
Social NetworkSocial Network--Based Based BotnetBotnet

CommandCommand--andand--ControlControl::

Emerging Threats and CountermeasuresEmerging Threats and Countermeasures
Erhan J. Kartaltepe1, Jose Andre Morales1,J p J

Shouhuai Xu2, Ravi Sandhu1

1Institute for Cyber Security
University of Texas at San Antonio

2Department of Computer Science
University of Texas at San Antonio

ACNS’10, Beijing, China

Threats of Threats of BotnetsBotnets

 Can launch many attacks

 Including against crypto ‐‐‐ putting trustworthiness of

cryptographic services/utilities in question:

◦ Compromising cryptographic keys (without being

detected after a long time)detected after a long time)

◦ Compromising cryptographic functions (oracle

accesses)

Part I: TwitterPart I: Twitter--based Bots & Beyondbased Bots & Beyond

Current GenerationCurrent Generation

P bl F GP bl F GPossible Future GenerationPossible Future Generation

P t II D f & li it tiP t II D f & li it tiPart II: Defense & limitationsPart II: Defense & limitations

NazBotNazBot ((TwitterBotTwitterBot) Refresher) Refresher
 In 2009, Jose Nazario from Arbor Networks accidentally
found a bot that used Twitter as its command‐and‐control
(we’re nicknaming it NazBot).

A (“ d4t3”) d t d it T itt t t t l A user (“upd4t3”) updated its Twitter account to control
NazBot; the bot read the updates via an RSS feed.

 The bot decoded the messages, which were Base64‐
encoded URLs, and downloaded their malicious payload.

 The payload (gbpm.exe and gbpm.dll) were password and
info stealers that did the actual malicious workinfo stealers that did the actual malicious work.

NazBotNazBot: Abusing twitter.com: Abusing twitter.com

NazBotNazBot FlowFlow
(controlled (controlled (controlled (controlled
experiment)experiment)

1. Makes a HTTP GET request to (our fake) upd4t3’s Twitter
RSS feed.

2. Returns the RSS feed, containing Base64‐encoded text.

3. Decodes text as bit.ly URLS (we set up); makes a request
to eachto each.

4. Redirects to a malicious zip file on our server.

5. Downloads malicious payload (the real ones).

6. Unzips the payload, copies itself, executes the contents.

7. Gather and transmits victim’s information to botmaster.

NazBotNazBot Control Flow (“anatomy”)Control Flow (“anatomy”)

Based on monitored network activities and CWSandbox output.

NazBotnetNazBotnet C&C StrengthsC&C Strengths
 The Naz Botnet C&C has a number of strengths.

◦ Abusing trusted popular websites as a C&C server: Sites ◦ Abusing trusted popular websites as a C&C server: Sites
such as Twitter, FaceBook, are legitimate and heavily used.

◦ Exploiting popular port for C&C communication: Using Exploiting popular port for C&C communication: Using
port 80 with legitimate HTTP requests and responses are
not suspicious.

◦ Abusing application features for C&C: Common features
such as an RSS feeds to auto-update bots are indiscernible
f l t ffifrom normal traffic.

 The above demonstrates that botmasters have begun to
exploit the “hiding in plain sight” approach to conduct exploit the hiding in plain sight approach to conduct
stealthy botnet C&C.

NazBotnetNazBotnet C&C WeaknessesC&C Weaknesses
 The Naz Botnet C&C also demonstrated weaknesses (not

meant to help the bad guys)

◦ The bots only read from RSS feeds:, not Atom, email, etc..

◦ The bots read commands from one account on two sites: The bots read commands from one account on two sites:
easy to dismantle the botnets, once detected.

◦ The bots used Base64-encoded ASCII: Trivial to ◦ The bots used Base64-encoded ASCII: Trivial to
recognize/decode.

◦ The bots did not se other standard orts: Port 80 is ◦ The bots did not use other standard ports: Port 80 is
stealthy, but others such as SSL port 443.

A di h k b id d i f As we discuss, these weaknesses can be avoided in future
social network-based, help the defenders look ahead.

Imagine Imagine NazBotNazBot++
I b C&C (ll N) Imagine a next-gen botnet C&C (call it Naz+).

◦ The bots can read commands via any social network-based
automatic channelautomatic channel.

◦ The bots read commands from any account on any website.

Th b t l th di ti d ◦ The bots can employ other encoding, encryption, and
steganography.

◦ The bots can read from multiple ports including SSL port 443◦ The bots can read from multiple ports, including SSL port 443.

 Such a bot might have a more complicated flow.

Part I: TwitterPart I: Twitter--based Bots & Beyondbased Bots & Beyond

Part II: Defense & limitationsPart II: Defense & limitations

ServerServer--side Defenseside Defense

ClientClient--side Defenseside Defense

Integrated ServerIntegrated Server--Client DefenseClient Defense

ServerServer--side Defenseside Defense
 As demonstrated, sites such as Twitter are currently

abused to conduct botnet C&C.

 Thus, these servers must defend against both current and
future botnets that would abuse them for botnet C&C.

 Observations

◦ All social network messages are text, and botmasters
must encode their commands textually.

◦ Moreover, just like legitimate messages may include web
l k h C&C (l k f d l d links, so might C&C messages (e.g., links for downloading
payload).

A id d f h ld di i i h b d d A server-side defense should distinguish between encoded
and plain text and to follow links to their destination.

ServerServer--side Defense: Advantagesside Defense: Advantages
 Account agnostic: Looks for text attributes that are shared

with encoded text rather than individual behavioral patterns.

 Language agnostic: Looks at text for attributes that are shared

with encoded text rather than individual words with encoded text rather than individual words.

 Easy to deploy: Uses light-weight machine learning algorithms

and thus deployed as software-as-a-service.

 Web aware: Follows links to determine if the destination is

trusted, using SSL authentication (if possible) as a trust

infrastructureinfrastructure.

ServerServer--side Defense: Architectureside Defense: Architecture

Security
embeddedembedded
here

2. Social network’s content updater sends the text
content to the server-end system.

3 Detection mechanism determines if the text is3. Detection mechanism determines if the text is
suspicious.

ServerServer--side Testing and Resultsside Testing and Results
 Prototype used Weka’s decision tree algorithm to

classify Base64/Hex-encoded and natural language text.

 4000 messages from 200 Twitter accounts built a pool
of “non-suspicious” text.p

 Our bot commands were 400 encrypted, encoded,
random commands.random commands.

ServerServer--side Performanceside Performance

T itt ’ l i i di l d b l V if i Twitter’s usage analysis is displayed below. Verifying one
message daily (and first three for new accounts) check
173.7 mps (increasing 12.1 monthly). Only active and
explosive users 25.6 mps (increasing 2.1 monthly).

ClientClient--side Defenseside Defense
 Attributes we look at:

◦ Self-Concealing: Attempts to avoid detection with the use
of stealth mechanisms (lack of a GUI or HCI)of stealth mechanisms (lack of a GUI or HCI).

◦ Dubious Network Traffic: Engages in network
communication with another machine in a covert or
devious way (exclusive social network request, encoded
text processing).

◦ Unreliable Provenance: Lacks a reliable origin (self-◦ Unreliable Provenance: Lacks a reliable origin (self-
reference replication, dynamic code injection, or
unverifiable digital signature of code).

W l f P b f b l We classify a process P as being suspicious of being a social
network-based bot C&C process if it is either self-concealing
or has an unreliable provenance (or both), and engages in
dubious network trafficdubious network traffic.

Detection ModelDetection Model

ClientClient--side Detection Resultsside Detection Results
W d f b l l We used a test set of benign applications, non-social
network-based bots, and Naz/Naz+.

 A limitation is the lack of other social network based A limitation is the lack of other social network-based
botnet C&Cs analysis, due to their lack of discovery.

ClientClient--side Performanceside Performance
 Using CPU Mark’s PerformanceTest 7.0

 Running the data collector added a 4.8% overhead to theg
overall system.

 Track one to five processes added between 13.3% and
28.9% overhead.

Integrated DefenseIntegrated Defense

 We can certainly integrate the client-side and the server-
id side countermeasures

 We have the prototype systems based on this paper (and
others) that we plan to put into real-life experiments at
some point

Limitations (of Integrated Defense)Limitations (of Integrated Defense)

 Even when our classifier is utilized by a social network
id d hi h li l i i ll d provider and a machine has our client solution installed,

using both still has some limitations due to steganography.

◦ A bot that reads steganographic commands and can
evade our client-side sensors.

◦ A bot that reads steganographic commands and
masquerades as a benign process.

◦ A bot that reads steganographic commands and runs
scripts.

Related WorkRelated Work

 Well-recognized approaches (many references):

◦ Network-centric

H i◦ Host-centric

 Yet-to-understand approaches:

◦ Application-centric (hinted/reiterated by the fact that
the twitter.com bots were detected by “digging around” y gg g
although the concept was mentioned several times years
ago)

Conclusions and Future WorkConclusions and Future Work

 Our future work includes:

◦ implementing the client-side countermeasures as real-
time detection systems

◦ improving the server-side classifier to detect
steganography

◦ handling multiple stepping stones in payload redirection

◦ porting the client-side countermeasures to other po t g t e c e t s e cou te easu es to ot e
computer and mobile platforms.

Thank YouThank You

Questions and comments?

