
Risk-Aware RBAC Sessions

Khalid Zaman Bijon1, Ram Krishnan2, and Ravi Sandhu1

1 Institute for Cyber Security & Department of Computer Science,
2 Institute for Cyber Security & Department of Electrical and Computer Engineering

University of Texas at San Antonio

Abstract. Role Based Access Control (RBAC) has received consider-
able attention as a model of choice for simplified access control over the
past decade. More recently, risk awareness in access control has emerged
as an important research theme to mitigate risks involved when users
exercise their privileges to access resources under different contexts such
as accessing a sensitive file from work versus doing the same from home.
In this paper, we investigate how to incorporate “risk” in RBAC—in
particular, in RBAC sessions. To this end, we propose an extension to
the core RBAC model by incorporating risk awareness in sessions where
the risk is bounded by a session-based “risk-threshold.” We develop a
framework of models for role activation and deactivation in a session
based on this threshold. Finally, we provide formal specification of one
of these models by enhancing the NIST core RBAC model.

1 Introduction

Over the past decade, considerable research has been conducted in Role Based
Access Control (RBAC) [12]. In RBAC, session is an important risk mitigating
feature in which a user interacts with the system by enabling a limited set of roles
(although, in the absence of constraints it is feasible for the user to sequentially
interact with the system using all the privileges based on roles assigned to that
user). Risk awareness in access control is a new but prominent issue as the
need for enabling access in an agile and dynamic way has emerged. Several
authors have conducted research in this arena [2–4,7,9–11], mainly, attempting to
combine risk with different access control systems. According to [10], a practical
risk aware access control system should have a risk assessment process relevant
to the context of the application as well as proper utilization of the estimated
risk for granting or denying access requests. A risk aware access control system
differs from traditional access control systems in that it permits/denies access
requests dynamically based on estimated risk instead of predefined access control
policies which always give same outcomes.

The concept of a session in classical RBAC has dual motivation. It serves as a
basis for dynamic separation of duties whereby some roles cannot be combined
in a single session. It also serves as a basis for a user to exercise least privilege
with respect to powerful roles that can remain inactivated until they are really
required. Both motivations are conceptually related to risk. Thus it seems natural
to build additional risk mechanisms around the session concept.

V. Venkatakrishnan and D. Goswami (Eds.): ICISS 2012, LNCS 7671, pp. 59–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



60 K.Z. Bijon, R. Krishnan, and R. Sandhu

Fig. 1. A simple PDP/PEP based Access Control Enforcement Model

The core idea in this paper is to set a risk-threshold that limits a user’s at-
tempt to activate roles to enhance the session’s access capability. Consider a
typical access control enforcement framework that consists of one or more pol-
icy information, decision and enforcement points (PIP, PDP and PEP respec-
tively). A PEP enforces policy decisions made by the PDP on the client. The
PDP makes this decision by consulting one or more PIPs. The PDP/PIP might
reside in a central server while the PEPs could be implemented in different user
environments. Figure 1 illustrates such an access control enforcement framework
in which there are two different user environments each containing a PEP. For
each user access request, the PEP contacts the PDP residing in the centralized
server. The PDP consults the PIP for each requested access and responds with
an authorization decision to the PEP.

Consider how RBAC role activation and deactivation would work under this
enforcement model. When a user creates a session and requests to activate a
set of roles, the PEP on the user’s system forwards the request to the PDP.
The PDP responds with allow or deny after verifying whether the user has been
assigned the requested set of roles to be activated. If allowed, the PDP sends the
aggregate set of permissions based on the role permission assignment information
for each role in the requested role set (by consulting with the PIP). From here
on, when the user requests to access a specific resource, the PEP checks if the
request is allowed based on this set of permissions without having to contact the
PDP for each request. Note that if the user needs to activate a new role, the PEP
would have to verify this with the PDP and fetch the corresponding additional
set of permissions if allowed. Also, if a role is deactivated by the user, the PEP
can appropriately adjust the permissions dropping those that are exclusively
authorized by the deactivated role.

Now, if the session were to be compromised or hijacked, say by some mal-
ware in the user’s computer, the attacker would be freely able to operate with
the privileges of the user enabled in that session. The attacker could completely
impersonate that user in the system by further activating all the roles of the
user. A session risk threshold can mitigate this threat. For instance, if each per-
mission can be assigned a risk value, the total risk of a role can be computed



Risk-Aware RBAC Sessions 61

(e.g., as the sum of risk of each permission assigned to that role [11]) The session
risk-threshold defines the maximum risk that the session can carry at any time.
Effectively, the threshold limits the set of roles that can be activated in a given
session. Under this scenario, if the session were to be compromised, the threshold
places an upper limit on the maximum damage that can occur. For instance,
an intelligent system can detect the malicious context within which a user is
operating and place a very low risk threshold that prevents the user from ever
activating certain powerful and hence highly risky roles in that session. This is a
useful and practical mitigation strategy given that “bring your own device” and
smart phones have become common platforms in the modern IT environment.

In this paper, we investigate various design issues with respect to role acti-
vation and deactivation in RBAC sessions where a session risk-threshold exists.
We develop a framework and identify various models for the above and formally
specify one of them by enhancing the NIST core RBAC model. We assume that
a session risk-threshold already exists or can be computed. That is, we do not
focus on how to compute session risk based on user’s context in this paper. This
issue has been the focus of prior work in this area such as [3, 11].

We categorize risk-threshold of sessions into three different types based on
when and how it is computed as well as type of information it uses. We then
develop a framework that identifies several system functionalities and issues for
modeling different role activation-deactivation processes within such risk aware
sessions. We show that some of the existing work on risk in RBAC fits well within
our framework and the framework identifies a rich scope for further research in
this arena. To this end, we formally specify one of the models in the proposed
framework by enhancing the NIST Core RBAC model.

2 Risk-Aware RBAC Session Characteristics

The characteristics of role activation and deactivation model design can vary
depending on when and how the session risk-threshold is computed. There are
at least three points in time at which it may be computed. We term each of these
points as static, dynamic and adaptive respectively. We discuss this below.

Session with Static Risk-Threshold (SSR): In SSR, every session of a user
has a constant risk-threshold. An administrator might statically calculate
session risk-threshold for a user by evaluating several properties, e.g., user’s
credential and assigned role-set, and it remains unchanged for every session
of a given user. This session is useful to enforce certain well-known RBAC
functionalities such as cardinality constraint or dynamic separation of duty.
For instance, static risk-threshold value could be such that a user could not
activate and keep more than two roles in a session simultaneously.

Session with Dynamic Risk-Threshold (SDR): In SDR, the risk-threshold
may vary from session to session for a given user. Unlike SSR, the risk should
be estimated before every session creation. Thus certain dynamic properties
of the user and system (e.g. time, place and currently activated roles) might



62 K.Z. Bijon, R. Krishnan, and R. Sandhu

influence this process. Once calculated, risk-threshold remains unchanged in
a session.

Session with Adaptive Risk-Threshold (SAR): This is the most sophisti-
cated session risk-threshold estimation model. In SAR, session risk-threshold
is first estimated before the creation of the session, as in SDR. However, based
on the user activities during the session, the system could decrease or increase
the value. Therefore, the system needs to monitor user activities during the
session. Any detected abnormal or malicious activities should lower the risk-
threshold and thereby limit further suspicious activities. Therefore, a system
automated role deactivation process is required in SAR to deactivate risky
roles according to adjusted risk threshold and prevent further re-activation
of such roles.

As mentioned earlier, we assume that each role is associated with a quantified
risk value that is indicative of the criticality of that role. Given this, the session
risk-threshold as estimated by various schemes discussed above (SSR, SDR and
SAR) limits what activities a user can perform in that session. Risk measurement
of a role might be affected by several factors, e.g., the cost of the permissions
that are assigned to it and role dependencies. Any role activation request trig-
gers the system to verify the session risk-threshold with the risk of this new role
to be activated. If activation of a role does not exceed the session risk-threshold
then the activation is permitted. Otherwise, it is denied or could cause deacti-
vation of already activated roles from the session. These details are discussed in
section 3.

In a session, any user attempt to perform a task might require role activation
which could happen either by a user’s direct attempt to activate a role in role level
user-system interaction or user’s attempt to perform a task in the system (i.e.,
exercise a permission) with permission level interaction. In role level interaction,
a user explicitly mentions the role that she wants to activate. In permission level,
the system needs to find if there is a role assigned to the user with the requested
permission. Section 3 discusses different issues in role activation for these two
types of interactions. For example, role activation could be completely controlled
by the user or could be aided or completely automated by the system without
user involvement. Also, certain roles may need to be deactivated as a consequence
of activation of other roles to maintain session’s risk under the threshold.

3 User Driven Role Activation Frameworks

Our overall approach is as follows. A session risk threshold parameter places an
upper bound on the risk that a session can carry. A present risk parameter spec-
ifies the current risk of a session. As mentioned earlier, many techniques could
be employed to estimate these two parameters. Our goal is to develop a frame-
work of models for role activation given these two parameters. We develop two
separate frameworks identifying various issues related to role activation based
on role-level and permission-level interactions.



Risk-Aware RBAC Sessions 63

Fig. 2. Role Activation in Role-Level User Interaction

3.1 Role Level Interaction

Generally users in RBAC request to activate a particular role in a session and the
system could allow or deny the request. Figure 2 shows the steps involved in this
process. It starts with a user request to activate a role in a session and ends with
an Allow or Deny decision. After receiving a request from user u, the system first
checks if the requested role r is available in session roles(s), which is the set of
currently activated roles in session s. If so, the system returns otherwise, it checks
the assigned roles set that contains all roles authorized for u. The request is simply
denied if role r is not present in assigned roles.1 Otherwise, the system compares
if addition of r increases present risk of the session beyond the risk threshold. If
not, the activation is allowed. Note that present risk is the combined risk of all
activated roles in a session that indicates the risk the session is currently carrying.
If the risk threshold would be exceeded, the system can either deny the request
or attempt to deactivate some prior activated role(s) from the session in order to

1 For simplicity, we assume core RBAC with no hierarchy among the roles. Extension
to hierarchical RBAC is straightforward but tedious.



64 K.Z. Bijon, R. Krishnan, and R. Sandhu

reduce present risk before activating r, provided the risk of r is less than session
risk threshold. If so, the system could automatically deactivate necessary roles.
Alternatively, it can display possible combinations of roles for deactivation from
which the user might select one option. On successful deactivation, the system
activates the requested role. The user may also cancel deactivation and abort the
activation process.

There are three different types of activation models that could be constructed
by choosing different options from this framework:

– Strict Activation: This activation could be constructed if option 1.1 in
Figure 2 is chosen. In this approach, the system activates the requested role
if it satisfies risk threshold or denies otherwise.

– Activation with System Guided Deactivation: Combination of options
1.2 and 2.1 in Figure 2 yields this model. If activation of a role exceeds the
risk threshold, the system suggests the user to deactivate prior activated
roles from session roles to keep present risk within session risk threshold.

– Activation with System Automated Deactivation: In this process the
system automatically deactivates roles from session roles for activating a
role. This model could be constructed by options 1.2 and 2.2 in Figure 2.

Many strategies could be employed at different levels of sophistication for each of
the above models. For example, in system automated deactivation above, the sys-
tem could employ simple algorithms for deactivation such as least recently used
role or more sophisticated algorithms based on machine learning and heuristics
that captures user activity patterns and selects the most appropriate role.

3.2 Permission Level Interaction

In many practical systems, user-system interaction is permission level instead of
role level. Users keep doing their job and the system automatically checks autho-
rization, e.g., a bank teller may try to obtain a statement for a customer and the
system checks if she has the necessary role(s) activated in the session. If not, it
may find an appropriate role to be activated to enable the user’s action. Figure 3
shows a framework of role activation models for such interactions. It starts when
a user tries to exercise a permission or perform a task and ends with an Allow or
Deny. A request for permission p from user u can be approved if p is present in
the session permissions set. Otherwise, the system finds a role assigned with p in
the assigned roles set of u. The request is simply denied if no such role is found.
Otherwise, if there is such a role r, the system activates it provided increased
present risk from activation of r stays within the risk threshold of the session s.
If there is more than one such role, the system might automatically select and
activate one. There are different ways this selection could be performed, e.g., less
risky role, role with minimum permissions or role relevant to user activities in
that context. Alternatively, the system could ask the user to select one of them
for activation. Again, there might be a case when there are multiple roles with p
whose individual risk is less than risk threshold of s, however, activation is not



Risk-Aware RBAC Sessions 65

Fig. 3. Role Activation in Permission-Level User Interaction

possible without deactivation of other roles to maintain present risk under the
threshold. At this point, following the selection of a role r to be activated by the
user, the system determines roles that need to be deactivated. As in role level
interaction, there are two different deactivation processes. Finally, a success-
ful deactivation allows activation of r. From this framework different activation
models could be constructed as follows.

– Strict Role Activation: Activation is allowed if it satisfies risk threshold of
the session, otherwise denied. This model could be constructed by combining
either options 1.1 and 2.1 or 1.2 and 2.1 in Figure 3.



66 K.Z. Bijon, R. Krishnan, and R. Sandhu

– System Automated Role Activation: In this scheme, the system auto-
matically chooses a role r for activation of the requested permission p and
the activation process might need deactivation of prior activated roles. This
deactivation could be done automatically or by user’s choice. Such an acti-
vation model could be constructed by combining options 1.1, 2.2, 3.2 and
4.1 or 1.2, 2.2, 3.2 and 4.2 or 1.1, 2.2, 3.2 and 4.1 or 1.1, 2.2, 3.2 and 4.2 in
Figure 3.

– System Guided Role Activation: In this scheme, the system asks the
user to select a role r from a possible set of roles with requested permission
p and activation of any of them might cause deactivation of prior activated
roles. This model could be constructed by choosing either options 1.2, 2.2,
3.1 and 4.1 or options 1.2, 2.2, 3.1 and 4.2 in Figure 3.

3.3 Instantiation of Prior Models

In this section, we discuss how existing risk-aware RBAC models in the literature
relate to our framework. Specifically, we show that these models are special
instances of our role activation framework.

Baracaldo et al [2] provide a trust-and-risk aware role activation algorithm.
Besides restricting role activation by well-known dynamic separation of duty
and cardinality constraints, it further restricts roles with risk value higher than
trust of user. It also finds role-set with minimum risk for a requested set of
permissions. In our framework for permission level interaction, this is a strict
activation with options 1.1 and 2.1 in Figure 3 in a session with dynamic risk
threshold. Here, session risk threshold is the trust of the user and step 6 in
Figure 3 creates candidate role-set for activation in which risk of each role is less
than risk threshold. Then the system activates roles with minimum risk from
the role-set.

Salim et al [11] consider user risk as a budget and allow accesses according
to budget availability. A user interacts with the system at permission level and
for each requested permission, corresponding roles are displayed to the user with
their individual weight (risk) so that the user can activate minimum weighted
role. They do not discuss session or role activation processes. We assume a role
can only be activated if its weight is within user’s available budget and after
exercising each permission, the cost of the permission is deducted from the user
budget. We also assume that it is a one time activation, that is, after exercising
the permission the role is deactivated and the next requested permission repeats
the role activation process. We configure this process as strict activation with
options 1.1 and 2.1 in Figure 3 and risk threshold is simply the user budget in a
session with dynamic risk threshold. In step 6 of Figure 3, the role’s individual
cost is compared with the risk threshold and after exercising the permission the
role is deactivated.

Chen et al [3] provide three different ways to estimate user-permission pair
risk and allow user access if risk of respective pair stays below the permission risk
threshold. Here an access might create user obligatory actions which is beyond
our consideration in this paper. Risk of a user-permission pair might also vary



Risk-Aware RBAC Sessions 67

Fig. 4. System Automated Role Deactivation

for different sessions and they consider each of them as user-session-permission
risk. If more than one role of a user in a session can exercise a permission p,
only the role with lowest risk is allowed to exercise p. In our framework, this
is a strict activation with options 1.1 and 2.1 of Figure 3 in a session. Instead
of a risk threshold, it contains risk values for each user-session-permission for
activated roles and user can activate any role that she is authorized. However,
to exercise a permission the system automatically picks the role with lowest risk.

4 Risk-Adaptive Role Deactivation

Systems that employ sessions with static or dynamic risk threshold (SSR/SDR)
discussed in section 2 have certain limitations. A malicious entity that takes
control of a session may still obtain all the power of the user that owns the session
in a piecemeal manner. For example, suppose that a session risk threshold is set
at 30 and that every role assigned to the user of the session has a risk value below
30. Even though the aggregate risk of all roles assigned to the user may be above
the risk threshold of 30, the malicious entity can activate and deactivate one role
at the time and accomplish most, if not all the tasks that the user is capable
of. Since SSR and SDR schemes do not adjust the session risk threshold over
the period of the session, they cannot address this issue. However, sessions with
adaptive risk threshold (SAR) adjust session risk threshold value by monitoring
the activities in a session. By adaptively reducing the threshold, the user is forced
to deactivate certain roles and prevented from further reactivation of such roles.
This contains further damages that could be caused by a malware that takes
control of the session. Nevertheless, note that SSR and SDR are still useful and
practical schemes. Following the earlier example, in an SDR scheme, a malware
would never be able to activate roles whose risk value is above 30 since the
risk threshold is set at 30. Thus the risk threshold could prevent certain roles
from being ever activated in a suspicious session, for example.

Figure 4 shows a framework for system automated role deactivation models.
We believe a continuous monitoring process is necessary to detect abnormal or
malicious activities within a session. On successful detection, the system lowers
the risk threshold to stop certain activities. Every time the threshold changes,



68 K.Z. Bijon, R. Krishnan, and R. Sandhu

Fig. 5. Core RBAC

the system automatically calls the deactivation function to remove certain roles
affected by the changing threshold. There are two different ways this process
could happen: the system could automatically deactivate the roles or force the
user to deactivate them by providing her some choices on what roles to be
deactivated. Unlike SSR and SDR, this system initially might grant certain user
permissions in less risky situation and be able to revoke them if the situation
becomes more risky.

5 Formal Specifications

We provide a formal specification of a system guided role activation model for a
session with dynamic risk threshold (SDR) in permission level user-system inter-
action. Our specified model could be constructed by selecting options 1.2, 2.2, 3.1
and 4.1 in Fig 3. Our formal specification extends the NIST Core RBACmodel [6].

5.1 Overview of NIST Core RBAC

Core RBAC provides a fundamental set of elements, relations and functions
required for a basic RBAC system. These elements are shown in Fig 5. The
set of elements contain users (USERS), roles (ROLES), operations (OPS),
objects (OBJ) and permissions (PRMS). There are many-to-many mapping
relations such as user-to-role (UA) and permission-to-role (PA) assignment re-
lations. PRMS = 2OPS×OBJ , is a set of permissions in which each (OPS,OBJ)
pair indicates an operation that could be performed on an object. The Core
RBAC model also includes a set of sessions (SESSIONS) where each session is
a mapping between a user and an activated subset of roles that are assigned to
the user. Each session maps one user to a set of roles, that is, a user establishes
a session during which the user activates some subset of roles that he or she is
assigned. Each session is associated with a single user and each user is associated
with one or more sessions. A session roles function gives the roles activated in
the session and a user sessions function gives the set of sessions that are as-
sociated with a user. Details of the relation and functional specification of this
model are provided in [6]. In the following section, we only discuss the additional
and modified functions and elements that are required for our selected model.

5.2 Specification of NIST Core RBAC Risk-Aware Session Model

In this model, each permission is associated with a risk value that is indicative
of damages that can occur if compromised. For simplicity, the risk of a role is



Risk-Aware RBAC Sessions 69

considered as the sum of all permissions assigned to it. Here a user creates a
session and continues requesting permissions to perform her job. During session
creation, the system dynamically calculates session risk threshold and keeps
activating roles for requested permissions within the threshold. Both permission
risk and risk threshold are positive real numbers (R≥0). We formally define:

– assigned risk : PRMS → R≥0, a mapping of permission p to a positive real
value, which gives the risk assigned to a permission.

– risk threshold : SESSIONS → R≥0, a mapping of session s to a positive
real number that gives the maximum risk the session could contain.

– present risk : SESSIONS → R≥0, a mapping of session s to a positive real
number that gives the present risk value of the session.

We assume that the above three pieces of information are always available in our
model. It also contains administrative functions to create and maintain elements
and system functions for session activity management. In the following, note
that a regular user can only call the CreateSession and PerformTask functions.
All the other functions are administrative/system functions. In the function pa-
rameter, NAME is an abstract data type whose elements represent identifiers of
various entities in the RBAC system.

AssignRisk: This administrative function assigns a risk value to a permission.

1: function AssignRisk(ops, obj : NAME, risk : R≥0)
2: if ops ∈ OPS and obj ∈ OBJ then
3: assigned risk′(ops, obj)← risk
4: end if
5: end function

RoleRisk: This function returns estimated risk of a role. It takes role as an
input and returns the sum of its assigned permissions’ risk.

1: function RoleRisk(role : NAME, result : R≥0)
2: /*The value of result is initially 0*/
3: if role ∈ ROLES then
4: for all ops ∈ OPS and obj ∈ OBJ do
5: if ((ops, obj) �→ role) ∈ PA then
6: result′ ← result+ assigned risk(ops, obj)
7: end if
8: end for
9: end if

10: end function

CreateSession: A user creates a session using this function. Initially the session
does not contain any role. It utilizes an evaluate risk function to calculate the
risk threshold of a given user. Functionality of evaluate risk should be applica-
tion specific, thus, we do not specify the details of this function. The present risk
contains the sum of activated roles’ risk in the session which is initially 0.



70 K.Z. Bijon, R. Krishnan, and R. Sandhu

1: function CreateSession(user : NAME, session : NAME)
2: if user ∈ USERS and session /∈ SESSIONS then
3: SESSIONS′ ← SESSIONS ∪ {session}
4: user sessions′(user)← user sessions(user) ∪ {session}
5: risk threshold′(session)← evaluate risk(session, user)
6: present risk′(session)← 0
7: end if
8: end function

PerformTask: In a session, a user can invoke this function to access a per-
mission. Note that, this is the first step of the flowchart shown in Fig 3. This
function takes a access request of the user in a session and calls CheckAccess to
verify if the necessary role is activated in that session. If CheckAccess returns
true it allows the user request and deny otherwise.

1: function PerformTask(user, session, obj, ops : NAME, result : BOOL)
2: if session∈SESSIONS and ops∈OPS and
3: obj∈OBJS and user∈ USERS then
4: if CheckAccess(user, session, obj, ops) = true then
5: result← true
6: else
7: result← false
8: end if
9: end if

10: end function

CheckAccess: CheckAccess is called for each user access requests to check
whether the session has the necessary role activated . If the role is not activated,
it calls AddActiveRole for activating the necessary role if any. On successful
activation, it returns true.

1: function CheckAccess(user, session, obj, ops : NAME, result : BOOL)
2: if session∈SESSIONS and ops∈OPS and
3: obj∈OBJS and user∈ USERS then
4: for all r ∈ session roles(session) do
5: if ((ops, obj) �→ r) ∈ PA then
6: result← true; return
7: end if
8: end for
9: if AddActiveteRole(user, session, obj, ops) = true then

10: result← true
11: else
12: result← false
13: end if
14: end if
15: end function



Risk-Aware RBAC Sessions 71

AddActiveRole: Unlike RBAC0, this function cannot be explicitly invoked
by a user, rather, it is called by the system to activate a role for a permission
requested by a user within a session. First, the function checks assigned users
set to find if there is a role with the requested permission that is authorized for
the user. If there is no such role, it returns false as activation failure. If roles are
present and could be activated within the session risk threshold, it asks the user
to select a role. After the user’s selection, it activates the role and returns true.
Alternatively, roles with the requested permission might be available with risk
value less than the session’s risk threshold, however, its addition would exceed
the present risk due to already activated roles in the session. In such cases, the
system displays the roles that could be deactivated and the user selects some of
them. Then the Deactivation function is called and after necessary deactivation,
the system activates the selected role and returns true, otherwise, returns false.

1: function AddActiveRole(user, session, obj, ops : NAME, result : BOOL)
2: if session∈SESSIONS and ops∈OPS and
3: obj∈OBJS and user∈USERS then
4: roleOptions← {∅} /*Set of roles to display, initially empty set*/
5: /*Find roles that can be activated within risk threshold*/
6: for all r ∈ ROLES and user ∈ assigned users(r) do
7: if ((ops, obj) �→ r) ∈ PA and session risk(session)+
8: RoleRisk(r) ≤ risk threshold(session) then
9: roleOptions′ ← roleOptions ∪ {r}

10: end if
11: end for
12: if roleOptions 	= {∅} then /* If there are roles to activate*/
13: sr = SelectRoles(roleOptions) /* Roles are displayed to user*/

/*and user select role sr to activate and system activates the sr*/
14: session roles′(session)← session role(session) ∪ {sr}
15: session risk′(session)← session risk(session) +RoleRisk(r)
16: result← true; return
17: else/*Find relevant roles withRoleRisk less than the risk threshold*/
18: for all r ∈ ROLES and user ∈ assigned users(r) do
19: if ((ops, obj) �→ r) ∈ PA and RoleRisk(r)≤
20: risk threshold(session) then
21: roleOptions′ ← roleOptions ∪ {r}
22: end if
23: end for
24: if roleOptions 	= {∅} then /*User selects roles from roleOptions*/
25: /*and Deactivation function is called*/
26: sr ← SelectRoles(roleOptions)
27: if Deactivation(session, sr) = true then
28: session roles′(session)← session role(session) ∪ {sr}
29: session risk′(session)←
30: session risk(session)+RoleRisk(sr)
31: result← true; return



72 K.Z. Bijon, R. Krishnan, and R. Sandhu

32: end if
33: end if
34: end if
35: end if
36: result← false
37: end function

Deactivation: This function deactivates the roles from the session to activate
the requested role sr. On successful deactivation, it returns true and false oth-
erwise. Similar to AddActiveRole this function can not be invoked by a user.

1: function Deactivation(session, sr : NAME, result : BOOL)
2: if session∈SESSIONS then
3: roleOptions← {∅} /*Set of roles to display, initially empty set*/
4: /*Create roleOptions that contains roles to be deactivated*/
5: for all r ∈ session roles(session) do
6: if session risk(session) +RoleRisk(rs)−RoleRisk(r)
7: ≥ risk threshold(session) then
8: roleOptions′ ← roleOptions ∪ {r}
9: end if
10: end for
11: /*Call DeactivationSelect to get approval from user to deactivate roleOptions*/
12: if DeactivationSelect(roleOptions) = true then
13: for all r ∈ roleOptions do
14: session roles′(session)← session role(session)− {r}
15: session risk′(session)← session risk(session)-RoleRisk(r)
16: end for
17: result← true; return
18: end if
19: end if
20: result← false
21: end function

6 Related Work

Several approaches have been proposed for combining risk issues in different
access control systems. Kandala et al [7] provide a framework that identifies
different risk components for a dynamic access control environment. The Jason
report [10] proposes three core principles for a risk-aware access control system:
measuring risk, identifying tolerance levels of risk and controlling information
sharing. Cheng et al [4] give a model to quantify risk for access control and
provide an example for multilevel information sharing. Ni et al [9] propose a
model for estimating risk and induce fuzziness in the access control decision
of the Bell-Lapadula model. Moloy et al [8] propose a risk-benefit approach
for avoiding communication overhead in distributed access control. All of these
models mostly focus on how to estimate risk. In contrast, our work focusses
on how to utilize such risk measures in role activation and deactivation in a



Risk-Aware RBAC Sessions 73

concrete RBAC model. There are also other approaches to achieve automated
threat response in dynamically changing environments. Autrel et al [1] propose a
reaction policy model for organizations in dynamic organizational environments
and different threat contexts (e.g. buffer overflow, brute force attack, etc.). Debar
et at [5] propose a more sophisticated approach in which threat contexts and
new policy instances are dynamically derived for every threat alert.

7 Conclusion and Future Work

We enrich a system’s capabilities, that implements RBAC, by dynamically con-
trolling user activities in a session according to risk in the current situation.
We show that there are three different points of time and processes a risk could
be estimated in a session: static, dynamic and adaptive. We also develop two
separate frameworks for role activation models where the user-system interac-
tion is either role level or permission level. We also develop system automated
role deactivation process by which a session with adaptive risk threshold can
decrease access capability of a user in session whenever it is necessary. Finally,
we provide NIST RBAC style formal specification of one of the models instanti-
ated from our framework. In the future, we plan to investigate other models in
our framework and study them in the context of more advanced NIST RBAC
models.

Acknowledgement. This work is partially funded by a AFOSR MURI project.

References

1. Autrel, F., Cuppens-Boulahia, N., Cuppens, F.: Reaction Policy Model Based on
Dynamic Organizations and Threat Context. In: Gudes, E., Vaidya, J. (eds.) Data
and Applications Security 2009. LNCS, vol. 5645, pp. 49–64. Springer, Heidelberg
(2009)

2. Baracaldo, N., Joshi, J.: A trust-and-risk aware rbac framework: tackling insider
threat. In: SACMAT 2012, pp. 167–176. ACM, New York (2012)

3. Chen, L., Crampton, J.: Risk-Aware Role-Based Access Control. In: Meadows, C.,
Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 140–156. Springer,
Heidelberg (2012)

4. Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P., Wagner, G., Reninger, A.: Fuzzy
multi-level security: An experiment on quantified risk-adaptive access control. In:
Security and Privacy, 2007, pp. 222–230 (May 2007)

5. Debar, H., Thomas, Y., Cuppens, F., Cuppens-Boulahia, N.: Enabling automated
threat response through the use of a dynamic security policy. Journal in Computer
Virology, 195–210 (2007)

6. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
nist standard for role-based access control. ACM Tran. Inf. Sys. Sec. (2001)

7. Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-
adaptive access control models. In: Avail., Reliab. and Sec., ARES (August 2011)



74 K.Z. Bijon, R. Krishnan, and R. Sandhu

8. Molloy, I., Dickens, L., Morisset, C., Cheng, P.-C., Lobo, J., Russo, A.: Risk-based
security decisions under uncertainty. In: CODASPY 2012 (2012)

9. Ni, Q., Bertino, E., Lobo, J.: Risk-based access control systems built on fuzzy
inferences. In: ASIACCS 2010, pp. 250–260. ACM, New York (2010)

10. M. C. J. P. Office: Horizontal integration: Broader access models for realizing in-
formation dominance. MITRE Corporation, Tech. Rep. JSR-04-132 (2004)

11. Salim, F., Reid, J., Dawson, E., Dulleck, U.: An approach to access control under
uncertainty. In: Avail., Reliab. and Sec., ARES, pp. 1–8 (August 2011)

12. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. Computer 29(2), 38–47 (1996)


	Risk-Aware RBAC Sessions
	Introduction
	Risk-Aware RBAC Session Characteristics
	User Driven Role Activation Frameworks
	Role Level Interaction
	Permission Level Interaction
	Instantiation of Prior Models

	Risk-Adaptive Role Deactivation
	Formal Specifications
	Overview of NIST Core RBAC
	Specification of NIST Core RBAC Risk-Aware Session Model

	Related Work
	Conclusion and Future Work
	References




