinds of provenance data that are

captured

5

Capturing Provenance Data

• Capturing a complete provenance data for all
operations is neither feasible nor necessary

• Some can be captured only by user’s manual declaration
(i.e., user intention) while user’s memory is limited and
cannot identify all the source information (i.e., citations in cannot identify all the source information (i.e., citations in
scientific research article).

• Not all operation information provide additional
provenance utilities

• For proper discussion, we need a specific application
domain where a set of operations can be specified
and expressed

6

Data Provenance Requirements

• Identifying operations for provenance data

• Capturing operations as provenance data in a
provenance model

• Provenance data expression

• Provenance data querying

OPM

RDF

• Provenance data querying

• Provenance data analysis

• Data Provenance Assurance
– Access/usage Control, trustworthiness, integrity,

accountability, etc.

7

SPARQL w/ GLEEN

Data Object Versioning

• One object can have multiple versions

• Each version can have a multiple identical

copies

• The versions of an object form a rooted tree • The versions of an object form a rooted tree

structure, relating a parent version to its

immediate children versions

• Each copy is considered as a separate object.

8

Open Provenance Model (OPM)

Notations

• 3 Nodes

– Artifact (ellipse)

– Process (Rectangle)

– Agent (Octagon)

• 5 Causality

dependency edges

(not dataflow)

9

OPM includes…

• A unique identifier for each node

– To distinguish nodes of the same type

• Accounts

– Multiple abstracted views of provenance graph by – Multiple abstracted views of provenance graph by
utilizing indirect (dashed) edges

• OPM Profile

– Includes domain specific subtypes of edges that
are defined for additional semantics

– Includes role-specific (solid) edges

10

Establish/Disband operations

11

Join/Leave Operations

12

Add/Remove Operations

13

Substitute/Import Operations

14

Merge Operation

• Similar to “import”
– A version is copied from cg

to org

• Different from “import”
– The initial version of the

merged version in cg was merged version in cg was
added from the org while
the initial version of
imported version is newly
created in cg

– The merged version
becomes a new version of
the original version in org

15

Read/Update/Create Operations

16

OPM in RDF Expression

• Using RDF (Resource Description Framework) data
representation to express provenance data

• RDF supports a directed graph

<opm:process><opm:used><opm:artifact><opm:process><opm:used><opm:artifact>

<opm:artifact><opm:wasGeneratedBy><opm:process>

<opm:process><opm:wasControlledBy><opm:agent>

<opm:process><opm:wasTriggeredBy><opm:process>

<opm:artifact><opm:wasDerivedFrom><opm:artifact>

17

OPM Profile for Group Collaboration

Operations (subtypes of “wasDerivedFrom”)

<gcp:artifact><gcp:wasCopyOf><gcp:artifact>

<gcp:artifact><gcp:wasNewVersionOf><gcp:artifact>

<gcp:artifact><gcp:HadAdmin><gcp:artifact>

<gcp:artifact><gcp:HadJoinedCgMember><gcp:artifact>

<gcp:artifact><gcp:HadLeftCgMember><gcp:artifact><gcp:artifact><gcp:HadLeftCgMember><gcp:artifact>

<gcp:artifact><gcp:HadRemovedAdmin><gcp:artifact>

<gcp:artifact><gcp:HadAddedAdmin><gcp:artifact>

<gcp:artifact><gcp:wasCreatedIn><gcp:artifact>

<gcp:artifact><gcp:wasUpdatedIn><gcp:artifact>

18

Roles for “Used” Edges

<gcp:process><gcp:u(sourceEntity)><gcp:artifact>

<gcp:process><gcp:u(targetEntity)><gcp:artifact>

<gcp:process><gcp:u(adminGroup)><gcp:artifact>

<gcp:process><gcp:u(removedAdmin)><gcp:artifact>

<gcp:process><gcp:u(addedAdmin)><gcp:artifact>

<gcp:process><gcp:u(initialAdmin)><gcp:artifact>

<gcp:process><gcp:u(toJoin)><gcp:artifact><gcp:process><gcp:u(toJoin)><gcp:artifact>

<gcp:process><gcp:u(toLeave)><gcp:artifact>

<gcp:process><gcp:u(toAdd)><gcp:artifact>

<gcp:process><gcp:u(toRemove)><gcp:artifact>

<gcp:process><gcp:u(toImport)><gcp:artifact>

<gcp:process><gcp:u(toMergeTo)><gcp:artifact>

<gcp:process><gcp:u(toMergeFrom)><gcp:artifact>

<gcp:process><gcp:u(toRead)><gcp:artifact>

<gcp:process><gcp:u(toUpdate)><gcp:artifact>

19

Roles for “WasGeneratedBy” Edges

<gcp:artifact><gcp:g(toEstablish)><gcp:process>

<gcp:artifact><gcp:g(toJoin)><gcp:process>

<gcp:artifact><gcp:g(toLeave)><gcp:process>

<gcp:artifact><gcp:g(toAdd)><gcp:process>

<gcp:artifact><gcp:g(toSubstitute)><gcp:process> <gcp:artifact><gcp:g(toSubstitute)><gcp:process>

<gcp:artifact><gcp:g(toImport)><gcp:process>

<gcp:artifact><gcp:g(toMerge)><gcp:process>

<gcp:artifact><gcp:g(toCreate)><gcp:process>

<gcp:artifact><gcp:g(toUpdate)><gcp:process>

20

SPARQL Query Expression

• Standard query language for RDF

• Can query by stating a consecutive path of
specific triple types of subject, predicate, and
object

SELECT ?ver

WHERE{

gcp:cg1.o2v2 gcp:wasCopyOf ?obj.

?obj gcp:wasNewVersionOf ?ver.}

21

GLEEN-enabled SPARQL

• Gleen is a plugin for the ARQ query engine.

• ARQ is a query engine for Jena, a semantic

web framework for Java which supports the

SPARQL RDF query languageSPARQL RDF query language

• Gleen onPath function supports regular

expression-based recursive path patterns

subject gleen:OnPath (pathExpression object)

22

Provenance Data Example

23

Sample Query 1

• Identify the very initial version of cg1.o2v3 and
whether it is created in the current group or added
from an organization.

• The query will return “cg1.o2v1” and “add”

SELECT ?obj ?proc

WHERE{

gcp:cg1.o2v3 gleen:OnPath(

”[gcp:wasNewVersionOf]∗” ?obj).

?obj gleen:OnPath(

[gcp:g(toCreate)]|[gcp:g(toAdd)] ?proc).}

24

Sample Query (cont.)

• To verify users who may have influenced (update/create) an

object content regardless of the fact that whether the

influence is done on a version of the same object or a version

of a copied object of the object.

SELECT ?agent

WHERE{

gcp:org1.o1v4 gleen:OnPath(

”([gcp:wasNewVersionOf]|[gcp:wasCopyOf])∗” ?obj).

?obj gleen:OnPath([gcp:g(toUpdate)]|[gcp:g(toCreate)]

?proc).

?proc gcp:wasControlledBy ?agent.}
25

Summary

• Identified/captured available or necessary
operations as provenance data for group
collaboration environment

• Expressed in RDF triples so it can be queried by
utilizing a regular expression based path patterns utilizing a regular expression based path patterns
in SPARQL query language

• Showed some utilities of data provenance in a
group collaboration environment

• Provides an initial foundation for data
provenance access control in group collaboration
environment

26

• Questions and Comments?• Questions and Comments?

27

