
ACON: Activity-Centric Access
Control for Social Computing

Jaehong Park, Ravi Sandhu, and Yuan Cheng
Institute for Cyber Security

University of Texas at San Antonio
jae.park@utsa.edu, ravi.sandhu@utsa.edu, ycheng@cs.utsa.edu

Abstract—With increasing amount of sensitive user data stored
in social computing systems (SCSs) and lack of consensus on how
it should be protected under meaningful control by the average
user, security and privacy has become a pressing problem that
must be addressed. We propose the concept of user and SCS
activity as a natural aspect of social computing which influences
access control in a manner distinct to SCSs. We propose an
activity-centric access control or Activity CONtrol (ACON)
framework for social computing to facilitate both privacy setting
from user side and administration from SCS side. We further
propose an ACONuser model for user activity control and session
management. We illustrate how the model captures the user
activities using several SC examples.

Index Terms—Security; Privacy; Social Computing;

I. INTRODUCTION

In typical access control systems, the main focus is to
control a user’s access to stored content. In social computing
systems (SCSs), there are additionally other kinds of activities
that need to be considered for access control. In a SCS, a user
performs activities not only on shared content but also against
target users (e.g., a user pokes another user or recommends
other users to be a friend to each other, a buyer rates sellers,
etc.). Moreover, when a SCS makes control decisions, the
decisions are likely to be influenced by related users’ control
activities. For example, consider the sample social graph in
Figure 1. Here, Bart may not want his activity to be notified to
Homer or may not want to receive any notification of Homer’s
activity. Likewise, Homer may not want Bart to access any
violent content, to share personal information with others or
to become a friend of Homer’s co-workers. We say a user
performs control activities to express these preferences.

Furthermore, in SCS, there are activities performed by the
system to provide services and resources that can promote
user interactions or sustain the SCS provider’s business. For
example, Amazon collects and aggregates users’ ratings on
products to generate best rated products or Facebook notifies a
user’s activity to the user’s friends or recommends friendships
to users who share a common friend. These SCS’s activities
also need to be evaluated for control decision since users may
not want their shared information to be used for SCS’s analysis
or may not want to receive some of these SCS services. From
access control point of view, both users’ control activities and
systems’ automated activities are rather unique to SCSs and
seldom considered in traditional access control models.

In this paper, we propose the notion of activity as a key
concept for access control and identify various activities found
in SCSs. We distinguish access (or usage) activities, such as

Fig. 1. A User Relationship Example

viewing a picture on a friend’s page, from control activities,
such as limiting access to a picture on a user’s page to user’s
friends only.

A distinguishing feature of SCSs is the diffused nature
of control activities and their interactions. This requires a
more sophisticated approach to control activities than found in
traditional access control models. For this purpose we develop
an access control framework called ACON (Activity CONtrol)
that supports controls on access and control activities in SCS.
The ACON framework supports personalized user privacy
control by utilizing individualized user policies/attributes and
resource policies/attributes. It also supports automated man-
agement of SCS. The scope of ACON is beyond the scope
of traditional access controls in that ACON allows users’
individualized controls on their own or other users’ activities,
as well as on SCS’s automated management activities. As such
it provides a unique perspective on access control suitable for
SCSs.

II. MOTIVATION AND RELATED WORKS

In discretionary and lattice-based access controls, the main
focus is on controlling users’ access activities on objects. In
role-based access controls (RBAC), controls on administrators’
control activities have also been considered [9]. Usage control
[5], [6] adds attribute mutability to cover a system’s automated
attribute management that is required to reflect the result of
users’ usage activity such as decreasing a user’s credit balance
per movie play. However these models do not provide the
means for a user to influence control decisions on other users’
activities or system’s activities as often found in SCSs.

Online social networking is a prominent subset of social
computing that utilizes a user relationship based social graph
to control user activities. While recent access control literature
on online social networking such as [1], [2], [3], [4], [10] deals
with various issues that are distinct from traditional access
control, they mainly focus on issues related to user relationship
based social graph. Our framework is independent of social
graphs and deals with fundamental aspects of access control
in SCSs, including online social networks.



III. ACTIVITIES IN SOCIAL COMPUTING SYSTEMS

Next, we classify SCS activities into different categories.

A. User’s Activities
User’s Usage Activities (UA). Just as in traditional access

control systems, in SCSs a user can read, write or modify
resources. However in SCSs, a user also performs certain
activities on target users. For example, in Facebook, a user
may poke another user, recommend a friendship, invite another
user as a friend or accept a friendship invitation.1

User’s Control Activities (CA) on Resources. Users in
SCS perform control activities on resources by changing
attributes and policies of resources. Similar to discretionary
access control users can control access to their own resources,
although in SCSs this control can be influenced by other
users.2 For example, providing access to friends of friends
conveys the ability to a user’s friends to further control who
friends of friends are thereby controlling access to the user’s
resources. As another example it may be possible for a parent
to control access to a child’s resources. Some form of social
control for shared content, such as pictures with multiple
people, may also be desirable [10].

User’s CA on Users. In SCSs, a user needs to control her
own or other users’ activities without reference to a concrete
resource. Often a user wants to control certain users’ activities
even though the actual resource may not yet be available.
In discretionary access control, typically control policy is
defined based on a concrete specific resource. In an SCS, for
example, Homer may want to prohibit Bart from uploading
any personally identifiable information such as a photo that
includes Bart’s face; or Homer may want to make sure he
does not receive any notification of friends activities. In RBAC,
although a user can change other users’ privilege by delegating
some or all of her role, the user is not allowed to change
user- or permission-role assignments or role hierarchy.3 On
the other hand, for example, in eBay and Amazon like e-
commerce systems, a user is allowed to rate sellers to change
their trustworthiness which in turn may change sellers’ priv-
ilege. This kind of user’s control activities on users is rarely
discussed in traditional access control policies and models.

User’s CA on Sessions. A session represents an active
user who has logged into the SCS.4 In SCS, the user-session
distinction is crucial to allow a user’s session to carry attributes
and policies that are different from those of the users. For
example, Bart may not want to reveal a complete set of his
friend information when he chats with Homer; or Bart may

1A friendship invitation acceptance can be viewed as a user’s control
activity since it modifies the user’s attributes. As a rule of thumb, although
a user activity results in an attribute or policy change, if the activity is not
intended to manage attributes or policies directly, we consider it as a usage
activity. Though some ambiguity still remains, the goal of this classification
is not to make a tight distinction between activity types but to identify various
kinds of activities not typically found in traditional access control literature.

2Some theoretical models for discretionary access control allow ownership
to be delegated from one user to another, but these features are not common
in most prevalent commercial implementations.

3Technically, a user can be assigned an administrative role which enables
changes to these assignments. This would not be practical in SCS since such
an administrative role would need to be very specific to each individual user.

4The term session is borrowed from role-based access control models [8].

not want to receive any activity notification from the SCS
on occasion. Typically, a session inherits all attributes and
policies of a user who created it. However, a user may want to
disable certain user attributes or policies in a particular session
or add some temporary attributes or policies for a session.
From the privacy protection point of view, user’s ability to
control session attributes and policies is crucial to realize
users’ privacy preference.

B. SCS’s (Automated) Activities

SCS performs automated activities that are triggered either
by user activities or other system attributes such as time,
location/platform of accessing device, and other system status.
Traditional access controls rarely recognize this. Although
usage control includes mutable attributes, there is no facility
for other kinds of system activities such as providing services
(e.g., location-based coupons, friends recommendation) or
value-added resources (e.g., most viewed video-clips, product
ratings) that are generated by utilizing user resources. The SCS
activities comprise service, control and decision activities.

SCS’s Service Activities. SCSs perform various service
activities to provide functionality and information to promote
users’ social interactions and information sharing. To do so,
a SCS typically utilizes users’ shared resources and generates
value-added resources and services. For example, each time a
user logs in, a SCS collects information about nearby friends
and shows who is available to the user. If a user opts out,
she will not receive this kind of notifications or will not be
included in notification information sent to other users. A SCS
may collect user information to provide a recommendation for
potential friends. Also a SCS may notify one user’s activity to
all of her friends. Because these SCS’s activities utilize user-
provided resources, controls on these activities are likely to
be influenced by control activities of providing users or users
who are related to the provider or the provided resource.

SCS’s Control Activities. In addition to service activities,
SCS also performs automated control activities to control
users, resources and sessions. This is done through manag-
ing attributes and policies of users, resources and sessions.
For example, a recommendation system like eBay regularly
collects user activity (such as sales) information to generate
trustworthiness of each user. In online sales or review system
like Amazon.com and Edmunds.com, the system regularly
collects users reviews on products to update popularity or
reliability level of the products. Such SCS control activities are
likely to be influenced by users’ usage and control activities.
Also, when a user creates a session, often the SCS requires
parts or all of user attributes and policies to be inherited to the
session or the SCS adds additional attributes and policies to
the session as necessary. For example, a SCS may add a user’s
access device information so some user activities (e.g., account
information updates) can be restricted for security purposes.

SCS’s Decision Activities. One of the main functions of
activity control systems in SCSs is decision making activities.
In most traditional access control systems, only users’ usage
activities are considered and evaluated for permission. In SCS
environment, users’ requests for usage activities and control
activities as well as SCS’s requests for service activities and



Fig. 2. ACON Framework

control activities are evaluated by SCS for control decisions.
This is discussed further in the next section.

C. SCS Administrator’s Activities

SCS administrators’ need to perform manual activities to
manage overall system, users and their activities. Controls
on administrators’ activities is important especially for highly
distributed computing systems. In RBAC, such controls have
been discussed extensively to manage administrator’s roles
and permissions. In SCS, most research has focussed on
controlling user activities, but how administrators’ activities
should be managed is not typically considered. Applying user
activity control approaches to SCS administrators’ activity
may lead to interesting research, but is beyond the scope of
this paper.

IV. ACON FRAMEWORK

We believe access control system for SCS needs to control
various types of activities identified earlier not only for better
security and privacy protection but also for better functionality
and management. To support controls on these activities, we
propose a conceptual framework of activity control or ACON
for SCSs. In this section we identify components of ACON
framework and discuss characteristics of the framework.

A. ACON Components

Figure 2 shows a conceptual diagram for ACON framework.5

Users. A user represents a human being who performs
activities in an SCS. Users carry attributes and policies. User
attributes are information about the user, e.g., address and
friends list. User policies are user preferences and limits set by
either herself, other users or SCS. User attributes/policies can

5In [7], we introduced a framework that only covers user activity controls in
its scope. In this paper we significantly extend this prior work to include SCS
activities and SCS administrator activities in the picture, as well as developing
a formal model for user activities in section V.

be managed by the user, other related users (e.g., parents), or
the SCS. These policies/attributes may be changed indirectly
as a result of user activities (e.g., consumable attributes like a
credit balance and a reputation based on other users’ ratings).

Sessions. A session represents an active user who has
logged into the SCS. In SCS, the user-session distinction
is crucial to facilitate a session with different policies and
attributes from those of users. Thereby a user can create a
session that carries different degree of privacy preference. A
user can have multiple sessions concurrently if permitted by
the SCS, while a session belongs to exactly one user. In Figure
2 this is shown with the single and double arrowheads.

In the simplest case, all user attributes/policies are inherited
by the user’s session(s). More generally, the session may in-
herit only some of these. In Figure 2, “constrained by” relation
depicts this. A session may have additional attributes (e.g., IP
address, device’s platform, its location, or its trustworthiness)
and policies (e.g., limited privileges for a mobile device, or
a session invisible to other users). It may have a sanitized
version of user attributes (e.g., “over 18”, not an actual age).

In current SCSs attributes and policies of a session are likely
to be fully controlled by the SCS. For example, some SCSs
facilitate a session to have different privilege if the user is
logged in from a mobile device or public machine. This may
be to constrain functionality from a limited device or may
involve discrimination amongst security-sensitive operations.
We believe it is highly desirable to support sessions with
user controlled attributes and policies especially for user
privacy purpose. For instance, Ned may not want to reveal
his friends information to SCS users occasionally. This can
be achieved by creating a session that does not convey his
friends information. However, if Ned’s session that carries
no friends list attempts to be a friend of Bart, this might
create a conflict with Homer’s policy that says Bart cannot
be a friend of anyone who is Homer’s coworker or a friend
of Homer’s coworkers. This means some user policies and
attributes must be carried by a session for certain activities.
We believe research on the relationship between session and
user attributes and policies will provide better foundations for
more nuanced access control and privacy in future SCSs.

Activities. As discussed, the activity notion encompasses
user’s activities, SCS’s activities and SCS administrator’s
activities. Each activity is initiated via a session on behalf of
that session’s user or SCS administrator, or by SCS’s Activity
Module (SAM) which is a conceptual entity that performs
automated SCS activities. The SCS decides whether or not an
activity is permitted. Some activities send a trigger to SAM if
additional SCS activities are required. A session and SAM can
have multiple activities whereas each activity is initiated by
a single session or SAM. Each activity consists of an action,
zero or more target resources and zero or more target users.

Action. Action is an abstract function available in SCS.
Examples are a user reads and writes a comment; a user rates
a product or a seller; a user invites other users as a friend;
or a user’s activity triggers an activity notification action to
be delivered to her friends. Actions can be against target
resource(s), target user(s) or both target resource(s) and target
user(s). For example, a user rates target resource(s) or target



user(s); a friendship recommendation require two or more
target users; and typical notification actions require both target
user(s) (e.g, friends) and resource(s) (e.g., activity log info).

Target Users. Target users are recipients of an action. To
be accurate, although an action is made to a target user, it is
the target user’s session(s) that actually receives the action. For
example, if Ned invites Homer as a friend or for a chat, Homer
is the target user while Ned is called the acting user. Here it
is Homer’s session that actually receives Ned’s invitation. If
Homer’s session has a policy that says it does not want to
have any chat, Ned’s attempt to chat will not succeed.

Target Resources. Target resources are the resources in-
volved in the action. These include users’ shared content,
SCS’s shared content, user policies and attributes, resource
policies and attributes, session policies and attributes and any
information that users, SAM or SCS administrators can access
or manage in SCS. Considering policies and attributes as part
of the resource abstraction allows the framework to support the
ability for users to partially control their own attributes and
policies as well as attributes and policies of other related users.
This also allows SCS (i.e., SAM) and SCS administrators to
control user policies and attributes in a single framework.
Moreover, this allows additional policies and attributes to
apply to these policy and attribute resources. For example, if
Bart has a policy that says no access to violent content, there
could be an attribute on this policy (such as the policy creator)
or a policy on the policy (stipulating that only Homer can
change that policy). Also if a photo has a provider information
as an attribute, this attribute can have a policy that says only
friends of the provider can read the provider information.
While theoretically, this chaining can be continued indefinitely,
we believe practical SCSs are not likely to provide policies and
attributes on policies and attributes beyond a couple of levels.

SCS’s Decision Activity. When an activity is attempted,
SCS consolidates all the necessary individual policies and
attributes together with the SCS’s own policies and attributes,
and then utilizes them to make a decision on whether or not to
permit the attempted activity. For instance, let’s say Homer sets
a policy that says Homer’s co-workers and their direct friends
cannot be a friend of Homer’s children. When this policy is
specified by Homer, the SCS makes sure activity decisions on
all the friendship requests from and to Bart reflect Homer’s
policy (either by updating Bart’s policy at the time of the
Homer’s policy creation or evaluating policies of Bart’s parents
at each time Bart attempts to be a friend with someone). If
Bart (in a session) tries to send a friendship invitation (an
action) to Ned (a target user), the SCS evaluates Bart’s policy
and possibly policies of Homer, then verifies whether any of
Ned’s friend (the target user’s attribute) is one of Homer’s
co-worker (see Example 2 for a formal specification).

SCS’s Activity Module (SAM). SAM is a conceptual
abstraction of functions that performs SCS’s automated service
and control activities.6 Specifically, user activities or system
status (e.g., time and CPU load) trigger SAM. SAM then
initiates necessary service and control activities to support SCS

6Note that SAM does not include SCS’s decision activities as shown in
Figure 2 since SAM’s activities are evaluated for a decision by SCS.

services and management. SCS administrator’s activities or
SAM’s own activities can also trigger SAM.7 By introducing
SAM, we can conveniently capture the fact that even SCS’s
activities should be controlled in SCS. SCS typically facilitates
various automated activities to provide services or to manage
attributes and policies of users and resources. However, deci-
sions on these activities are likely to be influenced by users’
control activities (e.g., configuring user or resource policies).
Thus, if a user doesn’t want her activity information to be
used for SCS’s statistical analysis and SCS honors it, SAM’s
automated access on the information will be denied while other
users’ activity information is granted for SAM’s access.

One may argue SAM can initiate only allowed activities
at first place hence doesn’t require decision process. How-
ever, this approach still needs a selection/decision process to
reflect target users’ or resources’ policies regardless of the
actual decision point. ACON is a conceptual framework and
includes SAM to capture the necessary decision process on
the system’s service and control activities. It does not suggest
any implementation level design specifications.

SCS Administrators. An SCS administrator represents a
human being with a management role in SCS. Just like users,
an SCS administrator may carry attributes and policies that
apply to the SCS administrator. If SCS is highly distributed
and managed by various SCS administrators who have various
levels or kinds of administrative privileges, it could be ben-
eficial to have personalized attributes and policies for each
SCS administrator. On the other hand, if SCS relies on a
small number of administrators, having personalized attributes
and policies may not be meaningful or desirable. Controls on
SCS administrator’s activities need further research and are
therefore not discussed extensively in this paper. Also, one
can consider a target SCS administrator for certain activities
but this is not covered here, since our current focus is mainly
on user and SCS activities.

B. ACON Framework Characteristics
One of the design characteristics of our framework is

policy individualization. Unlike lattice- and role-based access
control where there is one system-wide access control policy,
ACON allows users to carry their own policies that includes
privacy preferences and activity limits. These policies are col-
lectively used by SCS for control decision on activities. Unlike
typical discretionary access control, individualized policies in
ACON allow users to configure related users’ policies. We
believe this characteristic is crucial for access control in SCS.

Another characteristic in ACON is a separation of user
and resource policies. By utilizing user policies, a system
can control activities more effectively if the activity controls
are specific to a user without knowing any particular resource.
For example, if Homer does not want to receive any violent
content, it should be more effective to add the policy rule
in Homer’s policies rather than adding Homer (and all other
users’ names who do not want violent content) into policies
of each item of violent content.

7Our framework allows multiple levels of SAM’s activities to be triggered
by an activity of SAM. Although we think this is not likely to occur frequently,
the model allows it.



TABLE I
ACONuser MODEL DEFINITIONS

ACONuser Definitions

User Activity Control

U, S, ACT, R, T, P, SCS and D (users, sessions, actions, resources, attributes, policies, social computing system and
decision predicate, respectively);
UT ⊆ U and RT ⊆ R (target users and target resources, respectively);
dot notation: we understand e.T and e.P to respectively denote the set of attributes and set of policies associated with entity e;

A, the set of activities is defined as A ⊆ ACT × (2RT × 2UT − ∅);
Let A = {a1, a2, ..., an}, we denote the components of each individual element as ai = (ai.ACT, ai.RT , ai.UT );

AP RT : A → 2RT×P , AP UT : A → 2UT×P , AT RT : A → 2RT×T , AT UT : A → 2UT×T , mappings of activity to
a set of target resources and policies, a set of target users and policies, a set of target resources and attributes, and
a set of target users and attributes respectively defined as:
AP RT ({a1, .., an}) = AP RT ({a1}) ∪ ... ∪AP RT ({an}), AP RT ({ai}) = {(rt, p)|rt ∈ ai.RT , p ∈ rt.P}
AP UT ({a1, .., an}) = AP UT ({a1}) ∪ ... ∪AP UT ({an}), AP UT ({ai}) = {(ut, p)|ut ∈ ai.UT , p ∈ ut.P}
AT RT ({a1, .., an}) = AT RT ({a1}) ∪ ... ∪AT RT ({an}), AT RT ({ai}) = {(rt, t)|rt ∈ ai.RT , t ∈ rt.T}
AT UT ({a1, .., an}) = AT UT ({a1}) ∪ ... ∪AT UT ({an}), AT UT ({ai}) = {(ut, t)|ut ∈ ai.UT , t ∈ ut.T};

AP (a) = AP RT (a) ∪AP UT (a), AT (a) = AT RT (a) ∪AT UT (a);

allowed(s, a) ⇒ D(s.P, s.T, a, AP (a), AT (a), scs.P, scs.T ), where s ∈ S and a ∈ A.

Session Management

user sessions : U → 2S , session users : S → U ;
user added sessionT : S → 2T , user removed sessionT : S → 2T ;
scs added sessionT : S → 2T , scs removed sessionT : S → 2T , scs required sessionT : S → 2T ;
user added sessionP : S → 2P , user removed sessionP : S → 2P ;
scs added sessionP : S → 2P , scs removed sessionP : S → 2P , scs required sessionP : S → 2P ;

user removed sessionT (s) ⊆ {t ∈ T |t ∈ session users(s).T ∧ t /∈ scs required sessionT (s)};
user removed sessionP (s) ⊆ {p ∈ P |p ∈ session users(s).P ∧ p /∈ scs required sessionP (s)};

assignS T : S → 2T , assignS P : S → 2P , assignment of attributes and policies to sessions respectively;
assignS T (s) ⊆ {t ∈ T |(t ∈ session users(s).T ) ∨ (t ∈ user added sessionT (s)) ∨ (t ∈ scs added sessionT (s))∧
¬((t ∈ user removed sessionT (s)) ∨ (t ∈ scs removed sessionT (s)))};
assignS P (s) ⊆ {p ∈ P |(p ∈ session users(s).P ) ∨ (p ∈ user added sessionP (s)) ∨ (p ∈ scs added sessionP (s))∧
¬((p ∈ user removed sessionP (s)) ∨ (p ∈ scs removed sessionP (s)))}.

As discussed, characteristics such as user-session distinc-
tion, user relationship independent access control, and
SCS’s automated service and control activity are also novel
and make ACON applicable to today’s and future SCSs.

V. ACONuser , A USER ACTIVITY CONTROL MODEL

In this section we formally define a user activity control
model called ACONuser. This model does not include SAM’s
and SCS administrators’ activity controls. Although these are
important, we believe a user activity control model should
be developed first and will provide a basis for models of
other activities in SCSs. Table I gives the definition of the
ACONuser model for user activity and session management.

A. ACONuser Model Definition
ACONuser consists of users (U ), sessions (S), actions

(ACT ), resources (R), attributes (T ), policies (P ), social com-
puting system (SCS) and decision predicate (D). Target users
(UT ) is a subset of U and target resources (RT ) is a subset
of R. Activities (A) comprise an action that is performed
against either UT , RT , or both UT and RT . Decision is a
functional predicate that examines activity requests for control
decision by utilizing session policies (S.P ) and attributes
(S.T ), the requested activity (A), activity policies (AP (a))
and attributes (AT (a)), and system policies (SCS.P ) and
attributes (SCS.T ). Here, AP (a) and AT (a) are subsets of
policies and attributes of target users and target resources of

the action. We write allowed(s, a) to express that a session s
is allowed to perform activity a. allowed(s, a) is formulated
as a necessary condition to allow for inclusion of other rules
that might be necessary for finer controls.8

Note that a user initiates an activity through a session, hence
the model utilizes session policies and attributes rather than the
user’s for an activity decision.9 As discussed, session policies
and attributes are constrained by user policies and attributes.
When a user creates a session, a user may indicate her privacy
preference for that session by configuring session policies and
attributes as within the boundary allowed by a SCS. Also, the
SCS may add, remove, or change some policies and attributes.
This session management is defined in Table I.

Functions assignS.T and assignS.P map a session to a
set of attributes and policies respectively, where assignS.T
and assignS.P include all the policies and attributes of the
initiated user and policies and attributes added or removed as
requested by the user and the system. We assume a user can
only do so as allowed by the SCS. In absence of any changes
by the user of the session and by the SCS, the session carries
an identical copy of user attributes and policies.

8A similar approach can be found in the classic Bell-LaPadula (BLP) model
and UCONABC usage control model [6].

9Activity policies and attributes (AP (a), AT (a)) may include policies and
attributes of target users (not a target session’s). Although some activities like
a chatting request require policies and attributes of target sessions, our current
model utilizes target users’ policies and attributes for the sake of simplicity.



The examples below show how typical user activities can be
realized within ACONuser. Here, we assume a session carries
all policies and attributes of the related user.

Example 1 A buyer can rate a seller only if the buyer
bought a product from the seller (SCS.P ).
N : a list of users, sellerList : S → 2N

allowed(s, rate, ut) ⇒ ut ∈ sellerList(s)

Example 2 A user can invite another user as a friend if
not already a friend. If the user < 18, the system must check
parents’ policy to ensure that one parents’ policy says that
children cannot be a friend of the co-workers of the parents.
L: a list of users, N : natural numbers, age : S → N ,
f : S → 2L, pt : S → 2L, cw : U → 2L (a mapping of a
session/user to friends, parents and coworkers, respectively)
SCS.P = {A session must have a “pt” and an “age”
attributes; If a user under 18, check the parents’ policies}10

pt(s).P = {My child cannot be a friend of my coworker}11

allowed(s, invite, ut) ⇒{
ut /∈ f(s), if age(s) ≥ 18;
ut /∈ f(s) ∧ cw(ut) ∩ pt(s) = ∅, if age(s) < 18.

Example 3 A user can change own policy. If a user is
under 18, only parents can change the user’s policy (SCS.P ).
N : a list of users, age : S → N , children : S → 2N

allowed(s, change, ut.P ) ⇒{
ut ∈ session user(s), if age(s) ≥18;
ut ∈ children(s), if age(s) <18.

Example 4 A user can recommend a friendship between
two friends if they are not a friend to each other(SCS.P ).
N : a list of users, friends : S → 2N

allowed(s, f.recommend, ut1, ut2) ⇒ ({ut1, ut2} ∈
friends(s))∧ (ut2 /∈ friends(ut1))∧ (ut1 /∈ friends(ut2))

In Example 1, a session carries a list of sellers as an
attribute (S.T ). The system policies include a rule that says
a session can rate a target user if the target user ut is found
in the seller list of session s. In Example 2, since a session
must have a “parents” attribute, pt(s) is equal to pt(u). The
cw(ut) is an attribute of a target user. The system includes
a policy that check parents’ policies of the session if the
session’s age is under 18. Here, parents of a session should
not be found in coworker list of the target user. In Example
3, ut.P (a target user’s policies) is the target resource since
policies and attributes are also resources in ACON. Example
4 shows an activity that need two target users for an action.

B. ACONuser Model Discussion

Perhaps one of the most comparable access control model to
ACONuser is the UCONABC usage control model [6]. Both
models utilize user and resource attributes to make a control
decision and both recognize the necessity of automated system
activities. However, there are also some significant differences.
Currently ACONuser model deals with only pre-authorization

10More formally, these will be representations of the stated policies.
11As above.

of UCON while ignoring any continuous controls during the
life time of activities. While UCON recognizes automated
system activities, it mainly updates a user’s attributes to reflect
the result of that user’s activities. In UCON, an update is a side
effect of user activities. In ACON, we expand this to allow a
user’s both unintentional and intentional updates on her own
or other users’ attributes and policies.

While UCON controls a subject’s access, ACON makes
user-session distinction to enhance users’ control capability
and SCS’s management. However, our current model considers
only a static session where no policies and attributes of a
session are changed during its life time. Further studies on
dynamics of session will enhance our framework and models.

In this section we defined a user activity control models as
well as a model for session management and further discussed
these models using several examples. As mentioned earlier, the
model covers only a part of the ACON framework. However
we believe the proposed framework and models are essential
for access control in SCSs and will provide a foundation for
advanced security and privacy protection.

VI. CONCLUSION

While there are plethora of social computing services (in-
cluding online social networking services), privacy protec-
tion and users’ control capabilities in these services are still
rudimentary. Although many studies on access controls for
social computing have been done, most of these focus on
user relationship based controls. In this paper, we propose
a novel access control framework for SCSs and our initial
models for user activity control and session management. We
believe our activity centric access control framework provides
a solid foundation for better security and privacy protection
and SCS management. We also believe this line of work
presents promising future research directions.

ACKNOWLEDGMENT

This work is supported by NSF and the State of Texas.

REFERENCES

[1] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thu-
raisingham. A semantic web based framework for social network access
control. Proceedings of the 14th ACM SACMAT, 2009, pp. 177-186.

[2] B. Carminati, E. Ferrari, and A. Perego. Enforcing access control in Web-
based social networks. ACM TISSEC, vol. 13, no. 1, 2009, pp. 1-38.

[3] P.W.L. Fong, M. Anwar, and Z. Zhao. A privacy preservation model for
Facebook-style social network systems. ESORICS, 2009, Springer.

[4] P.W.L. Fong. Relationship-based access control: protection model and
policy language. ACM CODASPY 2011.

[5] J. Park and R. Sandhu. Towards Usage Control Models: Beyond Tradi-
tional Access Control. ACM SACMAT 2002.

[6] J. Park and R. Sandhu. The UCONABC Usage Control Model. ACM
TISSEC, Volume 7, Number 1, February 2004, pages 128-174.

[7] J. Park, R. Sandhu and Y. Cheng. User-Activity-Centric Framework for
Access Control in Online Social Networks. IEEE Internet Computing,
online preprint 2011.

[8] R. Sandhu, and E. Coyne, and H. Feinstein, and C. Youman. Role-based
access control models. IEEE Computer, V. 29, N. 2, Feb. 1996, pp. 38-27.

[9] R. Sandhu, V. Bhamidipati and Q. Munawer. The ARBAC97 Model for
Role-Based Administration of Roles. ACM TISSEC, V. 2, Feb. 1999.

[10] A. Cinzia Squicciarini, M. Shehab, and F. Paci. Collective privacy
management in social networks. Proceedings of the 18th international
conference on World wide web, 2009, pp. 521-530.


