
Mitigating Multi-Tenancy Risks in IaaS Cloud Through
Constraints-Driven Virtual Resource Scheduling

Khalid Bijon
Institute for Cyber Security

Univ of Texas at San Antonio
khalid.bijon@utsa.edu

Ram Krishnan
Institute for Cyber Security

Univ of Texas at San Antonio
ram.krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security

Univ of Texas at San Antonio
ravi.sandhu@utsa.edu

ABSTRACT
A major concern in the adoption of cloud infrastructure-as-
a-service (IaaS) arises from multi-tenancy, where multiple
tenants share the underlying physical infrastructure oper-
ated by a cloud service provider. A tenant could be an enter-
prise in the context of a public cloud or a department within
an enterprise in the context of a private cloud. Enabled by
virtualization technology, the service provider is able to min-
imize cost by providing virtualized hardware resources such
as virtual machines, virtual storage and virtual networks, as
a service to multiple tenants where, for instance, a tenant’s
virtual machine may be hosted in the same physical server
as that of many other tenants. It is well-known that separa-
tion of execution environment provided by the hypervisors
that enable virtualization technology has many limitations.
In addition to inadvertent misconfigurations, a number of
attacks have been demonstrated that allow unauthorized in-
formation flow between virtual machines hosted by a hyper-
visor on a given physical server. In this paper, we present
attribute-based constraints specification and enforcement as
a mechanism to mitigate such multi-tenancy risks that arise
in cloud IaaS. We represent relevant properties of virtual
resources (e.g., virtual machines, virtual networks, etc.) as
their attributes. Conflicting attribute values are specified by
the tenant or by the cloud IaaS system as appropriate. The
goal is to schedule virtual resources on physical resources
in a conflict-free manner. The general problem is shown
to be NP-complete. We explore practical conflict specifica-
tions that can be efficiently enforced. We have implemented
a prototype for virtual machine scheduling in OpenStack, a
widely-used open-source cloud IaaS software, and evaluated
its performance overhead, resource requirements to satisfy
conflicts, and resource utilization.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SACMAT’15, June1–3, 2015, Vienna, Austria.
Copyright c⃝ 2015 ACM 978-1-4503-3556-0/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2752952.2752964
.

General Terms
Security

Keywords
Cloud IaaS; Virtual-Resource Scheduling; VM Migration;
Multi-Tenancy; Constraint; VM Co-Residency Management

1. INTRODUCTION
Enterprises are increasingly driven by economics and flex-

ibility to utilize computing resources provided by cloud infr-
astructure-as-a-service (IaaS) [32]. A major impediment to
wider adoption of cloud IaaS stems from an enterprise’s loss
of direct control over their virtual resources in cloud IaaS
relative to the customary level of control over physical (or
virtual) resources in an enterprise-managed data center [22].
In cloud IaaS, the physical resources in a datacenter are
logically arranged by the cloud service provider (CSP) and
virtual resources are hosted on those logical collections of
physical resources. This is illustrated in figure 1 where a
rack, for example, is a collection of a specific set of physical
servers and network hosts. Other resources such as physi-
cal storage volumes may be associated with those compute
hosts in the rack. This is shown as physical resource to phys-
ical resource mapping (PR-to-PR) in the figure. The single
and double-headed arrows indicate the usual “one-to” and
“many-to” mappings respectively. Tenants obtain a number
of separate pieces of virtual computing resources (or sim-
ply resources), e.g. virtual machines, virtual networks, etc.,
from the CSP. The cloud IaaS system should have suitable
policy specification capabilities so that tenants can dynam-
ically manage and arrange these resources to build a par-
ticular computing environment based on their needs. For
instance, tenants can systematically control specific virtual
hardware (e.g. RAM, disk) assignment to virtual machines
based on certain properties (e.g. purpose, running work-load
type, sensitivity). This is shown as virtual resource to vir-
tual resource mapping (VR-to-VR) in the figure and several
mechanisms have been proposed [10, 11] to manage it.

More significantly, in cloud IaaS, physical hardware is also
shared by multiple virtual resources for maximizing utiliza-
tion and reducing cost. IaaS public or community cloud
providers allow multi-tenancy which multiplexes virtual re-
sources of multiple enterprises upon same hardware. This in-
cludes co-location of virtual machines from different tenants
on a single physical host, sharing physical disk storage, etc.
This is illustrated as virtual resource to physical resource
mapping (VR-to-PR) in figure 1. This raises many secu-

63



Figure 1: Cloud Resources Mapping Relation

rity and performance considerations for a tenant’s workload
in the cloud. For instance, a tenant’s virtual machines can
be attacked by co-located malicious virtual machines of an
adversary tenant. Similarly, highly cpu-intensive co-located
virtual machines may disrupt each other’s expected perfor-
mance. The work of Ristenpart et al [31, 36, 40, 41] has
demonstrated such co-location vulnerabilities in real-world
clouds. In particular, they show that preventing targeted
co-location of virtual machines from different tenants on the
same physical server is unlikely to be successful. Their con-
clusion is that “the best solution is simply to expose the risk
and placement decisions directly to users” (i.e. tenants) [31].
The main objective of this paper is to address this goal where
the tenants and the cloud system are able to schedule virtual
resources on the physical resources consistent with high-level
and fine-grained constraints.
In this respect, even the leading IaaS service providers of-

fer minimal support to their tenants. In particular, tenants
have very little influence in how their resources are sched-
uled. Of course, certain coarse-grained and static prefer-
ences for disaster management are supported. For instance,
the Amazon Web Services cloud infrastructure is hosted at
multiple locations worldwide where a location comprises of
multiple geographically isolated datacenters called a ‘Re-
gion’ [1]. Each ‘Region’ also has multiple, isolated locations
known as ‘Availability Zones’. As a client, a tenant can at
best specify the ‘Availability Zone’ of its virtual resources
and specify backup Availability Zones for a premium. This
concerns engineering for fail-safety but does not concern co-
location of a tenant’s resources with those of others in a given
physical server or a rack. This article explores a highly dy-
namic and fine-grained technique for scheduling virtual re-
sources based on high-level constraints specified by tenants
in order to mitigate security threats (several of which are
discussed in [5]) due to the co-residency of virtual resources.
We present the design, implementation, and evaluation of

an attribute-based constraints specification framework which
enables tenants to express several essential properties of
their resources as attributes and to specify values of those
attributes that conflict for the purpose of co-locating vir-
tual resources on a given physical resource. A constraints
enforcement engine schedules virtual resources on the phys-
ical resources while respecting the conflicts specified using
attributes of those resources. For instance, consider two at-
tributes of a virtual machine: a tenant attribute that rep-
resents the owning enterprise of that virtual machine, and a
sensitivity attribute that represents the sensitivity level of
the data processed by that virtual machine. An example of

a high-level co-location constraint is that virtual machines of
different tenants may co-locate in a physical server as long as
the sensitivity is not ‘high’. As we will see, enforcing con-
straints in general in large-scale systems such as IaaS cloud
is computationally inefficient. Moreover, it negatively im-
pacts physical resource requirements and their utilization—
directly impacting the bottom line of IaaS CSPs.

The contributions of this paper are summarized below
which aligns with its general outline.

• We present a design of an attribute-based framework for
specifying co-location constraints of virtual resources sched-
uled on given physical resources (section 2).

• Given that co-location constraints can drastically affect
physical resource utilization, we propose a host optimiza-
tion process while enforcing constraints (section 3). Note
that, host optimization (i.e., optimizing the number of hosts
necessary for scheduling the vms in a conflict-free manner)
is an important requirement for achieving energy-efficient
datacenter which is also a major concern for the CSPs for
cost optimization [7]. We establish that, in general, the algo-
rithms for host optimization while enforcing such constraints
are NP-Complete (section 3). We demonstrate a subset of
attribute conflicts that are of practical significance in varied
application domains and cloud deployment scenarios (pub-
lic, private, community, etc.), which can be efficiently en-
forced in polynomial-time (section 3).

• We develop a prototype of the conflict-free virtual ma-
chine scheduling framework in OpenStack [3] and rigorously
evaluate the framework on various aspects, e.g., resource re-
quirements, resource utilizations, etc. (section 4).

We analyze issues that arise due to the incremental changes
of conflicts over time. A discussion of the security risks in
this approach, some related works and conclusion are given
in section 6, 7 and 8 respectively.

2. CONFLICT-FREE VIRTUAL RESOURCE
SCHEDULING

Intuitively, an attribute captures a property of an entity in
the system, expressed as a name:value pair. In the context
of cloud IaaS, attributes can represent a virtual machine’s
owner tenant, sensitivity-level, cpu intensity-level of work-
loads, etc. For simplicity, we restrict the scope of the paper
as follows. We confine our attention to virtual to physical
resource mapping in the context of virtual machines and
physical compute servers. Then we briefly discuss the possi-
ble extension of this approach to other virtual and physical
resources. In the rest of the article we refer to physical com-
pute host and virtual machine as host and vm respectively.
We restrict the kind of constraint to “must not co-locate”
constraint where the specified conflicts are co-location con-
flicts that state whether two vms can be co-located in the
same host or not. In this section, we formally define the
components of hosts allocation for the vms, which we refer as
host-to-vm allocation, in the presence of various co-location
conflicts. Note that, a vm may have multiple attributes each
with its own values. Attribute value of a vm can be assigned
either manually by a user or automatically by the system.
For instance, when an enterprise user creates a vm, an ap-

64



propriate value is assigned to the tenant attribute of the
vm automatically whereas, the user may need to explicitly
specify the value for a sensitivity attribute based on sen-
sitivity of data processed in that vm. Developing adminis-
tration models for such attribute assignments is beyond the
scope of this paper. We assume that vms are assigned with
proper attribute values. For our purpose, the values of an
attribute can conflict with each other and the goal is to al-
low the vms to co-locate in same host only if their assigned
attribute-values do not conflict. For general and in-depth
understanding about various types of attribute conflicts we
suggest to read the articles of Bijon et al [8, 9].

2.1 Scheduling Components Specification
The scheduling components include two sets called HOST

and VM that contain the existing hosts and vms respectively.
There are attributes of vm that characterize different proper-
ties of a vm and are modeled as functions. For each attribute
function, there is a set of finite constant values that repre-
sents the possible values of that attribute. For our purpose,
we assume values of attributes to be atomic.1 Therefore, for
a particular vm, the name of the attribute function maps to
one value from the set. For convenience attribute functions
are referred to as attributes. Also, values of an attribute can
have conflicts with each other and these conflicts are speci-
fied in a conflict-set of the attribute. Conflicts are specified
on values of each attribute independent of other attributes.
Formally these components are defined as follows.

• HOST is the finite set of hosts (physical servers).

• VM is the finite set of vms.

• Each host ∈ HOST has a capacity, represented as a
function called WHOST , that maps a host to a value
greater than 1.0 to a maximum value of the host ca-
pacity2. The capacity restricts the number of vms that
a host can contain based on the accumulated capacity
of the vms. Value of it for a host remains constant
unless explicitly modified, e.g., increasing RAM size.

• Similar to the capacity of host, each vm ∈ VM has a
capacity represented by a function called WV M where,
WV M : VM → k where 0.0 < k ≤ 1.0. Also, capacity
of a vm remains constant unless explicitly modified.

• ATTRVM is the set of attribute functions of vm.

• For each att ∈ ATTRVM, the domain of the function is
the VM and the codomain is the values of att written
as SCOPEatt which is a set of atomic values. Formally,
att : VM → SCOPEatt, for each att ∈ ATTRVM.

The values in SCOPEatt of an att ∈ ATTRVM that conflict
with each other is specified as a relation called ConSetatt.

1An example of an atomic attribute is sensitivity where the
values are high, medium and low. A vm can only get one of
the three values for sensitivity. However, some cases might
require set-valued attributes for which a vm may take mul-
tiple values. For our purpose, we only consider atomic at-
tributes, however, it can easily extend to set-valued one.
2Multi-dimensional weights of a host, e.g., RAM, CPU,
can be reduced to one single normalized weight. In Open-
Stack [3], hosts are mapped to a single weight which is cal-
culated by the weighted sum method that takes weighted
average of different metrics of a host e.g., RAM, workload.

ConSetatt is reflexive and symmetric, but not transitive.
Hence, each element in ConSetatt is an unordered pair. For
each att ∈ ATTRVM, ConSetatt is defined as follows.

• ConSetatt is the set of conflicts of the values of each att
∈ ATTRVM. Formally,
ConSetatt ⊆ {{x,y} | x̸=y and x,y ∈ SCOPEatt}

Part I in figure 2 shows two attributes, tenant and sensi-
tivity, and their respective scopes. Some conflicts among val-
ues of tenant and sensitivity attributes are also shown rep-
resenting conflicts among their values. For instance, {{tnt1,
tnt2}, {tnt2,tnt3}, {tnt4, tnt6}} in ConSettnt specifies that
vms of tnt1 and tnt2, tnt2 and tnt3, and tnt4 and tnt6 conflict
with each other and, hence, cannot be co-located. Also, part
IV shows an example of attribute assignment for vms. For
instance, for vm1, tenant(vm1) = tnt3 and sensitivity(vm1)
= high. Also note that the value 0.6 denotes the capacity
requirement of that vm. That is, WV M (vm1)=0.6.

2.2 Conflict-Free Host to VM Allocation
Given that the ConSetatt specifies conflicting values for an

attribute att ∈ ATTRVM, the conflict-free host to vm alloca-
tion is concerned about allocation of a host to a group of
vms that do not conflict with each other. There are 4 steps
in this process as illustrated in figure 2. Step 1 is to par-
tition the values of each attribute (i.e., SCOPEatt of an att
∈ ATTRVM), into a family of subsets where the elements in
each subset do not conflict with each other. We refer to such
partition as “Conflict-Free Partition of Attribute-Values”.

Definition 1. (Conflict-Free Partition of Attribute-
Values) A conflict-free partition of attribute-values of each
att ∈ ATTRVM is specified as PARTITIONatt that partitions
the values in SCOPEatt where the values of each element in
PARTITIONatt do not conflict with each other, i.e., for each
x ∈ PARTITIONatt and for each y ∈ ConSetatt, |x ∩ y| ≤ 1

We can state that, for an attribute att , a PARTITIONatt

partitions SCOPEatt where (1) PARTITIONatt does not con-
tain ∅, (2) elements in PARTITIONatt are pairwise disjoint,
(3) the union of the elements in PARTITIONatt is SCOPEatt,
and (4) the values in a set-element of PARTITIONatt do not
conflict with each other, i.e. no more than one value from
that set-element belongs to the same element in ConSetatt.

Part II in figure 2 shows examples of conflict-free parti-
tions, Partitiontenant and Partitionsensitivity, for ConSettenant

and ConSetsensitivity given in part I. For example, {tnt1,
tnt3, tnt6} in Partitiontenant means these values do not con-
flict with each other. Note that, there can be multiple candi-
date PARTITIONatt for a given ConSetatt of an attribute att
∈ ATTRVM. Section 3 shows that the selection of an appro-
priate PARTITIONatt is important for the host optimization.

Step 2 combines the conflict-free partitions of attribute-
values of all attributes. We define a conflict-free segment
that consists one element of PARTITIONatt of each attribute
att ∈ ATTRVM. We will see later that vms, mapped to a
conflict-free segment, do not conflict with that of others,
hence, can co-locate. Note that a vm can get any value from
the scope of an attribute. Therefore, conflict-free segments
should be generated in such a way so that it can map all pos-
sible assigned values to the attributes of the vms. A cartesian
product of the PARTITIONatt for all att ∈ ATTRVM generate
all possible segments of conflict-free values of the attributes
that can a vm based on its assigned attribute values.

65



Figure 2: Conflict-Free vm-host Allocation

Definition 2. (Conflict-Free Segments of the Val-
ues of Attributes) The conflict-free segments of the values
of attributes is a set, called ConflictFreeATTR, of n-tuples
where n = |ATTRVM| and each tuple is a result of the carte-
sian product of PARTITIONatt of all att ∈ ATTRVM, i.e.,
ConflictFreeATTR =

∏
att∈ATTRVM

PARTITIONatt

Each element conFval ∈ ConflictFreeATTR is an ordered
pair which is written as ⟨Xatt1 , ..., Xattn⟩ where {att1, ...,
attn} = ATTRVM and Xatti ∈ PARTITIONatti . We assume
that elements of each conFval ∈ ConflictFreeATTR can be
accessed by the notation conFval[att ] for each att ∈ ATTRVM.
Part III in figure 2 shows an example ConflictFreeATTR

which is produced from the Cartesian product of conflict-
free partitions Partitiontenant and Partitionsensitivity. A tu-
ple ({tnt1, tnt3, tnt6},{high}) is an element in Conflict-
FreeATTR since {tnt1, tnt3, tnt6} and {high} are members
of Partitiontenant and Partitionsensitivity respectively.
Step 3 partitions the set VM such that vms of each element

of the partition can be co-located. This is achieved by parti-
tioning VM in a way such that each element of the partition
can be mapped to an element of ConflictFreeATTR.

Definition 3. (Co-Resident Partition of VM) The
Co-Resident Partition of VM, specified as CoResidentVM-
Grp, is a partition of VM where the assigned values to att ∈
ATTRVM of all vms in an element of the partition map to the
same segment in ConflictFreeATTR, i.e.,
for all X ∈ CoResidentVMGrp and for all vmi ̸=vmj ∈ X,∨
conFval∈ConflictFreeATTR

SetResidence(vmi, vmj, conFval, ATTRVM))

where, SetResidence(vmi, vmj , conFval, ATTRVM) =∧
att∈ ATTRVM

(att(vmi) ∈ conFval[att] ∧ att(vmj) ∈ conFval[att])

CoResidentVMGrp partitions VM if vms in an element of
CoResidentVMGrp are assigned to the values, for all att ∈
ATTRVM, that belong to the same element in ConflictFreeATTR.

Part IV in figure 2 shows an example of CoResidentVM-
Grp calculation of 10 vms where vms are mapped to differ-
ent elements of ConflictFreeATTR based on their attributes.
For instance, vm1 is mapped to the segment ({tnt1, tnt3,
tnt6},{high}) since it is assigned with ‘tnt3’ and ‘high’ for
tenant and sensitivity attributes. Also, vm1 and vm3 be-
long to the same partition of CoResidentVMGrp since they
are both mapped to the segment ({tnt1, tnt3, tnt6}, {high}).

Finally, step 4 allocates hosts for the vms of each partition
in CoResidentVMGrp. A host cannot contain vms from mul-
tiple partitions of CoResidentVMGrp. Also, combined capac-
ity of the allocated vms must satisfy the capacity (WHOST )
of the host. Therefore, for each partition of vms in CoResi-
dentVMGrp, multiple hosts might be required depending on
the combined weight of the vms in that partition.

Definition 4. (Conflict-Free Host to VM Alloca-
tion) Given VM, HOST, ATTRVM, CoResidentVMGrp, WHOST

and WV M , the Conflict-Free Host to VM Allocation is a
mapping function called allocate that finds a set of hosts,
HOST′ ⊆ HOST, to allocate all vm ∈ VM where the vms
that reside in a host form a subset of an element of CoResi-
dentVMGrp such that their combined weight does not exceed
the weight of host, i.e., allocate : HOST′ ↪→ P(VM) where,
if chost ∈ HOST′ and allocate(chost) = lvm, then,
lvm ⊆ VM ∧

∨
x∈CoResidentVMGrp

lvm ⊆ x ∧ (
∑

vm∈lvm

WV M (vm)) ≤WHOST (cs)

Part V in figure 2 shows an example of Conflict-Free Host
to VM Allocation where the total number of vms is 10 and
they are partitioned into 4 co-resident sets. Note that, here,

66



Host0 and Host1 are allocated to one co-resident partition
of vms containing {vm0, vm1, vm3} since their combined
weight is more than the weight of a single host.

2.3 Conflict-Free Scheduling of Other Virtual
Resources to Physical Resources

The process of sections 2.1 and 2.2 can also apply for
the scheduling of other virtual resources (shown in figure 1)
with the following modifications.
In physical storage to virtual storage allocation, two sets

VM and HOST, defined in section 2.1, are substituted by
sets VS and PS that specifies virtual storage volumes and
physical volumes in the system respectively. Similar to the
capacity functions of vm and host, two functions can be de-
fined for virtual and physical resources that can map their
respective capacities where the capacity can be a single met-
ric calculated by weighted sum of different properties of a
storage system. Such properties include size, storage i/o
speed, etc. Now, similar to the ATTRVM, a set can rep-
resent the attributes of the virtual storage volumes. Also,
ConSetatt and definition 1-4 can be modified accordingly for
the physical storage to virtual storage allocations.
A similar approach can be followed to derive the network

host to virtual router allocation. Here, two sets called NH
and VR can specify network hosts and virtual routers in the
system respectively. Now the capacity could be the limit of
network bandwidth of a network host and the bandwidth
of a virtual router. One motivation of scheduling virtual
router across different network hosts is for load-balancing of
the network traffic and ensuring availability. Here, similar
to the virtual machines, necessary attributes of the virtual
routers can be generated. ConSetatt and definition 1-4 can
be modified for network host to virtual router allocations.

3. OPTIMIZATION PROBLEM DEFINITION
AND SOLUTION ANALYSIS

In this system, the specified conflicts restrict certain vms
from co-locating in the same host. Hence, some hosts can-
not schedule vms that conflict with currently scheduled vms in
these hosts, despite having the required capacity. That in-
creases the required number of hosts than a system without
conflicts. Hence, it is desirable to schedule vms in a way that
minimizes the number of hosts while satisfying the conflicts
leading to an optimization problem.

Definition 5. (Host Optimization Problem) The Host
optimization problem seeks to minimize the number of hosts
in the mapping, allocate : HOST′ ↪→ P(VM), specified in
Conflict-Free Host to VM Allocation (Definition 4).

This section investigates algorithms for definition 1 through
4 in order to solve the Host Optimization Problem.

3.1 MIN PARTITION: Minimum Conflict-Free
Partitions of Attribute-Values

More than one PARTITIONatt can be generated for a given
ConSetatt. In figure 2, for the given ConSettenant, candidate
Partitiontenant sets could be {{tnt1, tnt3}, {tnt2, tnt6}, {tnt4,
tnt5}} and {{tnt1,tnt3,tnt6},{tnt2,tnt4,tnt5}} with 3 and 2
elements in the sets respectively. Here, each element of a
PARTITIONatt contains the conflict-free attribute-values of
att . Number of elements in PARTITIONatt affects the total
number of conflict-free segments (definition 2) where the vms

mapped to same conflict-free segment can co-exist. A parti-
tion, with minimum number of elements, reduces the num-
ber of conflict-free segments. It also reduces the elements in
CoResidentVMGrp that also minimizes the required number
of hosts. We call such a partition as MIN PARTITION.

Finding aMIN PARTITION is similar to the graph-coloring
problem that partitions the vertices of a graph G(V,E) into
minimum color classes so that no two adjacent vertices, such
as {v1,v2} ∈ E, fall in the same class. Graph-coloring prob-
lem is NP-Complete given that graph coloring decision prob-
lem, called k-coloring, is NP-Complete, which states that
given a graph G(V, E) and a positive integer k ≤ |V|, can
the vertices in V be colored by k different colors?

We show that MIN PARTITION is NP-Complete by show-
ing that the MIN PARTITION decision problem, which we
refer to as K PARTITION, is NP-Complete. The problem
states that given SCOPEatt and ConSetatt of an att ∈ ATTRVM,
and a positive integer k ≤ |SCOPEatt|, can the values in
SCOPEatt be partitioned into k sets?

Theorem 1. K PARTITION is NP-Complete.

Proof. We prove that K PARTITION is NP-Complete by
polynomial-time reduction of k-coloring to K PARTITION.

An instance of k-coloring is a graph G(V, E) and an in-
teger k. We construct SCOPEatt ← V and ConSetatt ← E
and feed SCOPEatt, ConSetatt, and k to K PARTITION. The
complexity of this conversion is |V| × |E|.

Now we show that an yes instance of k-coloring maps to
an yes instance of K PARTITION and vice versa.
=⇒ Assume G is an yes instance of k-coloring and there
exists a set of colors C of size k in G. Thus, for all u ∈ V,
color(u) ∈ C and for any u, v ∈ V, color(u)=color(v) only if
{u, v} ̸∈ E. Also, for all u ∈ SCOPEatt, u belongs to cfs ∈
CFS where #CFS is k, and for any u, v ∈ SCOPEatt, u, v
belongs to the same cfs ∈ CFS, if {u, v} ̸∈ ConSetatt. Thus,
G is an yes instance of K PARTITION.
⇐= Assume SCOPEatt, ConSetatt is an yes instance of
K PARTITION and there exists a family of CFS of size k.
Thus, for all u ∈ SCOPEatt, u belongs to a cfs ∈ CFS, and
for any u, v ∈ SCOPEatt, u, v belongs to the same cfs ∈
CFS, if {u, v} ̸∈ ConSetatt. Thus, the vertices in same cfs
∈ CFS can be colored by the same color and there will be
k number of colors to color all the vertices in G. Thus, G is
an yes instance of k-coloring.

Thus, K PARTITION is NP-Complete.

Therefore, MIN PARTITION is also NP-Complete. How-
ever, there are a number of approximate graph-coloring al-
gorithms that can be applied to MIN PARTITION. The algo-
rithms are approximate in the sense that they may not pro-
vide the minimum size of PARTITIONatt, i.e.,MIN PARTITION
may not be optimal. This is useful, although not optimal,
because the conflicts are still satisfied. In appendix A, we
discuss approximate algorithms for graph-coloring and their
applications to MIN PARTITION. We also develop an ex-
act algorithm, shown in algorithm 1, based on backtrack-
ing. The complexity of this algorithm is NP since it is an
adaptation of the general backtracking algorithm for the
graph-coloring [6]. However, for attributes whose size of
the scope is small enough (e.g. sensitivity), the algorithm
computes the partition relatively fast. In algorithm 1, the
MAKE PARTITION procedure is called with scope SCOPEatt

of an attribute att ∈ ATTRVM, ConSetatt, and a partition

67



Algorithm 1 Conflict-Free Partition using Backtracking

1: procedure Check Validity(attval, ConSetatt, CSet)
2: for all attvali ∈ CSet do
3: if {attval, attvali} ∈ ConSetatt then
4: Return False
5: end if
6: end for
7: Return True
8: end procedure
9: procedure Make Partition(SCOPEatt, ConSetatt,

PARTITIONk
att)

10: if attval ∈ SCOPEatt then
11: for all par ∈ PARTITIONk

att do
12: if CHECK VALIDITY(attval, ConSetatt,

par) then
13: par = par ∪ attval
14: if MAKE PARTITION(SCOPEatt-{par},
15: ConSetatt,PARTITIONk

att) then
16: Return True
17: end if
18: par = par − attval
19: end if
20: end for
21: end if
22: Return False
23: end procedure

PARTITIONk
att that can contain k elements. It uses a re-

cursive backtracking algorithm that tries all possible com-
binations of k partitions and returns true if there is a valid
conflict-free k partition of a given ConSetatt. Before adding
an attribute value to a partition, MAKE PARTITION calls
CHECK VALIDITY that verifies if the attribute value to be
added is indeed free of conflict with respect to ConSetatt. In
section 4, we analyze the performance of this algorithm for
various sizes of attribute scopes and conflict sets.
Certain graphs such as perfect graphs have polynomial

graph-coloring solutions. We identify that certain restricted
versions of attribute conflict specification generates such
graphs. For example, like in a Chinese-Wall policy, an or-
ganization can have a conflict-of-interest with certain other
organizations. For instance, all banking tenants of a CSP
may have a conflict-of-interest with each other. Similarly, all
the oil-company tenants may conflict. A CSP can generate
an attribute called tenant that represents a particular tenant
name in the system, e.g, bank-of-america, and the values of
tenant can be categorized into mutually disjoint conflict-of-
interest classes. The conflict-set generates disjoint cliques of
attribute values which can be solved in polynomial-time [18].
Appendix B discusses several such restricted conflicts.

3.2 ConflictFreeATTR Generation
This is a trivial algorithm that calculates the values of

ConflictFreeATTR specified in definition 2. The algorithm
takes as input PARTITIONatt for all att ∈ ATTRVM, and
returns ConflictFreeATTR which is a Cartesian product of
PARTITIONatt for all att . It also stores the calculated or-
dered tuples in ConflictFreeATTR. The complexity is O(n×
m) where n andm are the size of ATTRVM and PARTITIONatt.

3.3 Co-Resident VM Partitions Generation
This algorithm takes ConflictFreeATTR and VM sets as in-

put, creates a family of sets, called CoResidentVMGrp (defi-
nition 3), where each set contains a subset of vms that can
co-reside. The number of sets in CoResidentVMGrp is equal

Figure 3: Experimental Setup in OpenStack

to the number of elements in ConflictFreeATTR, where the
algorithm maps an element of ConflictFreeATTR to an el-
ement in CoResidentVMGrp and the mapping is one-to-one
and onto. The vms that map to the same element in Conflict-
FreeATTR belong to the same partition. The complexity of
this algorithm is O(VM × ConflictFreeATTR × ATTRVM).
This algorithm works for both offline and online versions
of VM scheduling. In offline, the total number of vms is
fixed and are given before the algorithm runs. In online,
the scheduling request for a vm arrives one at a time. For
both versions, the algorithm takes one vm and maps it to
an element in ConflictFreeATTR and adds the vm to a corre-
sponding element in CoResidentVMGrp.

3.4 Scheduling VMs to Hosts
This algorithm takes CoResidentVMGrp, and schedules the

vms that belong to each element in CoResidentVMGrp, to-
gether in one or more hosts. For vms of each element in
CoResidentVMGrp, this process might need one or more hosts
based on the combined capacity of the vms. If the total ca-
pacity exceeds the capacity of a single host then it will need
multiple hosts. This scheduling problem is similar to the
bin-packing [16] problem which is NP-Hard. However, there
are a number of known heuristic approaches that can be ap-
plied here [30]. The scheduling of vms in an optimal way
based on capacity is orthogonal to MIN PARTITION since
MIN PARTITION is solved before this scheduling begins.

4. IMPLEMENTATION AND EVALUATION
We implement and evaluate our conflict-free vm to host

scheduling framework. Since our work concerns scheduling,
to conduct realistic experimentation, we need exclusive ac-
cess to a large-scale cloud infrastructure with 100s of phys-
ical hosts to meaningfully study resource requirements and
its utilization. First, we setup an IaaS cloud environment
using a set of 5 physical machines (each of them is a Dell-
R710 with 16 cores, 2.53 GHz and 98GB RAM). We now
treat each of the vms that this cloud provides as a physi-
cal host. These vms are configured with 4 cores and 3 GB of
RAM.We now create a DevStack-based cloud framework [2],
a quick installation of OpenStack ideal for experimentation,
using those vms as physical hosts to create a virtual cloud for
the purpose of experimentation. Now, we create the second-
level of vms to get a virtual IaaS cloud and the configuration
of these vms are varied based on the experiment we perform.

We implemented our host-to-vm scheduling on the testbed
described above. Figure 3 illustrates our experiment setup.
In OpenStack, the component that takes care of vm man-
agement and scheduling is the Nova service. We created a
cloud cluster with 61 hosts where one of them is the Nova
controller node and another 60 are the Nova compute nodes.

68



(11,30,0.0056)
(11,30,0.011)

12
15 18 21 24 27 30

No. of Elements in
Attribute Scope

20
24

28
32

36
40

No. of Elements in
Conflict-Set

00.05
0.35

0.85

1.45

1.95

2.45

3

3.5

4

Time
(Sec)

Figure 4: Required Time for Small Scope and
Confilct-Set

(50,70,416)

40
50

60
70

80
90

100No. of Elements in
Attribute Scope

40
50

60
70

80
90

100

No. of Elements
in Conflict-Set

0

400

800

1200

1600

2000

2400

Time
(Sec)

Figure 5: Required Time for Large Scope
and Conflict-Set

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s
ec
)

Number of Vms

Conflict-Free VM Scheduler

Figure 6: Latency for Conflict-free
Scheduling

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

N
u
m
b
e
r
o
f
S
e
rv
e
rs

Cardinality of Conflict-Set

Scheduling: 100 VMs 200 VMs 300 VMs

Figure 7: Required Number of hosts for Varying
Number of Elements in Conflict-Set

0

2

4

6

8

10

12

14

16

18

20

22

24

26

6 9 12 15 18

N
u
m
b
e
r
o
f
S
e
rv
e
rs

Maximum Degree of Conflicts

Scheduling: 100 VMs 200 VMs 300 VMs

Figure 8: Required Number of hosts for Max
Degree of Conflicts

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200

S
e
r v
e
r
U
ti
li
z
a
ti
o
n
(P

e
rc
e
n
ta
g
e
)

Number of Vms

Without Conflicts
Max Degree-of-Conflicts 5
Max Degree-of-Conflicts 10

Max Degree-of-Conflicts 15
Max Degree-of-Conflicts 20

Figure 9: Host Utilization Overhead

The Controller node provides main services, e.g. database,
message queues, etc., while the compute nodes only con-
tain components such as hypervisor and nova-compute that
are required for running vms. We deployed the prototype in
the nova controller node. Our python-based implementation
of conflict specification allows tenant admins to specify at-
tribute conflict values and the ability to store conflict values
in nova database (MySQL) (part I in figure 2). Our python
based conflict free segments calculation process (steps 1 and
2 in figure 2) has 153 lines of code. Finally, our implementa-
tion of conflict-free host to vm scheduling (steps 3 and 4 in
figure 2) has 170 lines of code that maps a vm to a conflict-
free segment based on conflicting-values and assigned at-
tribute values of the vm which are retrieved from the nova
database. For the conflict-free segment, designated hosts
are identified and weighed based on default Nova weighing
factors and the vm is scheduled to the suitable host.
Experiment 1 -Upper Bound of Algorithm 1. This ex-

periment analyzes the runtime of Algorithm 1. Since the
complexity is in NP, here, we identify the maximum size of
scope and conflict set for which required runtime of the al-
gorithm remains feasible. First, we conduct the experiment
with a small size of scope of an attribute and respective
conflict set. We vary scope size from 10 to 40, and for each
scope size, we vary the size of conflict set from 20 to 40.
For each scope and a particular size of the conflict set, we
randomly create elements in conflict set and execute the al-
gorithm. Figure 4 shows the results where, for a small scope
and conflict set, runtime is very low, e.g., 0.011s for a scope
and conflict set size of 18 and 30 respectively. However, for
bigger scope and conflict set sizes, it increases drastically,
e.g, for scope size 30 and conflict set size 35 it becomes ap-
proximately 4s. We also conduct the same experiment for

large scope and conflict sets where we vary the size from 40
to 100 and 60 to 100 respectively. Figure 5 shows the results
where the runtime is very high as expected. For instance, for
a scope and conflict set size of 50 and 70 respectively, the ex-
ecution time is more than 7mins. Note that, a high runtime
may be acceptable, since conflict-free partitions are created
before starting the scheduling of vms and hence it does not
impact the scheduler’s performance drastically. This experi-
ment gives an estimation of delay the CSP might face before
scheduling the vms if it wants to create conflict-free partitions
for a given scope and conflict set size.

Experiment 2 - Scheduling Latency. In the second ex-
periment, we analyzed the timing overhead of our conflict-
free host-to-vm scheduler once that conflict-free partitions
are calculated by algorithm 1. In figure 6, we study how
the amount of time the scheduler takes to schedule a single
vm varies with increasing number of vms that have already
been scheduled. A value of 500 in the x-axis, for exam-
ple, indicates that 499 vms have already been scheduled and
the corresponding value in the y-axis (0.19s) indicates the
time to schedule one new vm. The attribute values of the
pre-scheduled vms were randomly assigned. The scheduler
takes a fairly fixed amount of time to schedule a single vm

regardless of the number of conflict-free pre-scheduled vms.
Experiment 3 - Required Number of Hosts. Our third

experiment concerns the impact of satisfying conflicts on the
resource requirements. In our case, the conflict set of a given
attribute can be varied in two significant ways to evaluate
the number of physical hosts that are necessary. In figure 7,
we vary the number of elements in the conflict set while fix-
ing the maximum degree of conflict to a constant value. The
highest number of values that conflict with each other in the
conflict set is referred to as the maximum degree of conflict

69



for that conflict set. In figure 7, we fix the maximum degree
to 2. In figure 8, we vary the maximum degree of conflicts
with a fixed attribute scope. Given the server memory ca-
pacity to be 3 GB, the vm capacity is varied between 512
MB and 1024 MB. The experiment confirms our intuition
that that the maximum degree of conflict dominates the
server requirement to schedule vms. Note that minor spikes
and drops (for example between 100 and 140 on the x-axis
for scheduling 100 vms) are due to the randomness of the
workload we automatically generate and some variability in
Devstack. However, overall, our observation holds true.
Experiment 4 - Host Utilization. Finally, this experi-

ment concerns the impact of conflict-free scheduling on the
overall utilization level of all the physical servers. Since we
know from experiment 2 that resource requirements are pre-
dominantly impacted by maximum degree, in figure 9, in the
x-axis we vary maximum degree while scheduling a varied
number of vms. The y-axis specifies the aggregate percent-
age of utilization of all the servers after scheduling the vms
in a conflict-free manner. For example, given N number
of servers, 80% utilization means that 20% of N servers in
total is not utilized. We can see, server utilization dramat-
ically increases with the number of vms that are scheduled.
This is because since the max degree dictates server require-
ments, for smaller number of vms, a minimum of max degree
number of servers remain heavily under-utilized. Once the
vms scale toward real-world numbers, the utilization is above
80% even with a very high degree of conflict.

5. INCREMENTAL CONFLICTS
So far, our conflict-free scheduling approach has assumed

that conflicts can be pre-specified and remains unchanged.
However, in practice, conflicts may change, and may be spec-
ified incrementally as new tenants join the cloud. We now
explore this fundamentally hard problem—if two vms that
did not conflict at a certain time happen to be co-located
in a server, but later develop a conflict due to an update of
conflict specification, it is necessary to migrate one of those
vms from that server, to remain conflict free.

5.1 Types of Conflict Change
In general, a conflict-set changes if a new conflict is added

or an existing conflict is removed. Given a ConSetatt and a
PARTITIONatt of an att ∈ ATTRVM, ConSetatt can change to
a new conflict set ConSet′att ( a new partition PARTITION′

att

can be calculated accordingly) in three different ways.
• ∆1—this type of change involves operations that only re-
move an element from ConSetatt where |PARTITION′

att| <
|PARTITIONatt|. Evidently, it does not add new conflicts,
hence, the scheduled vms need not migrate.
• ∆2—this type of change involves operations that add an
element to ConSetatt. However, PARTITIONatt remains un-
changed. If addition of a new conflict results in no change in
conflict-free partition, scheduled vms need not be migrated.
• ∆3—this type of change adds an element to ConSetatt
where PARTITION′

att ̸= PARTITIONatt. Evidently, certain
vms need to be migrated if they need to remain conflict-free.

Consider an attribute att ∈ ATTRVM and SCOPEatt =
{a1,a2,a3,a4,a5,a6}, where the initial conflict-set ConSetatt
= {{a1,a2},{a1,a4}, {a2,a4}, {a1,a5}, {a2,a6}, {a4,a6}} and
the corresponding partition set which is calculated using al-

gorithm 1 is PARTITIONatt={{a1,a3,a6},{a2,a5},{a4}}.

Consider a change of type ∆1 that removes {a2,a4}
from ConSetatt where resultant conflict set ConSet1att={{
a1,a2}, {a1,a4},{a1,a5},{a2,a6},{a4,a6}} and PARTITION1

att

={{a1,a3,a6}, {a2,a4,a5}}. Here, #PARTITION1
att <

#PARTITIONatt and it does affect already scheduled vms.

Consider a change of type ∆2 that adds {a2,a3} to
ConSetatt where new conflict set ConSet2att={{a1,a2},
{a1,a4}, {a2,a4}, {a2,a3}, {a1,a5}, {a2,a6}, {a4,a6}} and
PARTITION2

att= {{a1,a3,a6}, {a2,a5},{a4}} which is equal
to the previous partition set PARTITIONatt.

Consider a change of type ∆3 that adds {a1,a6} to
ConSetatt where ConSet3att= {{a1,a2}, {a1, a4}, {a2,a4},
{a1,a5},{a2,a5},{a2,a6},{a4,a6},{a1,a6}} and PARTITION3

att

= {{a1,a3},{a2},{a4},{a6}}. This clearly affects the previ-
ously scheduled VMs because, from PARTITIONatt, vms with
attribute value a4 are co-located with vms with attribute val-
ues a1 or a3. Now, those vms with a4 need to migrate since
they cannot co-locate with a1 or a3.

5.2 Cost Analysis
In this section, we analyze the cost of continuing to satisfy

the conflicts as they change, when the change is of type ∆3.
We calculate the cost based on the number of migrations
that are necessary when conflicts change. Based on experi-
mentation, we gain insights on the strategies for minimizing
the cost while handling this type of change.

We define an incremental plan, or simply plan, as a se-
quence of operations that adds a number of conflicts to the
current conflict-set resulting in a ∆3-type change (i.e., re-
quires migration). Our strategy for minimizing cost is as fol-
lows. Consider an element {a1, a2, a3, a4} of a conflict-free
partition set PARTITIONatt of attribute att. Since attribute
values a1 through a3 are conflict-free, the scheduler is free
to co-locate vms that have those attribute values in a given
server. We refer to this as promiscuous conflict-free schedul-
ing because it maximizes the mixing of vms in a given server
so long as they do not conflict. In contrast, a conservative
approach minimizes the co-location of vms even though their
attribute values do not conflict. For instance, vms with val-
ues a1 or a2 may be co-located in one server, and those with
values a3 or a4 may be co-located in another. In this case,
if values a3 and a1 were to develop a conflict in the future,
the migration cost can be minimal (zero in this scenario).
Promiscuous scheduling can have better resource utilization
but higher cost for managing conflict changes. Conservative
scheduling can minimize cost when conflict changes more
frequently, at the expense of lower resource utilization.

We conduct an experiment to evaluate the impact of con-
flict change on the number of migrations for different levels
of conservative scheduling. The steps of the experiment are:
(step-1) We consider a single vm attribute called att where
we vary the size of SCOPEatt from 10 to 35 with an incre-
ment of 5. (step-2) For each SCOPEatt, initially, we ran-
domly populate ConSetatt with 5 to 50 elements and calcu-
late PARTITIONatt. We repeatedly perform this step for 50
times for every step 1. (step-3) For each step-2, we schedule
X number of vms where we vary X from 500 to 5000. We also
schedule them using a promiscuous approach and four con-
servative approaches where VMs of same host can not have

70



0

15

30

45

5 10 15 20 25 30 35 40 45 50

(A) Scheduling Process 1(Max. 2)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50

(B) Scheduling Process 2(Max. 4)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50

(C) Scheduling Process 3(Max. 8)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50

(D) Scheduling Process 4(Promiscuous)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

Figure 10: Cost Analysis: X-axis(% of the Total Conflicts for Given Scopes), Y-axis(% of Total VMs that Require Migrations)

more than 1, 2, 4, and 8 different values from a conflict-free
partition respectively. Also, each vm is randomly assigned
a value to its att . We repeat each scheduling process for
30 times. We also randomly assign vm memory capacity to
512 and 1024 MB, and host capacity to 3GHz. (step-4) Fi-
nally, we measure migrations for 5 different plans where the
plans gradually add random 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45% and 50% of the total number of conflicts
to ConSetatt respectively. For each plan, step-4 is repeated
for 50 times and we count the migrations. Note that these
numbers (the number of times a particular step is repeated)
provide sufficient variations, and are primarily dictated by
amount of time it takes to perform these steps.
Figure 10 shows the result of our analysis. Parts (A),

(B) and (C) are results of different degrees of conservative
scheduling. For example, in part (A), if attribute values
{a1, a2, . . . , a8} are conflict free, we at most schedule vms
with one of two possible conflict-free values in any given
server (e.g. vms with a1 or a2 are co-located, and those with
a3 and a4 are co-located in a different server, etc.). Similarly,
in part (B), we co-locate vms with either of a1, a2, a3 or a4
in one server and those with a5, a6, a7 or a8 in a different
server. Part (D) is the result of promiscuous scheduling.
We found that the percentage of the migrating vms does

not necessarily increase with the increasing number of vms,
rather, it depends on the percentage of total number of con-
flicts that are newly added. For instance, in figure 10(A), for
varying number of vms from 500 to 5000, mean value of the
average percentage of vms that need to migrate is 29% when
number of newly added conflicts is 35%. Also, the mode
is 27%. We found that the average difference between the
mean and mode values from all cases is no more than 0.5%.
The percentage of migrations remain constant with respect
to the size of the attribute scope and it does not depend on
the initial conflicts for which the vms are scheduled. Finally,
we found that it is always better to schedule vms with conser-
vative scheduling with minimum degree. For instance, there
is no migration using scheduling process #1 where a host

can only contain vms with same attribute value. Also, we
notice that addition of a large % of conflicts at a time costs
less than combined cost of multiple additions of compara-
tively small % of conflicts. For instance, in Figure 10(C),
50% conflicts cost 79% migrations, where 10 different 5%
conflicts cost 10×9%=90% migrations.

5.3 Reachability Heuristics
Besides analyzing the cost of a plan that leads to a par-

ticular conflict set, it is also important to find the steps of
a plan where each step adds a particular conflict. For in-
stance, identifying steps of a plan helps to design operations
for maintaining conflicts and their authorization process, al-

though, we consider the designing of such front-end opera-
tional model as future work. Here, we define this problem
as plan reachability problem where for a given attribute, its
scope, and an initial conflict-set, what are the steps with
a particular cost that will reach target plan with specific
values in conflict-set? This problem can be viewed as find-
ing a path from an initial state to a goal state in a weighted
state-transition directed graph where each edge of the graph
is the cost for adding one conflict to the conflict-set. Here,
a simple algorithm can construct the state-transition graph
and uses a weighted shortest path algorithm to find a plan
in O(nlogn) time [14]. However, it is infeasible due to a
very large number of states where, for a size of scope N ,

the number of conflicts is
(
N
2

)
and possible states are 2(

N
2 ).

Instead, it is possible to use a search algorithm to construct
regions as needed. Proper heuristics can intelligently search
for steps and some well-known heuristics such as k-lookahead
based heuristics may be applied in this domain [14].

6. SECURITY ISSUES AND LIMITATIONS
In terms of applicability, an attribute of a vm can be ap-

plied to represent properties of a single tenant or multiple
tenants. We refer such attributes as intra-tenant and inter-
tenant respectively. In figure 2, tenant and sensitivity are
inter-tenant and intra-tenant attributes respectively since val-
ues of tenant can represent different tenant in the system,
while, sensitivity can be very particular to a tenant. We an-
alyze the following security concerns for specifying conflicts
of the inter-tenant attributes in a multi-tenant cloud.

• Privacy of a Tenant. As seen in section 2.1, a conflict is
specified between a pair of values of an attribute. However,
for an inter-tenant attribute, the values of the attribute can
belong to different tenants. For instance, in public cloud,
values of the tenant attribute of figure 2 represent each ten-
ant in the system and each tenant should not know values of
tenant attribute except their own value for privacy of other
tenant in this system. Specifying conflicts of such attributes
can be very tricky where a tenant should be able to specify
the conflicts with other tenants without, basically, knowing
them. The CSP could take the initiative to develop a pri-
vacy preserving conflict specification process for inter-tenant
attribute. A simple approach could be the classification of
attribute-values based on some class, as shown in section 3.1
for conflict-of-interest classes, and a tenant can only men-
tion the class of their attribute values where conflicts will be
generated automatically with other values of the same class.

• Disrupt Multi-tenancy: In public cloud, multiplexing is
to share a physical host among the vms of multiple tenants.
However, if a tenant can specify conflicts with all other ten-

71



ants in the system, then its vms cannot co-locate with any
other tenant. This process disrupts the multi-tenancy in the
system and, basically, creates a private cloud for the tenant.
The CSP should restrict such specifications of conflicts.

We discuss following limitations on expressive-power of the
generated conflicts by our mechanism.

• Homogeneous and Non-hierarchical. Generated conflicts
in a conflict-set are treated equally and they do not have
any hierarchical relationships. In figure 2, three different
conflicts are specified in ConSetsensitivity of attribute sen-
sitivity. Here, each conflict has the same semantics, which
is a binary relation between two values of sensitivity. Also,
generated conflicts of the values of two different attributes
are independent and bear equal meaning. In figure 2, the
values of ConSetsensitivity and ConSettenant do not have any
connection and have equal significance.

• Conflicts between the Virtual Resources only. Our schedul-
ing mechanism does not consider any host property, such as
location or trust-level of a host, for the scheduling decisions.
Rather, it only focuses on generating attribute and their con-
flicts only for the vms and schedule them accordingly. Also,
it does not consider any relationship between hosts and vms
for the scheduling. Such type of relations between hosts and
vms are specified in [25]. A potential future extension is to
consider conflicts between hosts and vms for the scheduling
decisions while optimizing the number of hosts.

7. RELATED WORK
Generally scheduling problems are NP-Complete. How-

ever, these problems are well-studied by the research com-
munity where they proposed various heuristic and approx-
imate approaches for addressing different issues. For in-
stance, the goal of resource-constrained multi-project schedul-
ing problem is to minimize average delay per project. A
number of efforts have been made in this scheduling prob-
lem including the priority rule based analysis [13, 27] where
they propose heuristics, such as first-come-first-served, and
shorted operation first, to minimize average delay. Another
scheduling problem is to minimize number of bins, while
scheduling a number of finite items in it. This problem is
called bin packing. There are one and multi capacity bin
packing based on multiple requirements for scheduling and
approaches have been proposed in [28]. Multi-capacity bin
packing is also applied in resource scheduling in grid com-
puting [33, 34]. One variation of bin packing problem is
called bin-packing with conflicts that packs items in a min-
imum number of bins while avoiding joint assignments of
items that are in conflict. This problem is analogous to the
problem we address in this paper. Several bin-packing with
conflict algorithms [23, 24] are proposed where it is assumed
that items can be conflicting in random manner. However,
we investigated the nature of various conflicts for scheduling
items (vms) where the items do not have direct conflict with
each other, rather the attributes of the item have conflicts.
Different performance and security issues exist in cloud

IaaS for unorganized multiplexing of resources and several
of which are summarized in [17, 21, 35]. Recently, articles
have been published exposing the vulnerability of state-of-
art co-residency system in public cloud IaaS system [39, 40].
However, the virtual resources schedulers designed by the

commercial IaaS clouds such as Amazon and IBM mainly
aim to address performance management or load balancing
related issues rather than security conflicts that we address
in this article. Developing proper vm placement algorithms
recently drew attention from the research community. Bo-
broff et al [12] propose an algorithm that proactively adapts
to demand changes and migrates virtual machines between
physical hosts. Yang et al [38] also propose a load-balancing
approach in vm scheduling process. Calcavecchia et al [15]
develop a process to select candidate host for a vm by ana-
lyzing past behaviors of a host and deploy the request, and
Gupta et al [19] propose a process for scheduling HPC re-
lated vms together. Li et al [29] propose vm-placement that
maximizes a hosts cpu and bandwidth utilization. Also,
Mastroianni et al [30] propose a probabilistic approach for vm
scheduling for maximizing CPU and RAM utilization of the
hosts. The main focus of these efforts is scheduling vms ei-
ther for the purpose of high-performance computing or load
balancing. Our approach is to capture different properties
of vms by means of assigned attributes, and scheduling them
while respecting conflicts expressed over those attributes.

8. CONCLUSION
We presented a generalized attribute-based constraint spec-

ification framework for virtual resource to physical resource
scheduling in IaaS clouds. The mechanism also optimizes
the number of physical resources while satisfying the con-
flicts. A potential future work is to extend this mechanism
to address the limitations discussed in section 6. Another
future research is to develop a suitable front-end applica-
tion program interface for specification and management of
the conflicts. Our vision is to expose resource management
capabilities to the tenants.

9. ACKNOWLEDGEMENT
This research is partially supported by NSF Grants (CNS-

1111925 and CNS-1423481).

10. REFERENCES
[1] AWS availabiltiy-zones. http://docs.aws.amazon.com/

AWSEC2/latest/using-regions-availability-zones.html/.

[2] Devstack. https://wiki.openstack.org/wiki/DevStack.

[3] Openstack. http://docs.openstack.org/.

[4] Amazon and CIA ink cloud deal. In http://fcw.com/
articles/2013/03/18/amazon-cia-cloud.aspx, 2013.

[5] Y. Azar, S. Kamara, I. Menache, M. Raykova, and
B. Shepard. Co-location-resistant clouds. In
Proceedings of the 6th edition of the ACM Workshop
on Cloud Computing Security, pages 9–20. ACM, 2014.

[6] E. A. Bender and H. S. Wilf. A theoretical analysis of
backtracking in the graph coloring problem. Journal of
Algorithms, 6(2):275–282, 1985.

[7] A. Berl et al. Energy-efficient cloud computing. The
computer journal, 53(7):1045–1051, 2010.

[8] K. Bijon, R. Krishman, and R. Sandhu. Constraints
specication in attribute based access control. ASE
Science Journal, 2(3), 2013.

[9] K. Bijon, R. Krishnan, and R. Sandhu. Towards an
attribute based constraints specfication language. In
Proc. of the International Conference on Privacy,
Security, Risk and Trust. IEEE, 2013.

72



[10] K. Bijon, R. Krishnan, and R. Sandhu. A formal
model for isolation management in cloud
infrastructure-as-a-service. In Proceedings of the
Network and System Security, pages 41–53. Springer,
2014.

[11] K. Bijon, R. Krishnan, and R. Sandhu. Virtual
resource orchestration constraints in cloud
infrastructure as a service. In Proceedings of the 5th
ACM Conference on Data and Application Security
and Privacy, pages 183–194. ACM, 2015.

[12] N. Bobroff et al. Dynamic placement of virtual
machines for managing sla violations. In Integrated
Network Management, pages 119–128. IEEE, 2007.

[13] T. R. Browning and A. A. Yassine.
Resource-constrained multi-project scheduling:
Priority rule performance revisited. International
Journal of Production Economics, 2010.

[14] D. Bryce and S. Kambhampati. A tutorial on planning
graph based reachability heuristics. AI Magazine,
2007.

[15] N. M. Calcavecchia et al. Vm placement strategies for
cloud scenarios. In IEEE Cloud, 2012.

[16] E. G. Coffman Jr et al. Approximation algorithms for
bin packing: A survey. In Approximation algorithms
for NP-hard problems. PWS Publishing Co., 1996.

[17] W. Dawoud, I. Takouna, and C. Meinel. Infrastructure
as a service security: Challenges and solutions. In
IEEE INFOS, pages 1–8, 2010.

[18] M. C. Golumbic. Algorithmic graph theory and perfect
graphs, volume 57. Elsevier, 2004.

[19] A. Gupta et al. HPC-aware vm placement in
infrastructure clouds. In IEEE Intl. Conf. on Cloud
Engineering, volume 13, 2013.

[20] M. M. Halldórsson. A still better performance
guarantee for approximate graph coloring. Information
Processing Letters, 45(1):19–23, 1993.

[21] K. Hashizume et al. An analysis of security issues for
cloud computing. Journal of Internet Services and
Applications, 4(1):1–13, 2013.

[22] S. Iyer. Top 5 challenges to cloud computing. Cloud
Computing Central, https://www.ibm.com/, 2011.

[23] K. Jansen. An approximation scheme for bin packing
with conflicts. In Algorithm Theory—SWAT. 1998.

[24] K. Jansen. An approximation scheme for bin packing
with conflicts. Combinatorial Optimization, 3(4), 1999.

[25] R. Jhawar, V. Piuri, and P. Samarati. Supporting
security requirements for resource management in
cloud computing. IEEE CSE, 0:170–177, 2012.

[26] D. Karger et al. Approximate graph coloring by
semidefinite programming. In 35th Annual Symp. on
Foundations of Computer Science, pages 2–13, 1994.

[27] I. S. Kurtulus and S. C. Narula. Multi-project
scheduling: Analysis of project performance. IIE
Transactions, 1985.

[28] W. Leinberger et al. Multi-capacity bin packing
algorithms with applications to job scheduling under
multiple constraints. In Proc. of ICPP, 1999.

[29] K. Li et al. Elasticity-aware virtual machine placement
for cloud datacenters. In IEEE 2nd Int. Conf. on
Cloud Networking, pages 99–107, Nov 2013.

[30] C. Mastroianni et al. Probabilistic consolidation of
virtual machines in self-organizing cloud data centers.
IEEE Tran. on Cloud Computing, 1(2):215–228, 2013.

[31] T. Ristenpart et al. Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds. In Proc. of the ACM CCS, 2009.

[32] J. Rivera. Gartner identifies the top 10 strategic
technology trends for 2014. http://www.gartner.com.

[33] M. Stillwell et al. Resource allocation using virtual
clusters. In IEEE/ACM Int. Symp. on Cluster
Computing and the Grid, pages 260–267, May 2009.

[34] M. Stillwell et al. Dynamic fractional resource
scheduling for HPC workloads. In IEEE Int. Symp. on
Parallel Distributed Processing, pages 1–12, 2010.

[35] H. Takabi, J. B. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
IEEE Security and Privacy, 8(6):24–31, 2010.

[36] V. Varadarajan, T. Kooburat, B. Farley,
T. Ristenpart, and M. M. Swift. Resource-freeing
attacks: Improve your cloud performance (at your
neighbor’s expense). In ACM CCS, 2012.

[37] A. Wigderson. Improving the performance guarantee
for approximate graph coloring. JACM, 30(4), 1983.

[38] C.-T. Yang et al. A dynamic resource allocation model
for virtual machine management on cloud. In Grid
and Distributed Computing. Springer, 2011.

[39] Y. Zhang et al. Homealone: Co-residency detection in
the cloud via side-channel analysis. In IEE S&P, 2011.

[40] Y. Zhang et al. Cross-vm side channels and their use
to extract private keys. In ACM CCS, 2012.

[41] Y. Zhang et al. Cross-tenant side-channel attacks in
paas clouds. In ACM CCS, 2014.

APPENDIX
A. APPROXIMATE ALGORITHMS

Present literature contains a number of approximate algo-
rithms for the graph-coloring problem which also can be used
for solving the MIN PARTITION problem. For instance, an
approximate graph-coloring algorithm given in [37]. Their
Algorithm B takes as input a graph G(V, E) and a variable
k, and returns true if G is k-colorable. Then algorithm C
finds colors for the vertices in G using a binary search. It is
shown that if the chromatic number (i.e., the minimum num-
ber of colors for coloring the graph) of a graph G(V, E) of n
vertices is denoted X (G), the approximate colors generated

by their algorithms is 2×X (G)× ⌈n1−1/(X (G)−1)⌉ (where n
is the number of vertices) and the running time of the algo-
rithm is O((|V| + |E|)×X (G)× logX (G)). Therefore, for a
given ConSetatt of an att∈ ATTRVM, if the minimum number
of conflict-free partitions is p, this algorithm will generate
2 × p × ⌈SCOPEatt

1−1/(p−1)⌉ number of conflict-free parti-
tions. A few other approximate approaches include [20, 26].

B. RESTRICTED CONFLICT GRAPHS
This section explores restricted graphs having polynomial-

time solutions and demonstrate their usage scenarios for pri-
vate, public, and community cloud deployment scenarios.
B.1. Public Cloud

A public cloud provides compute services to multiple ten-
ants. We present two scenarios where tenants may need
isolation depending on the kind of data the vm’s process.

73



Figure 11: Conflicts of different Systems and Corresponding Conflict Graphs

1. Sensitive Organizational Data: Suppose an e-
commerce organization moves to a public cloud. An ex-
pectation could be that the vm’s that run the general web-
site may be co-located with other tenants while those that
process sensitive data such as customer’s credit card infor-
mation or PII should not be co-located. This is infeasible
in current public clouds since a tenant can only manually
choose to avail services from clouds and carefully distribute
the vm’s across those clouds based on data sensitivity.
Such scenarios can be easily automated using our conflict

specification framework. In this situation (figure 11-A), the
cloud provider generates an attribute called dataSensitivity
and for each tenant it includes two values, e.g., highTnti and
lowTnti for tenanti, to represent the high and low sensitivity
of data that will be respectively processed by the vms. When
a tenant creates a vm it assigns an appropriate value to the
dataSensitivity attribute. Here, a vm with highTnti would
conflict with all the vms of other tenants, however, it does not
conflict with vms of own tenant. Conflict-Set of this attribute
is a split graph, hence, can be solved in polynomial-time [18].
2. Conflict-of-Interest: Please refer back to section 3.1

and figure 11-B for conflict-of-interest use cases.

B.2. Community Cloud
In a community cloud, the infrastructure is typically shared

between enterprises with a common interest.One example of
a community cloud is a scientific computing cloud infras-
tructure that is shared between, say, a set of universities.
Figure 11-C illustrates an example where compute resources
of participating universities must be isolated if the time-slot
assigned to those universities happen to overlap. If there is
no overlap in the time-slot, university 1, for example, can
use the same physical host that was allocated to university
2 (though at a different time). Such a scenario forms an in-
terval graph for which can be solved in polynomial-time [18].

B.3. Private Cloud
A private cloud has a single owner and thus does not share

infrastructure with other tenants. The cloud infrastructure
is typically hosted and operated in-house by the tenant or

sometimes outsourced to a service provider. A great example
is the private cloud operated by Amazon for the CIA [4].

1. Sensitivity in Military Cloud: Consider a large-
scale cloud for the US Department of Defense (DoD). A fun-
damental principle in DoD’s move to IaaS cloud from their
current IT infrastructure could be that the different mili-
tary organizations including army, navy and air-force, and
their operations need to be isolated from each other consis-
tent with the current operational status of each organization
(currently, most of each organization’s infrastructure is iso-
lated from each other). To this end, a vm attribute military-
Org can be created where SCOPEmilitaryOrg={army, navy,
airForce, secretaryDoD, jointChief} and all values of mili-
taryOrg would conflict with each other. The graph gener-
ated from this conflict-set is a complete graph as illustrated
in figure 11-D which can be solved in polynomial-time [18].

Figure 11-E illustrates another DoD example resulting in
a complete graph where vm’s processing data belonging to
different networks (such as SIPRNet, NIPRNet and JWICS)
in the DoD need to be isolated from each other.

2. Compliance in Healthcare Cloud: For the compli-
ance scenario, consider a hybrid entity in Health Insurance
Portability and Accountability Act (HIPAA) that provides
both healthcare and non-healthcare related services. An ex-
ample of such entity is a university that includes a medi-
cal center that provides health-care services to the general
public and also research labs in the university that conduct
healthcare-related research internally. HIPAA rule man-
dates that such a hybrid entity should maintain a strict sep-
aration between those departments while handling protected
health information (PHI). In order to comply strictly with
HIPAA, virtual resources processing PHI need to be isolated.
Such a scenario is illustrated in figure 11-D where blood-
Test and cancerUnit are departments that provide health-
care and hence utilize compute services that process PHI.
Those compute services need to be isolated from compute
services of non-medical departments such as immunobiol-
ogyLab. This scenario forms a bipartite graph which has
polynomial-time [18] coloring.

74




