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Introduction - 1

• Present an abstract approach creating malware 

infection trees (MiT) effectively & efficiently

• Capture relevant processes & files 

created/modified during execution

• Construction primarily based on rules describing 
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• Construction primarily based on rules describing 

fundamental malware infection execution events

• Gives meaningful understanding of malware 

infection & identifies involved processes

• Implemented on Windows Vista OS

• Useful in disinfection and analysis



Contributions

• Propose an abstract approach to building malware 

infection trees (MiTs).

• Define execution event rules describing essential 

components of infection strategies.
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components of infection strategies.

• Describe implementation in the Windows Vista OS 

User and Kernel levels.



Strong & Weak Bonds

• Based on observed interaction between processes and files during execution

• Establishes meaningful relationship between nodes, justifying their addition to MiT

• Strong Bond between Q & P:

• Transitivity (transfer) of data from Q to P, creates an intersection between Q & P where both have 
a subset of identical data

• Weak Bond:

• Node Q creates a node P with no transfer of data, this becomes a creator/created relationship with 
no intersection of identical data between both

• A strongly bonded tree 
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• Contains processes & files directly descending from original malware executable possibly 
essential to infection strategies 

• Enhanced with weak bonds contains non-direct descendants and possibly non-essential files & 
process 



Construction Rules

• Set of rules defining when a node is added to a MiT primarily based on 
fundamental definitions of malware (cohen, adleman)

• Rules facilitate strong & weak bonds resulting in highly relevant MiT with 
minimal non-essential items included

• Generalized for use on multiple OS’s � not OS specific

• New rules can be added

• Node N is a file or currently running process
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• Node N is a file or currently running process

• Edge E is an observed rule between nodes N1 and N2, where N2 is 
newly added to the MiT

• Sample under analysis assumed Root of MiT

• Assumption: Malware primarily infects through file & process 
manipulation

• File system & Process rules



File System Rules

• Captures malware self replication & arbitrary file 

creation

• Self replication considered essential to malware infection 

and propagation

• 3 rules currently defined

F1:Infection via self replication, strong bond
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• F1:Infection via self replication, strong bond

• F2:Infection via arbitrary file creation, weak bond

• F3:Infection via arbitrary file write modification, 

weak bond



Process Rules

• Capture malware’s manipulation of processes for 

nefarious uses

• Dynamic code injection

• Process Spawning

• 2 rules currently defined
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• P1: Infection via dynamic code injection of a 

currently running process, strong bond

• Targets already running (benign) processes

• P2: Infection via process spawning, weak bond

• Spawned from malware related (created or downloaded) 

executable file



Windows Vista Implementation

• MiTCoN: tool which outputs MiT tables in real time 

using dynamic analysis

• Command line with absolute path of file to analyze

• Detects rule occurrence through SSDT hooking in 

the Windows Vista Kernel, runs as a kernel service.
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the Windows Vista Kernel, runs as a kernel service.

• Produces very robust MiT tables in under 5 

minutes

• Tables later converted to graphical tree 

representation



File System Rules - Implementation

• 1st set to detect F1 (self replication)

• 2nd set to detect F1 
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• 2nd set to detect F1 

• F2 (arb. File create)� ZwCreateFile(sourcepath) != caller 

process 

• F3 (arb. File write/mod)� 2nd Set, ZwReadFile(sourcepath) 

!= caller process



Process Rules - Implementation

• P1: dynamic code injection

• P2: Spawn process

• 1st sequence
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• 1st sequence

• 2nd sequence (service creation)



MiTCoN Example: BackDoor.Win32.Poison
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Evaluation & Results

• Built MiTs for 5800 diverse samples from GFI 

Sandbox Malware Repository

• 3 min execution; max cpu: 3%, avg. cpu ~1%; max 
RAM: 14mb; MiT create max: ~7sec, avg. 3.1sec

• Rule occurrence – F1:662 , F2:14396 , F3:38629 , 
P1:647 , P2:3490
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P1:647 , P2:3490

• Rule time occurrence max: 200ms, avg.: 12ms; f1 
11ms avg; p1 14ms avg.

• Most common sequence: F1,P2



Evaluation & Results

• 120 samples analyzed by Anubis and GFI Sandbox 

compared to out MiTs

• 114 had nodes in both not recorded in the MiT
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• these nodes were files and/or processes belonging to 

standard Windows and not part of the malware infection  
� false positives

• Example: services.exe



Evaluation & Results

• Attempted disinfection on the 120 samples

• 1. Each sample executed and MiT constructed, VM 

image scanned by Kaspersky

• 2. Each sample executed and files/processes 

appearing in MiT were erased from VM image then 
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appearing in MiT were erased from VM image then 

scanned by Kaspersky

• 100% success, in 2. Kaspersky did not detect any 

malware presence

• Implies our MiT sufficed to remove malware infection 

from system



Evaluation & Results

• Multiple occurrences of strong bonds, may suffice to 
understand essential infection strategy  

• Efficient and Effective

• MiT construction based on fundamental malware 
infection creates relevant MiTs excluding files and 
processes of standard Windows operations. 
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processes of standard Windows operations. 

• The high frequency, early occurrence and low false 
positives makes our rules for building MiTs highly 
effective in analyzing malware.

• Our disinfection produce 100% success, MiTs may be 
useful in aiding disinfection efforts



Conclusions & Future Work

• Abstract approach to create MiTs produce relevant meaningful 

description of infection strategy

• Construction rules drawn from fundamental malware definitions 

focusing on infection strategies

• Generalized and Extensible, OS independent

• Highly efficient construction, very low resource usage, fast 

construction time
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construction time

• MiTs strong bonds included essential players of infection, 

minimized inclusion of non-infection related processes and files

• Effective in disinfection, can aide other disinfection strategies

• Future work involves expanding the rule set, testing sound and 

completeness, experiments in real and virtual environments



Questions?

¿Preguntas?

質問

ВопросыВопросы

Sawaal
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Sawaal

Domande

Soru

ΕρωτήσειςΕρωτήσεις

問題
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trademark holder.
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