Analyzing Malware Detection Effectiveness with Multiple Anti Malware Programs

Jose A. Morales
SEI @ CMU

Shouhuai Xu CS @ UTSA Ravi Sandhu
ICS @ UTSA

Roadmap

- Motivation
- Experimental Methodology
- **□** Experimental Results
- Summary

Motivation

- We all are victims of computer malware.
- **☐** We all use anti-malware programs.
- ☐ Most of us, if not all, use a single anti-

malware program (for economic reason).

Motivation (cont.)

- ☐ Is one anti-malware program sufficient?
- ☐ If not, how many?
- How critical is it to install anti-malware
 - program in clean state?

The Ideal

- □ Ideally, an anti-malware program can detect and clean all malwares in a system (undecidability!)
- An anti-malware program C_1 is competent if for every input $S=S_0$ it holds that after applying C_1 , no others can detect any more malware.

$$(\mathsf{DT}(C_1(S_0))=T)\wedge(\mathsf{DT}(C_2(S_1))=F)\wedge...\wedge(\mathsf{DT}(C_n(S_{n-1})=F)$$

Caveat: What is the ground truth?

The Reality

- ☐ The above idea can be extended to multiple programs that work collectively.
- ☐ Incompetence can be caused by
 - Incompetent detection
 - Incompetent cleaning up

Experiment 1: Install Anti-Malware Programs in Clean State

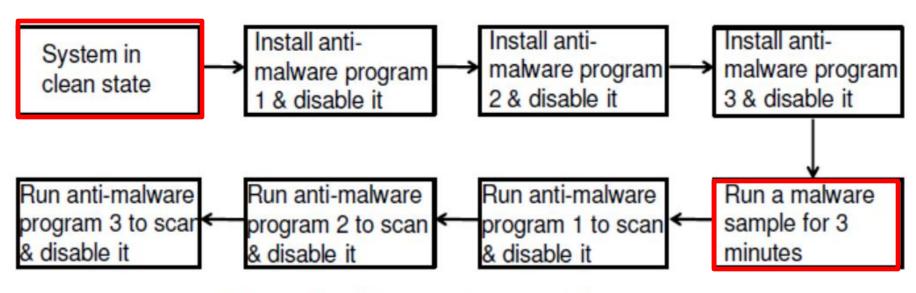


Fig. 2: Experiment 1 steps

Caveat: some malware may not do bad things until after running for more than 3 minutes or upon detecting the presence of VM

Experiment 2: Install Anti-Malware Programs in Possibly Compromised State

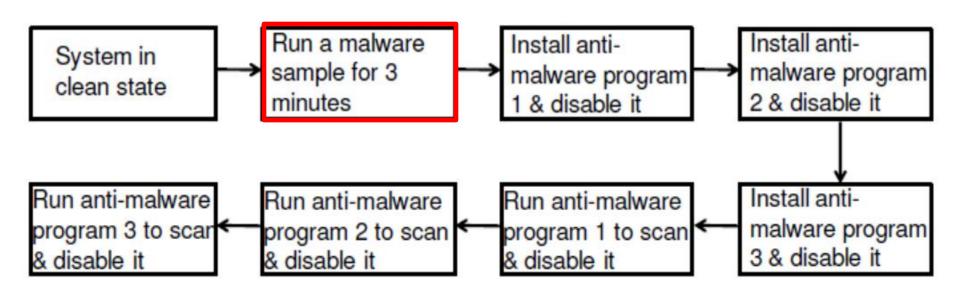


Fig. 3: Experiment 2 steps

Caveat: some malware may not do bad things until after running for more than 3 minutes or upon detecting the presence of VM

Experiments Setup

- Tested two sets of 3 anti-malware programs:
 - **❖** 1st set: ESET, AVG, Zonealarm
 - 2nd set: Kaspersky, G-data, Bitdefender
- ☐ Tested all permutations of each set: 3!=6
- Experiments carried out in Vmware
 - Running Windows 7 OS freshly installed to assure clean-state environment

Experiments Setup (cont.)

- **□** 500 malware samples
 - worms, rootkits, bots, backdoors, password stealers, malware downloaders

Experimental Results

Scanning	$SDTig(C_1(\cdot)ig)$	$SDT(C_1 \wedge$	$SDT(C_1 \wedge$
permuta-		C_2	$C_2 \wedge C_3$
tion			
EAZ	487	13	0
EZA	488	8	4
ZEA	500	0	0
ZAE	500	0	0
AEZ	494	6	0
AZE	493	5	2
KGB	500	0	0
KBG	500	0	0
GBK	497	0	3
GKB	494	6	0
BKG	493	6	1
BGK	494	2	4

Table 3: Experiment 1 results for $SDT(C_1 \wedge ... \wedge C_n)$

- Using multiple anti-malware programs does increase detection and cleaning up capability, despite some kind of diminishing return
 - Sometimes 3 anti-malware programs may not be sufficient (need to be verified by 4th anti-malware program)

Among the 500 malwares, the numbers of malwares detected & cleaned by the anti-malware programs.

Experimental Results

Scanning	$SDTig(C_1(\cdot)ig)$	$SDT(C_1 \wedge$	$SDT(C_1 \wedge$		Make sure anti-malware
permuta-		C_2)	$C_2 \wedge C_3$		program installed in clean state
tion					program instance in clean state
EAZ	180	64	128		Anti-malware program installed
EZA	190	43	161		
ZEA	86	157	102		in already compromised
ZAE	106	71	251		systems have high false-
AEZ	251	98	31		negatives
AZE	207	49	126		riegatives
KGB	403	57	21		Tested anti-malware progams
KBG	412	38	9		seem to lack a self-defense
GBK	302	76	57		
GKB	239	146	102		mechanisms
BKG	298	104	31		Malware running in a system
BGK	287	116	92		
Table 5: Expe	eriment 2 resu	ilts for SDT($C_1 \wedge \wedge C_n$)	may block access to resources
					needed by anti-malware

Among the 500 malwares, the numbers of malwares detected & cleaned by the anti-malware programs.

How Many Anti-Malware Tools Are Sufficient?

- Based on experimental results (based on 500 malware samples only):
 - 1 is occasionally ok
 - 2 minimum for low protection
 - **❖** 3+ for medium+ protection

Summary

- ☐ Current individual anti-malware programs do not provide sufficient protection
 - Despite some anti-malware programs worked well with the 500 malware samples
- ☐ Using multiple anti-malware programs together can improve protection
 - **❖** Need to test with much larger malware sets

The Challenge

- ☐ Implication: Current anti-malware technology is not sufficient
 ☐ We need revolutionary technology in combating malware
- We have to
- ☐ How?
- ☐ Things can be worse: Our another study showed that there are malwares that can evade perhaps all anti-malware programs

Thanks!

Questions or Comments?