
Building Malware Infection Trees

Jose Andre Morales1, Michael Main2, Weiliang Luo3, Shouhuai Xu2,3 and Ravi Sandhu2,3

1 Software Engineering Institute, Carnegie Mellon University∗
2 Institute for Cyber Security, University of Texas at San Antonio

3 Department of Computer Science, University of Texas at San Antonio

Abstract

Dynamic analysis of malware is an ever evolving and
challenging task. A malware infection tree (MiT) can
assist in analysis by identifying processes and files re-
lated to a specific malware sample. In this paper we
propose an abstract approach to building a comprehen-
sive MiT based on rules describing execution events es-
sential to malware infection strategies of files and pro-
cesses. The MiT is built using strong and weak bonds
between processes and files which are based on transi-
tivity of information and creator/created relationships.
The abstract approach facilitates usage on any operat-
ing system platform. We implement the rules on the
Windows Vista operating system using a custom built
tool named MiTCoN which was used in a small scale
analysis and infection tree creation of a diverse set of
5800 known malware samples. Results analysis revealed
a significant occurrent of our rules within a very short
span of time. We demonstrate our rule set can effec-
tively and efficiently build infection trees linking all re-
lated processes and files of a specific malware sample
with no false positives. We also tested the possible us-
ability of a MiT in disinfecting a system which yielded
a 100% success rate.

1 Introduction

The release of never before seen malware into the
wild poses a severe global threat to vulnerable systems
given the difficulty to detect via signature based anti-
malware programs. Possible detection can be achieved
with heuristics but not guaranteed to fully eradicate
the malware which leaves disinfection as the next best
option. To comprehensively disinfect a system, the
malware must be analyzed. The analysis must effec-
tively and efficiently detail the infection process in a

∗This research was performed in the University of Texas at
San Antonio

meaningful way primarily documenting the files and
processes which are created or modified by the mal-
ware. Analyzing the infection process can be aided by
building a malware infection tree (MiT). A MiT is a
directed tree structure where each node represents a
file or process and each edge represents the execution
event rule causing node to join the tree. To correctly
build a MiT, an understanding of the essential char-
acteristics of malware infection is required. From the
seminal definitions provided by Cohen [2] and Adleman
[1], an executable file labeled a virus has the fundamen-
tal ability to self-replicate which we consider to be a
basic construct for a MiT and it is essential to under-
stand the different ways in which a virus can implement
this construct on various operating systems. Previous
work such as [10, 9] has shown some implementations of
self-replication while others have attempted to record
malware behavior using various graph structures [7, 8].
A more comprehensive MiT includes processes modi-
fied by malware. There are many known ways [12, 3]
in which a process modifies other already running pro-
cesses. This technique is primarily implemented via a
memory injection resulting in the modified process per-
forming anomalous, and often nefarious, events. Self-
replication and memory injection create a strong bond
between related processes and files and are the basic
constructs of our MiT. Our MiT is further enhanced
with constructs recoding the creation of files and pro-
cesses by a malware not involving self-replication or
memory injetion which create weak bonds. Implement-
ing the various ways in which a malware infection can
occur is highly OS dependent. It is imperative to col-
lect needed data of a malware infection in as low a
level as possible to assure building of a comprehensive
MiT. Some malware, such as a rootkit [5, 13] will exe-
cute at deep or privileged OS levels hiding and avoid-
ing detection while infecting the system. In this pa-
per, we present an abstract approach to building MiTs
using execution events rules. The rules describe exe-
cution events essential to malware infection strategies

1



on files and processes. MiTs are built based on strong
and weak bonds between relevant files and processes.
We describe rule implementation in the Windows Vista
operating system with our custom tool, named MiT-
CoN, that builds MiTs in real time. The tool analyzed
and built MiTs of over 5800 diverse known malware
samples. We evaluate the efficiency of our approach
by recording system stability during MiT creation and
timewise analysis of MiT creation. Effectiveness was
evaluated by measuring frequency of rules, timewise
occurrence of rules, a comparison to infection struc-
tures of comparable systems for false positive produc-
tion, and attempt system disinfection using only the
MiT as a guide. Our analysis revealed our MiTs were
constructed within 7 seconds of initial execution with-
out any noticeable system instability . Our disinfection
attempts yielded a 100% success rate implying MiTs
may be useable in real system disinfection scenarios.
The contributions of our paper are as follows:

• Propose an abstract approach to building malware
infection trees (MiTs).

• Define execution event rules describing essential
components of infection strategies.

• Describe implementation in the Windows Vista
OS User and Kernel levels.

Several comparable systems such as Anubis, BitBlaze,
JoeBox, CwSandBox, and Malheur perform dynamic
analysis of a submitted sample and return a tree like
structure of related files and processes. The tree edges
are based on operating system specific execution events
which objectively link two nodes together. The crit-
ical problem is tree creation is based on interpreta-
tion of collected execution data which can result in a
tree that loosely relates files and processes which may
not even be part of the malware infection such as pro-
cesses and files routinely used in standard OS opera-
tions. This misinformation does not correctly represent
a malware infection and can result in false positives.
Our approach creates more meaningful trees by creat-
ing execution event rules based on fundamental mal-
ware infection characteristics producing fundamental
bonds between nodes possibly reducing false positives.
The result of our approach is a tightly bound tree struc-
ture containing minimal or no non-related data leading
to a minimization of false positives and a much more
realistic representation of the analyzed malware’s in-
fection strategies. The rest of this paper is organized
as follows: Section 2 presents the rules used to create
a MiT, Section 3 is our tool implementation, Section 4
is our analysis & results, and Section 5 is conclusions
& future work.

Q

Q

Q

Q

P

P

P

P

Transitivity of data

Creates

Figure 1. MiT strong & weak bonds

2 MiT Construction Rules

Strong and Weak Bonds. An essential compo-
nent of our MiT building approach is linking nodes to-
gether in a strong or weak bond, illustrated in Figure
1, relationship based on the malware infection related
interaction between two nodes during execution. We
define a strong bond between a source node Q and
destination node P when a transfer of data from Q to
P occurs. The data is part of Q and transferring it
to P strongly bonds both nodes based on the transi-
tivity of data creating an intersection of identical data
between Q and P . We define a weak bond when a
source node Q arbitrarily creates a destination node P
and there is no transitivity of data. This weak bond
can be viewed as a creator/created relationship since
P exists because of Q but there is no intersection of
identical data between both. Other comparable sys-
tems create infection trees based only observed execu-
tion events and their nodes are not linked in a fun-
damentally meaningful way allowing addition of non-
related nodes to the tree. The bonds between nodes of
our MiTs are defined in the fundamental realm of mal-
ware infection strategies producing an infection tree
with the reduced likelihood of including non-malware
related nodes. A strongly bonded MiT will consist of
essential files and processes directly descending from
the original malware executable due to the transitivity
of data between nodes and should be eradicated first in
a disinfection strategy to prevent further infection and
injury. Enhancing the MiT with weak bonds provides
those files and processes that may not be essential to
the malware’s infection and injury but still should be
eradicated during disinfection.

Construction Rules. We define a malware infec-
tion tree (MiT) as the output of a function M(·) on
inputs X with a set of execution event rules R, where
X is the executable file being analyzed, and R contains
a set of rules r1...rn that define the conditions under
which an object becomes part of a MiT. M(X) outputs
a MiT with a directed graph as MiT = (N,E), where

2



N is a set of nodes n1...nz with z ≥ 2, and E is a set
of ordered pairs of nodes (ni, nj) ∈ N2 that create an
edge between ni and nj . A node n is either a file in the
file system or a currently running process. We assume
X is always the root node of a MiT. Once a new node
n is added to a MiT, its infection execution events are
recorded and used to add further nodes to the MiT. If
z = 1, then only one node n, presumably the root node
X, is present in the MiT and thus no tree was created.
MiT construction is based on the rules in R. The rules
are mostly based on the fundamental definition of mal-
ware, Cohen [2] & Adleman [1], which stipulate a mal-
ware, specifically viruses and worms, must replicate to
be classified as such. The rules also reflect a malware’s
tendency to nefariously modify running processes.

File System Rules. We consider a malware can
infect via self replication into the file system in two
primary ways. First, using a call such as copy(n,m),
where n is a node of a MiT and the caller of the copy
function. In this case n creates a new file which is an
exact copy of itself. Second, using a series of calls such
as read(n, q);write(q,m), where n is a node of a MiT
and the caller of read and write, q is some temporary
storage, and m is an already existing file that is being
modified by n. The modification can be achieved by
n prefixing, suffixing, overwriting or randomly writing
some or all of its own data into the file m. Note in both
cases, n is the source of the replications and the caller
of the operations, therefore n is invoking self-reference
replication as described in [9]. We also consider a mal-
ware that can infect a system without requiring self
replication. This can be donw through the arbitrary
creation of files such as createfile(m) in the file sys-
tem, where an existing node n calls the operation and
creates a file that contains no data originating in n.
There are many known malware samples that create
files during execution for several reasons such as logs,
configurations or to store data later sent to a remote
host. Even though these files are not created via self
replication they are valid components of an infection
and should be included in a MiT. Based on these con-
siderations, we define the following three file system
execution event rules for the construction of a MiT:

f1:Infection via self replication. A file m be-
comes a new node n ∈ N of a MiT if and only if
P (replicate(P,m)) → True where a currently running
process P is a pre-existent node in a MiT and P has
issued a replication request where P itself is the source
parameter and m is the destination parameter. m be-
comes a new node in the MiT where the node for P
is located and the outgoing edge (P,m) is labeled f1.
Note that m can be a newly created file by P or an
existing file and the replication from P to m can be

complete or partial. f1 exhibits transitivity of data
and is labeled a strong bond.

f2:Infection via arbitrary file creation. A file
m becomes a new node n ∈ N of a MiT if and only if
P (filecreate(m)) → True where a currently running
process P is a pre-existent node in a MiT and P has
issued a file creation request where m, a newly created
file, is the destination parameter. m becomes a new
node in the MiT where the node for P is located and
the outgoing edge (P,m) is labeled f2. f2 is a cre-
ator/created relationship with no transitivity of data
and is labeled a weak bond.

f3:Infection via arbitrary file write modifica-
tion. A file m becomes a new node n ∈ N of a MiT
if and only if P (filewrite(m)) → True where a cur-
rently running process P is a pre-existent node in a
MiT and P has issued a file write request where m, a
pre-existing file, is the destination parameter. m be-
comes a new node in the MiT where the node for P
is located and the outgoing edge (P,m) is labeled f3.
Note P may modify m either by prefixing, suffixing,
overwriting or randomly writing data into m. The es-
sential component of f3 is the data being written to m
comes from some other location and not from P . f3
does not exhibit transitivity of data and is labeled a
weak bond.

Process Rules. We consider malware that can in-
fect a system via process manipulation in two primary
ways. First, a malware can modify the memory range
of a currently running process. This is typically done
via dynamic code injection [12, 3]. A malware will
write (inject) nefarious code into the allocated mem-
ory of some other process and then spawn a new pro-
cess instance which executes the just injected code.
This results in the victim process performing execution
events it would otherwise not do under benign con-
ditions. Several known malware inject nefarious code
into system critical processes. Malware authors assume
there is a high unlikelihood that a user would termi-
nate these processes since they are considered critical
to OS functionality. Second, malware will create pro-
cesses from the static file images of executables that
either were created or downloaded to the system. Mal-
ware is known to copy or download from remote ma-
licious servers to the system other malware as part of
its payload, in many cases a trojan(s) such as password
stealer, key loggers, and spam engines. In some cases,
a malware may self replicate by spawning multiple pro-
cesses of itself running on a system to either overwhelm
the system or survive an anti-malware detection and re-
moval attempt. Process manipulation is a very power-
ful tool for malware facilitating: system compromise,
increased chances of detection survival, and delegate

3



nefarious goals to benign processes. Injection is par-
ticularly powerful allowing nefarious deeds to possibly
go unnoticed when carried out by benign system criti-
cal processes. Based on these considerations, we define
the following two process execution event rules for the
construction of a MiT:

p1:Infection via dynamic code injection of
a currently running process. The static file
image m of a currently running process P be-
comes a new node n ∈ N of a MiT if and only
if Q(codeinject(P, d));Q(newprocessinstance(P )) →
True where Q is some currently running process and
a pre-existent node of a MiT, writes data, presumably
code instructions stored in Q’s memory space or static
file image, into the allocated memory space of P and
then spawns a new instance of P which executes the
just written data. m becomes a new node in the MiT
where the node for Q is located and the outgoing edge
(Q,m) is labeled p1. P is a pre-existing and presumed
benign currently running process of the system which
gets nefariously modified by Q in memory. The static
file imagem of the modified process P is never modified
by Q. p1 exhibits transitivity of data and is labeled a
strong bond.

p2:Infection via process spawning. The static
file image m of a currently running process P be-
comes a new node n ∈ N of a MiT if and only if
Q(newprocess(m)) → True where Q, a currently run-
ning process and a pre-existent member of a MiT, in-
vokes the command to create a new process P from a
static file image m. The static file image m is also a
pre-existent node of the same MiT as Q. An outgoing
edge (Q,m) is created and labeled p2 which stores in-
formation about the static file image m and the newly
created process P . In this scenario, Q spawns new pro-
cesses from files that are already part of the malware’s
MiT including Q’s own static file image. Some of these
files were either created or downloaded by some node
of the MiT. The key element in this rule is that m is a
malware related file and part of the MiT. As opposed
to p1 where malware injects nefarious code into be-
nign processes then creates a new instance, p2 creates
a process from a nefarious static file image m. The ne-
fariousness of m is based on its pre-existing inclusion
as a node of a MiT. It is possible for m to be created
by a process R using the file system rules above and
then spawned as a new process by Q. Both R and Q
are separate nodes of the same MiT, this would pro-
duce two incoming edges to m: one for the file creation
and one for the process spawning. Note that m can
be the static file image of Q, meaning p2 also records
when Q creates a new process instance of itself. In this
case the outgoing edge (Q,m) contains the same static

file image information for m and different identifica-
tion information for the newly spawned process P . ps
is a creator/created relationship with no transitivity of
data and is labeled a weak bond.

Implementing the file system and process rules can
produce an intersection of usage based on the target
OS. For example, f2 and f3 may be invoked as sub-
routines of f1, f3 may be invoked as a subroutine of
f2, and f2 can be invoked as a subroutine of both f1
and f3. Another example is the OS performing code
injection to create both new processes and instances of
already running processes. In this case, extra informa-
tion about the process and its injector must be acquired
to adequately decide if p1 or p2 has occurred. To allow
some reasonable flexibility of the rules to accommo-
date unavoidable intersections we assume the execu-
tion event rules describe abstract scenarios that may
invoke other rules as subroutines and explicitly recog-
nizing the use of these other rules is not required. A
MiT can have multiple edges resulting from file system
and process rules occurring on the same node. When
building a MiT, it is allowable to have multiple edges
between nodes reflective the rule justifying the edge’s
existence. A possible scenario may be a process P cre-
ates a file m which then creates a file o. The file o is
then spawned as a new process by P . This would create
two incoming edges to o, the first edge is (m, o) labeled
f1 and the second edge is (P, o) labeled p2. Having
a multi-edged MiT provides richer data for disinfec-
tion. Based on the MiT a user can assess which nodes
should be dealt with first, perhaps using the number
of incoming and outgoing edges as a weighted deter-
mination scale. Those nodes with greater number of
incoming/outgoing edges may receive higher priority
over other less populated nodes. Once a MiT is created,
some of the files and processes belonging to the MiT
may no longer exist. Several known malware samples
delete files and terminate processes which may belong
to its own MiT. A typical case may be a malwareX cre-
ates several descendant files some of which are spawned
as new processes. Then some time later one of these
descendant processes terminates X and/or erases its
static file image from the file system. Another scenario
is X or any other spawned processes terminating itself
and/or deleting its own file from the system. These sce-
narios do not invalidate the MiT as the file or process
did in fact exist at the moment of addition as a node
to the MiT. The key challenge in implementing these
rules is understanding the various ways a file or process
can be created or modified in a specific OS. Once this
is understood, an implementation can be created at an
appropriate OS level that captures all or most of the
studied implementations. We address this challenge in

4



the next section which presents our MiT construction
tool for the Windows Vista OS platform.

3 MiTCoN: Windows Vista Implemen-
tation

Our malware infection tree construction tool, named
MiTCoN, is a Windows command line application
which implements the execution event rules in the Win-
dows Vista platform which outputs a table representa-
tion of a MiT. The MiT is built in real time by monitor-
ing the samples’ execution behaviors. MiTCoN takes
as input the absolute path of the target WIN32 PE ex-
ecutable set as the MiT’s root node which facilitates
MiT building by knowing the process from which to
start monitoring execution behaviors.

Implementing File System Rules. To detect
when f1, f2, and f3 occur by some process P , MiT-
CoN traces a set of file system functions located in
the Windows kernel using a form of function hooking
[5, 13]. These functions belong to the Zw family [14]
and are located in the Windows SSDT table [11]. Win-
dows provides several ways to create and modify files
at the user level. When these commands get passed
down to the kernel level, Windows merges them into a
handful of Zw functions. MitCon traces two sequences
of Zw function calls that successfully implement f1,
and one sequence for f2 and f3. The first sequence
to determine the occurrence of f1, infection via self
replication, for some process P , MiTCoN traces the
sequence of Zw functions with appropriate parameters
listed in Table 1. The key to determining that f1 has
occurred, is to establish that P is referencing itself and
is the source of the write operation. According to Ta-
ble 1, self-replication starts with P opening itself with
read access in ZwCreateFile where sourcepath is the
absolute path of P . The functions ZwCreateSection
and ZwMapViewofSection use the file handle returned
from ZwCreateFile to map the data that is going to
be written from P into memory. Finally, ZwWriteFile
reads the data stored in baseaddress, which is returned
by ZwMapViewofSection, into the target file. At this
point, an instance of f1 has been completed by P . Note
in MapViewofSection, the in parameter processhandle
is assured to be the value -1. This indicates the map-
ping will be of the caller process P . This sequence of
calls is used when P makes an exact copy of itself in a
newly created file.

The second sequence to determine the occurrence of
f1 for some process P , MiTCoN traces the sequence
of Zw functions with appropriate parameters listed in
Table 2. The second sequence in determining f1 is

ZwCreateFile(in:read access, in:sourcepath, out:filehandle);
ZwCreateSection(in:filehandle, out:sectionhandle);
ZwMapViewofSection(in:sectionhandle,

in:processhandle, out:baseaddress);
ZwWriteFile(in:baseaddress, out:targetfilepath)

Table 1. 1st Function Sequence Used in f1

simpler involving only two Zw functions. The source
path in ZwReadFile refers to the absolute path of P
and the memaddress is used as temporary storage of
the data from P which is written to targetfilepath in
ZwCreateFile. This sequence of calls is used primarily
when P is self replicating into already existing files.

ZwReadFile(in:sourcepath, out:memaddress);
ZwWriteFile(in:memaddress, out:targetfilepath);

Table 2. 2nd Function Sequence Used in f1

To determine the occurrence of f2, infection via
arbitrary file creation, for some process P , MiTCoN
traces with appropriate parameters the ZwCreateFile
function as listed in Table 1. The only parameter con-
sidered is sourcepath which is assured not to be the
name and file system location of the caller process P .
With this assurance, P , the caller process, is creating a
completely new file with the name and file system loca-
tion stored in sourcepath. To determine the occurrence
of f3, infection via arbitrary file write modification, for
some process P , MiTCoN traces with appropriate pa-
rameters the sequence of functions listed in Table 2,
which is one of the sequences used for f1. The differ-
ence is in establishing an occurrence of f3, the sour-
cepath parameter in ZwReadFile is assured not to be
the file system location of P . With this assurance f3 is
determined since the data being written is from some
other part of the system and not from P .

Implementing Process Rules. To detect when
p1 and p2 occurs by some process P , MiTCoN per-
forms function hooking on kernel level Zw functions
and user level API functions. Several of the various
ways in which a process can be injected and spawned
at the user level filter down to a handful of Zw functions
in the kernel. In Windows, a process can be spawned in
two primary forms: a WIN32 process and a Windows
service. MiTCoN traces one sequence of function calls
for p1, and two sequences for p2. To determine the oc-
currence of p1, infection via dynamic code injection of
a currently running process, for some process P , MiT-
CoN traces with appropriate parameters the sequence
of function calls listed in Table 3. This sequence of
functions facilitates the injection of data between pro-
cess allocated memories. MiTCoN assures P is the

5



caller of all three functions. Memory is first allocated
with ZwAllocateVirtualMemory in the process identi-
fied by processhandle starting at baseaddress. these
two parameters are again used to write (inject) data by
P in the allocated memory of processhandle. Finally
P creates a new instance of the just injected process
with CreateThread which causes the new instance to
execute the newly written nefarious code.

ZwAllocateVirtualMemory(in:processhandle, out:baseaddress);
ZwWriteVirtualMemory(in:processhandle, in:baseaddress);
ZwCreateThread(in:processhandle, out:threadhandle);

Table 3. Function Sequence Used in p1

The first sequence to determine the occurrence of
p2, infection via process spawning, for some process
P , MiTCoN traces with appropriate parameters the
function call listed in Table 4. This single function
suffices to create a new process from the static file im-
age detailed in objectattributes. The function returns
a handle, in processhandle, to the newly created pro-
cess. MiTCoN checks if the newly created process is of
a static file image that is already a node of P ’s MiT. If
yes, then an edge is added.

ZwCreateProcess(in:objectattributes, out:processhandle)

Table 4. 1st Function Sequence Used in p2

The second sequence to determine the occurrence of
p2 for some process P , MiTCoN traces with appropri-
ate parameters the sequence of function calls listed in
Table 5. CreateService will use the file located in Bi-
naryPath as the service to be registered and returns
in servicehandle a handle identifying the service. This
handle is used in both OpenService and StartService,
the end of which results in the service running on the
system. Note the function CreateService has an addi-
tional parameter that, given the proper value, can start
the service immediately. If this occurs, MiTCoN will
not need to detect the invocation of OpenService and
StartService.

CreateService(in:BinaryPath, out:servicehandle);
OpenService(inout: servicehandle);
StartService(in: servicehandle);

Table 5. 2nd Function Sequence Used in p2

MiTCoN assures P is the caller process for every
function in a sequence by invoking GetCurrentPro-
cess() at both the user and kernel levels. As rules are
identified, the appropriate MiT is updated with new
nodes and edges. The completed MiT presents all the

files and processes identified as the source or destina-
tion of a given rule. The number of edges going in
and out of any one node represents the number of rule
instances.

MiTCoN Example. We present the MiT out-
put of MiTCoN in Table 6 and its tree graph in Fig-
ure 2 for the malware Backdoor.Win32.Poison. Ta-
ble 6 has three columns: Source identifies the caller
process of the operation(s), Rule(s) gives the execu-
tion event rules invoked by Source, and Destination
gives the target of the execution event. Each row is
a complete invocation of a rule forming a node pair
(source,destination) and Rule is the label for the out-
going edge. The first row’s Source file name is the
root of the MiT. In the first row, Poison performed
rule f1 on svchest.exe, read as: Poison self-replicated
into svchest.exe. The second to last row shows svch-
est.exe performed rules f1 and p2 on svchvst.exe, read
as svchest.exe replicated into and spawned new pro-
cess svchvst.exe. Poison has four child nodes: svch-
est.exe. 1.bat, 1.reg, and 1.vbs. Of these four, Poison
self-replicated (f1) into svchest.exe and 1.vbs and cre-
ated (f2) 1.bat and 1.reg.

Source Rule(s) Destination
Poison f1 svchest.exe
Poison f2 1.bat
Poison f2 1.reg
Poison f1 1.vbs
Poison p1 wscript.exe
wscript.exe p1 cmd.exe
cmd.exe p1 regedit.exe
cmd.exe p1 attrib.exe
cmd.exe p1 reg.exe
cmd.exe p1 reg.exe
cmd.exe p2 svchest.exe
cmd.exe p1 ping.exe
svchest.exe f1,p2 svchvst.exe
svchvst.exe f1 svchist.exe

Table 6. MiT of Backdoor.Win32.Poison

4 Evaluation & Results

Using MiTCoN, we analyzed and built MiTs for
5800 diverse known malware samples randomly se-
lected from GFI Sandbox malware repository [4] up-
loaded between April and June 2011. According to
Kaspersky anti-virus, the samples were classified as:
Trojans, Worms, Viruses, Adware, Spyware, FakeAVs,
Monitors, Risk Tools, PSW Tools, Hoaxes, web Tool
Bars, Porn Dialers, Downloaders, Remote Admin
Tools, IRC Clients, P2P worms, Email worms, Back-
doors, Bots, Bankers, Clickers, Ransom, Packed, Game
Thiefs, Exploits, Rootkits, and Droppers. Analysis was

6



Poison

svchest .exe

f1

1 .ba t

f2

wscript .exe

p1

1. reg

f2

1.vbs

f1

svchvst .exe

f1,p2

cmd.exe

p1

p2

regedi t .exe

p1

at t r ib .exe

p1

reg.exe

p1

ping.exe

p1

svchist .exe

f1

Figure 2. MiT graph of Back-
door.Win32.Poison

conducted in VMWare Workstation with a fresh install
of Microsoft Windows Vista logged into the default ad-
ministrator user account. MiTCoN and each sample
were executed for three minutes, the MiT enhanced
with timestamps was saved to a database and the snap-
shot reverted to a clean state. MiTCoN proved to
be highly efficient by not causing system instability or
crashes during analysis, CPU usage per sample peaked
at 3% and averaged less than 1%. Total RAM memory
usage never surpassed 14MB with MiTCoN executing.
MiTCoN never took more than 7 seconds to build and
record a MiT and averaged these operations at 3.1 sec-
onds. There was a high frequency of rule occurrence in
all analyzed malware samples with overall totals as fol-
lows: f1:662, f2:14396, f38629, p1:647, p2:3490 with
the top three malware classes: Trojan: 293, Worm:63,
Backdoor:56. Every analyzed sampled had multiple oc-
currences strong bond rules implying strongly bonded
MiTs may suffice to understand the malware’s essen-
tial infection strategy with weak bonds enhancing the
MiT. In the instances of p1, we infered the malware
was delegating nefarious deeds off to seemingly benign
processes in order to achieve their goals while not be-
ing identified. The majority of processes were spawned
as WIN32 with a several being pre-existing nodes in
the MiT itself (p2). Many files where spawned as a
Windows service and not a regular WIN32 process.
Detecting services proved critical to building compre-
hensive trees since the node’s subtree was substantial.
Many nodes had multiple incoming and/or outgoing
edges which illustrates a strong bond between file and
process manipulation by malware. The most common

combination was f1, p2 where malware would self repli-
cate then spawn the process to have multiple instances
running on the machine. We conjecture this avoids
complete malware eradication or overwhelms the sys-
tem facilitating compromise. Analyzing timestamps of
rule occurrence, we discovered all instances of every
rule occurred within 200 milliseconds from initial mal-
ware execution with an overall average 12 milliseconds,
the strong bond rules averaged 11 milliseconds for f1
and 14 milliseconds for p1. We randomly selected 120
malware samples and executed them on the analysis
platforms Anubis and GFI SandBox. The resulting
infection tree structures from both were compared to
the MiT’s created by MiTCoN. In 114 samples both
platforms included nodes (either a process or file) that
was excluded in our MiT. Further analysis revealed
these nodes represented files and processes belonging
to standard Windows process operations and were not
part of the malware infection and are therefore false
positives. A typical scenario was the inclusion of ser-
vices.exe, which is used in Windows each time a pro-
cess requests creation or start of a Windows service.
Our approach to MiT building based on fundamental
malware infection seems to create more relevant MiTs
with the ability to exclude files and processes belonging
to standard Windows operations. The high frequency,
early occurrence and lack of false positives makes our
rules for building MiTs highly effective in analyzing
malware.

We test the possible usability of MiTCoN in sys-
tem disinfection with our previously randomly chosen
120 samples and use the resulting MiT to attempt dis-
infection of the system. Testing was done in VMWare
Workstation running a snapshot of a fresh install of Mi-
crosoft Windows Vista logged into the default admin-
istrator user account. Kaspersky anti-virus [6] scanned
the infected system to assess how successful our disin-
fection attempt was. Before testing, we invoked a com-
plete system scan by Kaspersky which resulted with
no infections found. This was done to assure an ini-
tial malware free testing environment and any discov-
ered infections occurring after this initial scan was at-
tributed to the malware executed by us in the test sys-
tem. Our evaluation was performed in two rounds.
Round one of testing was as follows: 1.Initially, the
clean state snapshot is loaded 2.A malware sample
is copied to the Windows desktop 3.MiTCoN is exe-
cuted using the sample’s path as input 4.The sample
is executed for 3 minutes 5.The resulting MiT is saved
for later use 6.The infected snapshot is scanned with
Kaspersky & the results saved 7.Return to step 1 with
next sample. The first round of testing was performed
to create MiTs for each of our test samples and to as-

7



sure Kaspersky can detect the malware infection. In
every case, Kaspersky detected the malware. Know-
ing Kaspersky can detect our malware sample’s infec-
tion was a pre-requisite to the second round of testing
where Kaspersky is used to assess the effectiveness of
our disinfection attempt. Round two of testing was as
follows: 1.Initially, the clean state snapshot is loaded
2.A malware sample is copied to the Windows desktop
3.The sample is executed for 3 minutes 4. The system
is manually disinfected using the samples’s MiT from
round one 5.The snapshot is scanned with Kaspersky
& the results saved 6.Return to step 1 with next mal-
ware sample. The main purpose of round two was to
assess how effective our disinfection attempt was using
a MiT. In each case the files and processes listed in the
MiT that were found in the infected system were re-
moved. Kaspersky did not detect any malicious objects
in the second round of testing implying our MiTs were
effective in eradicating infection from the system. In
every case, the details in the MiT sufficed to erradicatd
the files and processes from the system.

Limitations. Our testing was conducted in a vir-
tual machine which forcibly excluded using vm-aware
malware. MiTCoN is limited by the number of imple-
mentations in which a rule can be traced in a specific
OS. We are continuously adding new OS specific im-
plementations of a rule into MitCoN as well as discov-
ering new rules reflecting malware infection strategies.
Secure testing on actual machines is also being crafted
for future use.

5 Conclusion & Future Work

We have presented an abstract approach to building
comprehensive MiTs based on rules describing execu-
tion events essential to malware infection strategies of
files and processes. We developed a MiT creation tool,
named MiTCoN, for the Windows Vista platform and
tested with 5800 known malware samples. Our analy-
sis revealed MiTCoN was very efficient in MiT build-
ing and our rules were highly effective in identifying
the relevant malware infection files and processes with
high occurrence rate in all samples completing in un-
der 200 milliseconds. In contrast to similar systems,
our MiTs avoid false positives by correctly excluding
non-malware related processes and files. The MiTs
produced by our tool during analysis produced 100%
successful manual system disinfection verified with a
post-disinfection malware scan. Our results suggests
our abstract approach using a malware infection strat-
egy basis for rule creation produces MiTs which are
highly effective, improve analysis and disinfection, and
produce minimal false positives. Our future work in-

cludes adding new execution event rules, secure testing
in a real machine and the ability to create MiTs for
malware samples that are not WIN32 executables.

Acknowledgements. This work is partially sup-
ported by grants from AFOSR, ONR, AFOSR MURI,
and the State of Texas Emerging Technology Fund.

References

[1] L. Adleman. An abstract theory of computer viruses.
In CRYPTO ’88: Advances in Cryptology, pages 354–
374. Springer, 1988.

[2] F. Cohen. A Short Course on Computer Viruses. Wi-
ley Professional Computing, 1994. ISBN 0-471-00769-
2.

[3] E. Filiol. Computer Viruses: from Theory to Applica-
tions. IRIS International series, Springer Verlag, 2005.
ISBN 2-287-23939-1.

[4] http://www.gfi.com/malware-analysis-tool/.
[5] G. Hoglund and J. Butler. Rootkits: subverting the

Windows Kernel. Addison Wesley Professional, 2005.
[6] Kaspersky anti-virus. http://www.kaspersky.com.
[7] N. Kawaguchi, H. Shigeno, and K.-i. Okada. Detection

of silent worms using anomaly connection tree. In Pro-
ceedings of the 21st International Conference on Ad-
vanced Networking and Applications, AINA ’07, pages
412–419, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[8] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In Proceedings of the 18th
conference on USENIX security symposium, SSYM’09,
pages 351–366, Berkeley, CA, USA, 2009. USENIX As-
sociation.

[9] J. A. Morales, P. J. Clarke, Y. Deng, and B. G. Kibria.
Identification of file infecting viruses through detection
of self-reference replication. Journal in Computer Vi-
rology Special EICAR conference invited paper issue,
2008.

[10] V. Skormin, A. Volynkin, D. Summerville, and J. Mo-
ronski. Prevention of information attacks by run-time
detection of self-replication in computer codes. Jour-
nal of Computer Security, 15(2):273–302, 2007.

[11] System service dispatch table. http://en.wikipedia.
org/wiki/System_Service_Dispatch_Table.

[12] P. Szor. The Art of Computer Virus Research and
Defense. Symantec Press and Addison-Wesley, 2005.
ISBN 9-780321-304544.

[13] R. Vieler. Professional Rootkits. Wrox Press, 2007.
[14] Zwxx routines in windows ker-

nel. http://msdn.microsoft.com/en-
us/library/ms804352.aspx.

8


