Social Network-Based Botnet
Command-and-Control:

Emerging Threats and Countermeasures

Erhan). Kartaltepe!, Jose Andre Morales?,
Shouhuai Xu?, Ravi Sandhut

linstitute for Cyber Security
University of Texas at San Antonio

’Department of Computer Science
University of Texas at San Antonio

ACNS’10, Beijing, China

Threats of Botnets

e Can launch many attacks

* Including against crypto --- putting trustworthiness of
cryptographic services/utilities in question:
o Compromising cryptographic keys (without being
detected after a long time)

o Compromising cryptographic functions (oracle

accesses)

Part |: Twitter-based Bots & Beyond
Current Generation

Possible Future Generation

NazBot (TwitterBot) Refresher

In 2009, Jose Nazario from Arbor Networks accidentally
found a bot that used Twitter as its command-and-control
(we’re nicknaming it NazBot).

A user (“upd4t3”) updated its Twitter account to control
NazBot; the bot read the updates via an RSS feed.

The bot decoded the messages, which were Base64-
encoded URLs, and downloaded their malicious payload.

The payload (gbpm.exe and gbpm.dll) were password and
info stealers that did the actual malicious work.

NazBot: Abusing twitter.com

m upd4t3

Follow

aHROcDovL2)pdC5seS8xN2EzdFMc

aHROCDovL2)pdC5seSIMT2ZSTyBod HRwOIBVY miDLmxSLOIZ2
aHROCDovL.2)pdCSseSBxN2wORMEaHROc Do 2)pdC 55e88xN

aHROcDovL2|pdC55eS5whbVN 1 YyBodHRwOIBYYmIOLmxSLzE3b

M botn3tcontrol

aHROcDovL2JpdCoseSIROFFa
aHROcDovL3RyLmitL3hjNEU=
Arsenal Eduardo Megan Fox Well
Frank Jay-Z Celtic iPhone

aHROcDovL2)pdCase58R0OFFa aHROcDovLIRyLmItL3hjNEU=
#rennedy #ed #obama #aallyah #cnn #hax #defcon #blackhat

abolt 1 hour aco from sweb

NazBot Flow ree://tuitter.con

http://bit.ly

3 | Reroute

(CO ntl"Ol Ied RSS Feed Naz c Servicte

. \ '
experiment) l6 —

Server [<—® Payload Server

w

S -

botmaster machine

victim machine

attacker site

Makes a HTTP GET request to (our fake) upd4t3’s Twitter

RSS feed.

Returns the RSS feed, containing Base64-encoded text.

Decodes text as bit.ly URLS (we set up); makes a request

to each.

Redirects to a malicious zip file on our server.

Downloads malicious payload (the real ones).

Unzips the payload, copies itself, executes the contents.

Gather and transmits victim’s information to botmaster.

NazBot Control Flow (“anatomy”)

connect to
start ’ http://twitter .com

failurc/ \s\uccess faﬂure/ Nallure

connect to success get RSS feed of get SUCCESS decode/
http ://jaiku.com upd4t3 s account payload unzip

failure¢ ¢ ? SUCC@SS*

end

DNS query mansvelt. decode [|PYC€33| connect to replicate self
freehostia.com

updates http://bit.ly | |and payload files

failure

K

execute success| find ghpm.exe |failure
< d
gbpm.exe and gbpm.dll P> en

Based on monitored network activities and CWSandbox output.

NazBotnet C&C Strengths
* The Naz Botnet C&C has a number of strengths.

> Abusing trusted popular websites as a C&C server: Sites
such as Twitter, FaceBook, are legitimate and heavily used.

> Exploiting popular port for C&C communication: Using
port 80 with legitimate HT TP requests and responses are
not suspicious.

> Abusing application features for C&C: Common features
such as an RSS feeds to auto-update bots are indiscernible
from normal traffic.

e The above demonstrates that botmasters have begun to
exploit the “hiding in plain sight” approach to conduct
stealthy botnet C&C.

NazBothet C&C Weaknesses

* The Naz Botnet C&C also demonstrated weaknesses (not
meant to help the bad guys)

> The bots only read from RSS feeds:, not Atom, email, etc..

> The bots read commands from one account on two sites:
easy to dismantle the botnets, once detected.

> The bots used Base64-encoded ASCII: Trivial to
recognize/decode.

> The bots did not use other standard ports: Port 80 is
stealthy, but others such as SSL port 443.

e As we discuss, these weaknesses can be avoided in future
social network-based, help the defenders look ahead.

Imagine NazBot+

* Imagine a next-gen botnet C&C (call it Naz+).

> The bots can read commands via any social network-based
automatic channel.

> The bots read commands from any account on any website.

> The bots can employ other encoding, encryption, and
steganography.

> The bots can read from multiple ports, including SSL port 443.

» Such a bot might have a more complicated flow.

1
< > 5 L —
RSS Feed Naz+ Redirection

Service

3
_ . 4)
http://twitter.cam Comment List 8 7 http://bit.ly |g
—v_

http://youtube . com
Server -t ; - Payload Server

botmaster machine victim machine attacker site

Part |l: Defense & limitations
Server-side Defense
Client-side Defense

Integrated Server-Client Defense

Server-side Defense

e As demonstrated, sites such as Twitter are currently
abused to conduct botnet C&C.

* Thus, these servers must defend against both current and
future botnets that would abuse them for botnet C&C.

e Observations

> All social network messages are text, and botmasters
must encode their commands textually.

> Moreover, just like legitimate messages may include web
links, so might C&C messages (e.g., links for downloading
payload).

* A server-side defense should distinguish between encoded
and plain text and to follow links to their destination.

Server-side Defense: Advantages

Account agnostic: Looks for text attributes that are shared

with encoded text rather than individual behavioral patterns.

Language agnostic: Looks at text for attributes that are shared

with encoded text rather than individual words.

Easy to deploy: Uses light-weight machine learning algorithms

and thus deployed as software-as-a-service.

Web aware: Follows links to determine if the destination is
trusted, using SSL authentication (if possible) as a trust

infrastructure.

Server-side Defense: Architecture

» Content »| Detection
Form |« Mechanism

4
Alice

Database
of 17
» Content
< Display

Library or Service

un

Bob Social Network

2. Social network’s content updater sends the text
content to the server-end system.

3. Detection mechanism determines if the text is
suspicious.

Server-side Testing and Results

* Prototype used Weka’s decision tree algorithm to
classify Base64/Hex-encoded and natural language text.

e 4000 messages from 200 Twitter accounts built a pool
of “non-suspicious” text.

e Our bot commands were 400 encrypted, encoded,
random commands.

Base64 Hexadecimal Alt. Base64 |Alt. Hexadecimal

Actual | Actual | Actual | Actual | Actual | Actual | Actual | Actual
Positive| Negative|Positive|Negative| Positive| Negative| Positive| Negative

Tested Positive | 100% 0% 100% 0% 100% | 1.25% |96.75% 12.5%

Tested Negative| 0% 100% 0% 100% 0% | 98.75% | 3.25% 87.5%

Server-side Performance

Library Performance Analysis Service Performance Analysis
125¢ 50|
= =
= 75 =150}
£ K
= 50 = 100t
25t 5071
0 , ' 0 s .
1 10 50 100 500 1 10 250 100 500
Concurrent Requests/second Concurrent Requests/second

e Twitter’s usage analysis is displayed below.Verifying one
message daily (and first three for new accounts) check
1'73.7 mps (increasing 12.1 monthly). Only active and
explosive users = 25.6 mps (increasing 2.1 monthly).

15000000 users |Percentage|Update Rate|Messages Per Day|Messages Per Second

Passive users 85.3% 1/day 12795000 148.1
Active users 14.2% 16/day 34080000 394.5
Explosive users 0.5% 1000 /day 75000000 868.1
Total users 100% 121875000 1410.7

Client-side Defense

o Attributes we look at:

o Self-Concealing: Attempts to avoid detection with the use
of stealth mechanisms (lack of a GUI or HCI).

> Dubious Network Traffic: Engages in network
communication with another machine in a covert or
devious way (exclusive social network request, encoded
text processing).

> Unreliable Provenance: Lacks a reliable origin (self-
reference replication, dynamic code injection, or
unverifiable digital signature of code).

* We classify a process P as being suspicious of being a social
network-based bot C&C process if it is either self-concealing
or has an unreliable provenance (or both), and engages in
dubious network traffic.

Detection Model

¢ For any process P, we state the following:
* Self Concealing: (—Pgy;) A(—Ppci) = Psc
» Dubious Network Traffic: Py A (Perp V Pssa) = Pane

* Unreliable Provenance: (Ps V Pgci) A(=Pygs) = By

* Putting it all together, we classify a process as suspicious of
being a Social-Network Based Bot if:

£ M YV i N AN .

Client-side Detection Results

* We used a test set of benign applications, non-social
network-based bots, and Naz/Naz+.

Application Self-Concealing Unreliable Provenance Dubious Network Traffic Result
Craphical] Human Self- Dynamic| Verifiable| Social | Encoded |Suspicious| Social
User Computer | Reference | Code Digital |Network| Text File Network-
Interface |Interaction|Replication|Injection|Signature| Request |Processing| Download | E

AOL Explorer Y Y N N Y N N N
Avant Y Y N N Y N N N
BlogBridge Y Y N N Y N N N
FeedReader Y Y N N Y N N N
Firefox Y Y N N Y N N N
Flock Y Y N N Y N N N
Internet Explorer Y Y N N Y N N N
Google Chrome Y Y N N Y N N N
K-Meleon Y Y N N Y N N N
Maxthon Y Y N N Y N N N
Mercury Y Y N N Y N N N
Opera Y Y N N Y N N N
RSS Bandit Y Y N N Y N N N
RSS Owl Y Y N N Y N N N
SeaMonkey Y Y N N Y N N N
Snarfer Y Y N N Y N N N
Tweetdeck Y Y N N N Y N N
Twhirl Y Y N N N Y N N
Bobax N N Y Y N N Y Y
Ozdok N N Y Y N N Y Y
Virut Y N Y Y N N N Y
Waledac N N Y Y N N Y Y
Naz N N Y Y N Y Y Y
Naz+ N N N N N Y Y Y

A limitation is the lack of other social network-based
botnet C&Cs analysis, due to their lack of discovery.

Client-side Performance

* Using CPU Mark’s PerformanceTest 7.0

* Running the data collector added a 4.8% overhead to the
overall system.

* Track one to five processes added between 13.3% and
28.9% overhead.

CPU Benchmarking

30F

20

Overhead cost (%)

0
o 1 2 3 4 5
Collecting Data on n Processes

Integrated Defense

* We can certainly integrate the client-side and the server-
side countermeasures

* We have the prototype systems based on this paper (and
others) that we plan to put into real-life experiments at
some point

Limitations (of Integrated Defense)

* Even when our classifier is utilized by a social network
provider and a machine has our client solution installed,
using both still has some limitations due to steganography.

> A bot that reads steganographic commands and can
evade our client-side sensors.

> A bot that reads steganographic commands and
masquerades as a benign process.

> A bot that reads steganographic commands and runs
scripts.

Related Work

* Well-recognized approaches (many references):
> Network-centric
> Host-centric

e Yet-to-understand approaches:

> Application-centric (hinted/reiterated by the fact that
the twitter.com bots were detected by “digging around”
although the concept was mentioned several times years

ago)

Conclusions and Future Work

e Qur future work includes:

° implementing the client-side countermeasures as real-
time detection systems

(0]

improving the server-side classifier to detect
steganography

° handling multiple stepping stones in payload redirection

(0]

porting the client-side countermeasures to other
computer and mobile platforms.

Thank You

Questions and comments?

