
Building Malware Infection Trees

Jose Andre Morales1, Michael Main2, Weilang Luo3,
Shouhuai Xu2,3, Ravi Sandhu2,3

UNCLASSIFIED © 2011 Carnegie Mellon University

Shouhuai Xu , Ravi Sandhu

1Software Engineering Institute, Carnegie Mellon University*

2Institute for Cyber Security, University of Texas at San Antonio

3Department of Computer Science, University of Texas at San Antonio

*Research performed in the University of Texas at San Antonio

Introduction - 1

• Present an abstract approach creating malware

infection trees (MiT) effectively & efficiently

• Capture relevant processes & files

created/modified during execution

• Construction primarily based on rules describing

2

• Construction primarily based on rules describing

fundamental malware infection execution events

• Gives meaningful understanding of malware

infection & identifies involved processes

• Implemented on Windows Vista OS

• Useful in disinfection and analysis

Contributions

• Propose an abstract approach to building malware

infection trees (MiTs).

• Define execution event rules describing essential

components of infection strategies.

3

components of infection strategies.

• Describe implementation in the Windows Vista OS

User and Kernel levels.

Strong & Weak Bonds

• Based on observed interaction between processes and files during execution

• Establishes meaningful relationship between nodes, justifying their addition to MiT

• Strong Bond between Q & P:

• Transitivity (transfer) of data from Q to P, creates an intersection between Q & P where both have
a subset of identical data

• Weak Bond:

• Node Q creates a node P with no transfer of data, this becomes a creator/created relationship with
no intersection of identical data between both

• A strongly bonded tree

4

• Contains processes & files directly descending from original malware executable possibly
essential to infection strategies

• Enhanced with weak bonds contains non-direct descendants and possibly non-essential files &
process

Construction Rules

• Set of rules defining when a node is added to a MiT primarily based on
fundamental definitions of malware (cohen, adleman)

• Rules facilitate strong & weak bonds resulting in highly relevant MiT with
minimal non-essential items included

• Generalized for use on multiple OS’s � not OS specific

• New rules can be added

• Node N is a file or currently running process

5

• Node N is a file or currently running process

• Edge E is an observed rule between nodes N1 and N2, where N2 is
newly added to the MiT

• Sample under analysis assumed Root of MiT

• Assumption: Malware primarily infects through file & process
manipulation

• File system & Process rules

File System Rules

• Captures malware self replication & arbitrary file

creation

• Self replication considered essential to malware infection

and propagation

• 3 rules currently defined

F1:Infection via self replication, strong bond

6

• F1:Infection via self replication, strong bond

• F2:Infection via arbitrary file creation, weak bond

• F3:Infection via arbitrary file write modification,

weak bond

Process Rules

• Capture malware’s manipulation of processes for

nefarious uses

• Dynamic code injection

• Process Spawning

• 2 rules currently defined

7

• P1: Infection via dynamic code injection of a

currently running process, strong bond

• Targets already running (benign) processes

• P2: Infection via process spawning, weak bond

• Spawned from malware related (created or downloaded)

executable file

Windows Vista Implementation

• MiTCoN: tool which outputs MiT tables in real time

using dynamic analysis

• Command line with absolute path of file to analyze

• Detects rule occurrence through SSDT hooking in

the Windows Vista Kernel, runs as a kernel service.

8

the Windows Vista Kernel, runs as a kernel service.

• Produces very robust MiT tables in under 5

minutes

• Tables later converted to graphical tree

representation

File System Rules - Implementation

• 1st set to detect F1 (self replication)

• 2nd set to detect F1

9

• 2nd set to detect F1

• F2 (arb. File create)� ZwCreateFile(sourcepath) != caller

process

• F3 (arb. File write/mod)� 2nd Set, ZwReadFile(sourcepath)

!= caller process

Process Rules - Implementation

• P1: dynamic code injection

• P2: Spawn process

• 1st sequence

10

• 1st sequence

• 2nd sequence (service creation)

MiTCoN Example: BackDoor.Win32.Poison

11

Evaluation & Results

• Built MiTs for 5800 diverse samples from GFI

Sandbox Malware Repository

• 3 min execution; max cpu: 3%, avg. cpu ~1%; max
RAM: 14mb; MiT create max: ~7sec, avg. 3.1sec

• Rule occurrence – F1:662 , F2:14396 , F3:38629 ,
P1:647 , P2:3490

12

P1:647 , P2:3490

• Rule time occurrence max: 200ms, avg.: 12ms; f1
11ms avg; p1 14ms avg.

• Most common sequence: F1,P2

Evaluation & Results

• 120 samples analyzed by Anubis and GFI Sandbox

compared to out MiTs

• 114 had nodes in both not recorded in the MiT

13

• these nodes were files and/or processes belonging to

standard Windows and not part of the malware infection
� false positives

• Example: services.exe

Evaluation & Results

• Attempted disinfection on the 120 samples

• 1. Each sample executed and MiT constructed, VM

image scanned by Kaspersky

• 2. Each sample executed and files/processes

appearing in MiT were erased from VM image then

14

appearing in MiT were erased from VM image then

scanned by Kaspersky

• 100% success, in 2. Kaspersky did not detect any

malware presence

• Implies our MiT sufficed to remove malware infection

from system

Evaluation & Results

• Multiple occurrences of strong bonds, may suffice to
understand essential infection strategy

• Efficient and Effective

• MiT construction based on fundamental malware
infection creates relevant MiTs excluding files and
processes of standard Windows operations.

15

processes of standard Windows operations.

• The high frequency, early occurrence and low false
positives makes our rules for building MiTs highly
effective in analyzing malware.

• Our disinfection produce 100% success, MiTs may be
useful in aiding disinfection efforts

Conclusions & Future Work

• Abstract approach to create MiTs produce relevant meaningful

description of infection strategy

• Construction rules drawn from fundamental malware definitions

focusing on infection strategies

• Generalized and Extensible, OS independent

• Highly efficient construction, very low resource usage, fast

construction time

16

construction time

• MiTs strong bonds included essential players of infection,

minimized inclusion of non-infection related processes and files

• Effective in disinfection, can aide other disinfection strategies

• Future work involves expanding the rule set, testing sound and

completeness, experiments in real and virtual environments

Questions?

¿Preguntas?

質問

ВопросыВопросы

Sawaal

17

Sawaal

Domande

Soru

ΕρωτήσειςΕρωτήσεις

問題

CMU copyright statement

•NO WARRANTY

•THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

•Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

18

trademark holder.

•This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

•This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

19

20

21

