
An Attribute-Based Access Control Extension for OpenStack
and its Enforcement Utilizing the Policy Machine

Smriti Bhatt, Farhan Patwa and Ravi Sandhu
Institute for Cyber Security and Department of Computer Science

University of Texas at San Antonio

San Antonio, Texas, USA

bhattsmriti1@gmail.com, farhan.patwa@utsa.edu and ravi.sandhu@utsa.edu

Abstract—Role-Based Access Control (RBAC) has been the
dominant access control model in industry since the 1990s. It
is widely implemented in many applications, including major
cloud platforms such as OpenStack, AWS, and Microsoft Azure.
However, due to limitations of RBAC, there is a shift towards
Attribute-Based Access Control (ABAC) models to enhance flex-
ibility by using attributes beyond roles and groups. In practice,
this shift has to be gradual since it is unrealistic for existing
systems to abruptly adopt ABAC models, completely eliminating
current RBAC implementations.

In this paper, we propose an ABAC extension with user
attributes for the OpenStack Access Control (OSAC) model
and demonstrate its enforcement utilizing the Policy Machine
(PM) developed by the National Institute of Standards and
Technology. We utilize some of the PM’s components along with
a proof-of-concept implementation to enforce this ABAC exten-
sion for OpenStack, while keeping OpenStack’s current RBAC
architecture in place. This provides the benefits of enhancing
access control flexibility with support of user attributes, while
minimizing the overhead of altering the existing OpenStack
access control framework. We present use cases to depict added
benefits of our model and show enforcement results. We then
evaluate the performance of our proposed ABAC extension, and
discuss its applicability and possible performance enhancements.

Keywords—Policy Machine; Attribute-Based Access Control;
OpenStack; Authorization Engine;

I. INTRODUCTION

Role Based Access Control (RBAC) model [2]–[4] is the

most widely used access control model in industry. Many

different applications and platforms use some customized

form of RBAC based on their needs and requirements. Major

cloud computing platforms such as OpenStack [5], AWS [6],

and Microsoft Azure [7] utilize RBAC as their authorization

foundation. Besides many well-known advantages of RBAC

[8], it also has some well-known limitations [9] such as role

explosion and role-permission explosion.

In RBAC, access control policies can only be defined on

basis of roles which restricts access control flexibility. On the

other hand, Attribute-Based Access Control (ABAC) provides

great flexibility to express fine-grained access control policies

in a simple and more powerful way based on attributes of

users, subjects, and objects [10]–[12]. With the advancements

of ABAC and its capabilities, there is an inevitable need

for implementing ABAC models in real-world applications

and systems. However, it is difficult for existing systems to

instantaneously adapt to attribute-based access control policies

since they require a well-defined and robust attribute and

access control management system for their implementation.

We believe the transformation from RBAC to ABAC policies

has to be gradual but we will eventually see wide adoption and

implementation of ABAC models in the industry. In particular

combining ABAC with roles is one promising transition path.

NIST has identified three different ways of combining

RBAC and ABAC effectively adding attributes to role-based

access control policies. First is dynamic roles which uses user

and context attributes to dynamically assign roles to users. This

is similar to attribute-based user-role assignment [13]. Second

is attribute-centric where roles are just another attribute of

users with no special semantics. The third is role-centric
which constraints the permissions of a role based on user

attributes [14], [15].

In this paper, we propose a role-centric ABAC model for

OpenStack by adding user attributes to the core OpenStack

Access Control (OSAC) model [1]. This allows us to extend

existing RBAC in OpenStack with attributes in order to

combine the advantages of both models. We demonstrate the

enforcement of our model in OpenStack using a general-

purpose attribute-based access control framework developed

by NIST, known as the Policy Machine (PM) [16], [17].

PM enables expression and enforcement of different types of

access control policies through its policy configuration points.

It provides a unifying framework to define, administer and

enforce commonly known access control policies as well as

new access control policies.

To facilitate communication between OpenStack and PM,

we implemented a RESTful service called the Authorization

Engine (AE). AE is a proof-of-concept implementation which

acts as an authorization component by getting information and

permissions from a PM server and evaluating authorization

decisions. These decisions are then returned to OpenStack

services where the policy is enforced. We also present use

cases to show how existing RBAC and proposed role-centric

ABAC policy would work in an organization-specific environ-

ment. Finally, we present performance evaluations followed by

a discussion and analysis of our ABAC extension with user

attributes to OpenStack and the AE enforcement architecture.

The rest of the paper is organized as follows. Section 2

briefly discusses related work and presents background on

OpenStack access control model, and the Policy Machine. Our

role-centric ABAC extension for OpenStack is presented and

defined in Section 3. Section 4 discusses the enforcement and

implementation details. Section 5 presents use cases of access

2016 IEEE 2nd International Conference on Collaboration and Internet Computing

978-1-5090-4607-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CIC.2016.17

37

2016 IEEE 2nd International Conference on Collaboration and Internet Computing

978-1-5090-4607-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CIC.2016.17

37

2016 IEEE 2nd International Conference on Collaboration and Internet Computing

978-1-5090-4607-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CIC.2016.17

37

Figure 1: Simplified OpenStack Access Control (OSAC) Model (Adapted from [1])

control policies defined in PM and enforced in OpenStack. The

performance evaluation, followed by a discussion and analysis,

is presented in Section 6. Section 7 gives our conclusions and

thoughts on future work.

II. RELATED WORK AND BACKGROUND

In this section, we briefly discuss prior efforts on adding

attributes to the OpenStack access control and authorization

framework. The applicability of ABAC in OpenStack has

been studied in different scenarios. Approaches to include

attributes in OpenStack for cloud federation and federated

identity management are discussed by Chadwick et al [18] and

by Lee and Desai [19]. Pustchi and Sandhu [20] discuss the

application of ABAC to enable collaboration between tenants

in a cloud IaaS platform. In contrast our ABAC extension is

focused on authorization in OpenStack within a single tenant.

Jin et al. [12] presented a unified ABAC model that can

be configured to do mandatory, discretionary and role-based

access control, and demonstrated an OpenStack implementa-

tion [21] as a replacement for the native OpenStack RBAC.

Our approach is specifically designed to incorporate Open-

Stack’s existing RBAC with an ABAC extension. A formal

role-centric attribute-based access control (RABAC) model has

been proposed by Jin et al. [15], along with XACML [22]

profiles for this model. XACML is a general-purpose access

control policy language for managing access to resources.

Our role-centric ABAC extension for OpenStack, in con-

trast, includes only user attributes as a first step leaving

object attributes for future work. In cloud environments the

objects are created on-demand, hence cannot be specified in

the policy during policy configuration [1]. Besides this, we

are utilizing the PM, a different attribute-based access control

framework than XACML. PM is an open-source and freely

available software by NIST [23] that facilitated us to build

a customized authorization engine component for our ABAC

extension for OpenStack. PM’s flexibility and capabilities

made it a desirable choice for our enforcement framework.

We now present background on the OpenStack Access

Control (OSAC) model, and the Policy Machine (PM).

A. Simplified OpenStack Access Control (OSAC) Model

A core OSAC model was presented by Tang and Sandhu [1],

based on the OpenStack Identity API v3 and Havana release.

For ease of exposition, we simplify this model by removing

Groups and Domains. The resulting simplified OSAC model

is shown in Figure 1 and is defined as follows.

Definition 1. Simplified OSAC model has the following

core and derived components.

1.1 Core Components:
- U,P,R, S,OT,OP and T are finite sets of users, projects,
roles, services, object types, operations and tokens respectively
- PRP � P �R, is the set of project-role pairs
- PERMS � OT �OP , is the set of permissions
- UA � U � PRP , is a many-to-many user to project-role
assignment relation
- RPA � PERMS � R, is a many-to-many permission to
role assignment relation
- ot service : OT � S, is a function mapping an object
type to its associated service
- user tokens : U � 2T , is a function mapping a user to
a set of tokens; correspondingly, token user : T � U , is a
mapping of a token to its owning user
- token project : T � P , is a function mapping a token to
its target project

1.2 Derived Components:
- token roles : T � 2R, is a function mapping a token
to its set of roles, formally, token roles�t� � �r � R 	
�token user�t�, �token project�t�, r�� � UA

383838

- ETPA : T � 2PERMS , is a function specifying the
permissions available to a user through a token, formally,
ETPA�t� �

�
r�token roles�t��perm � PERMS �

�perms, r� � RPA�.

Simplified OSAC comprises seven entities: users, projects,
roles, services, object types, operations, and tokens. Groups
and domains are removed in this simplified model since

groups are mere collection of users, and users in OpenStack

belongs to a single domain or tenant (where they are created)

and can be seen and managed only by the domain owner or

administrator. The scope of simplified OSAC is within a single

domain, thus the administrative boundary of domains is not

relevant in this context.

Users are individuals authenticated to access cloud re-

sources, projects are resource containers through which users

get access to specific cloud resources such as virtual machines

(VMs), storage, etc. Roles are global entities used to associate

users with any of the projects inside a domain. Permissions
are assigned to role-project pairs and are used to specify

access levels of users to services in specific projects, with

specific roles. Role-permission assignments are defined by a

cloud administrator. Object types are different resources in

cloud services such as virtual machines (VMs), images, swift-

objects etc. Operations are access methods on these object

types owned by services in the cloud.

Each authenticated user receives a token from the identity

service Keystone, which defines the scope of resources that a

user is allowed to access. A token is equivalent to a subject

and has information of the user, its roles and its associated

projects [24]. The derived components are derived from the

core components such as token roles and Effective Token
Permission Assignment (ETPA). ETPA is based on the token

a user presents during access requests, and permissions are

identified based on roles present in a token for a specific user,

in specific projects. This is a RBAC model and has limitations

as discussed earlier. To overcome these limitations, we extend

the simplified OSAC model by adding user attributes. The

extended model and its details are presented in Section 3.

B. The Policy Machine

Policy Machine (PM) [16] is a general-purpose attribute-

based access control framework which can express and enforce

arbitrary, organization specific, attribute-based access control

policies. It is a mechanism to define access control policies

in terms of a standardized and generic set of relations and

functions that can be reused. The main objective of PM is

to provide a unifying framework to support a wide range of

attribute-based policies or policy combinations.

The PM has eight core elements or entities: users, objects,
user attributes, object attributes, operations, processes,
access rights and policy classes. The policy classes, user

attributes and object attributes are containers for policies, users

and objects respectively.

The PM has four types of relations: assignment, associa-
tion, prohibition and obligation, and two sets of functions:

Figure 2: Policy Machine Architecture (Adapted from [16])

access control decisions and policy enforcement. PM also

supports hierarchical relations through containment.

In this paper, we utilize only two types of relations assign-
ment—for specifying policies, users, and user attributes, and

association–for making association between user attributes and

object attributes or objects through some operations.

The general PM architecture is shown in Figure 2. It

comprises of PM server, PM clients and Resources repository.

PM server includes a PM Database (Active Directory), a Policy

Decision Point (PDP), a Policy Administration Point (PAP)

and an event processing module. The PM clients are host

systems where the policies are enforced. They encapsulate

the application programming interfaces (API) and PM-aware

applications. In current PM implementation, the Policy En-

forcement Point (PEP) is implemented as a kernel simulator.

The PM client or the user environment is the context in which

the user’s PM processes run. These processes are similar

to subjects. A PM client could be an operating system, an

application (e.g., a database management system), a service in

a service oriented architecture, or a virtualized environment.

The resources are the repositories for different types of objects

such as files, records, directories, etc. [17].

Policy Machine supports a rich set of capabilities for defin-

ing customized access control policies. It allows to specify

deny or prohibition relations and apply constraints, and also

allows to combine different access control policies specified

in PM using the Admin tool. PM Admin tool is a GUI

based tool, used to define access control policies in PM by

creating policy classes, users, user attributes, objects, object

attributes, and setting operations sets and permissions between

user attributes and object attributes and objects. All this data,

information and relations are stored in Active Directory (the

PM Database). Users request access to objects through PM

clients which in turn communicate to the PM server for access

control decisions and enforce these decisions on host systems.

III. AN ABAC EXTENSION FOR OPENSTACK

In this section, we propose a role-centric ABAC model for

OpenStack by extending the simplified OSAC model.

393939

Figure 3: User-Attribute Enhanced OSAC in Single Tenant

This model is called the User-Attribute Enhanced OSAC

model and is depicted in Figure 3. It has all the core

components and derived components of simplified OSAC

model along with some newly added elements and relations.

User attributes are added to the Users and a new relation

UAPA is introduced for user-attribute value and permission

assignment. This model is a role-centric ABAC [14] model in

the sense that it incorporates the existing RBAC framework

of OpenStack, keeping all its advantages, and adds in the

flexibility of ABAC model by introducing user attributes. A

user’s roles determine the maximum permissions which are

further reduced by user attribute permission assignments. The

newly added components are defined as follows.

Definition 2. User-Attribute Enhanced OSAC model has

the following additional and modified components besides

simplified OSAC model.

2.1 Additional Core Components
- UAtt is a finite set of user attribute functions
- Range�uatt� where uatt � UAtt, is a finite set of atomic
values defined for each user attribute function in UAtt
- For each uatt in UAtt, uatt : U � Range�uatt�, is a
mapping of each user to an atomic value in Range�uatt�
- UAPA � PERMS � ��uatt, v	
 uatt � UATT ; v �
Range�uatt��, is a many to many permission to attribute-
value assignment relation

2.2 Modified Derived Component
- ETPA : T � 2PERMS , is a function specifying
the permissions available to a user through a
token and user-attribute value assignment, formally
ETPA�t� �

�
r�token roles�t��perm � PERMS

�perm, r� � RPA�

�

uatt�UAtt�perm � PERMS

�perm, �uatt, uatt�token user�t��	� � UAPA�

User Attribute is a function which takes a user and

returns a specific value from its range, where the range of

an attribute is a finite set of atomic values defined for each

attribute function. In general attributes are of two types—

atomic valued attribute returns only one value from its range;

and set valued attribute returns some subset of the range. User

attributes represents characteristics or properties of the users,

some examples are Department, Clearance, and Specialization

[12], [15]. The User-Attribute Enhanced OSAC model only

allows atomic-valued attributes for users. UAPA is a set of

permissions associated with user attributes and their assigned

values. ETPA has been modified to include permissions from

user attributes, in addition to permissions from roles.

Scope and Assumptions

In the User-Attribute Enhanced OSAC model, we require

that each user attribute is atomic valued. Every user is as-

sociated with a finite set of user attribute functions whose

values are assigned and modified by security administrators.

The details of this process are outside the scope of this paper.

For any user, all the associated user attributes are always active

during their lifetime in any defined policy.

IV. ENFORCEMENT AND IMPLEMENTATION

This section presents the enforcement and implementation

details of enforcing user-attribute enhanced OSAC in Open-

Stack utilizing the PM. OpenStack is a rapidly changing open-

source cloud platform that provides an architecture to use

or enhance its services as per the requirements. OpenStack

and PM, both being open-source, provide the capability to

404040

Figure 4: An ABAC Enforcement Architecture for OpenStack

using PM

integrate our own implementation in the OpenStack autho-

rization framework. In order to enforce our ABAC extension,

user-attribute enhanced OSAC model, on OpenStack using

PM, we need a customized authorization engine. Thus, an

authorization engine (AE), which is a RESTful service, has

been implemented as a proof-of-concept which acts as an

interface between OpenStack and PM. In the enforcement

framework, OpenStack Kilo release with Identity API version

2 and PM version 1.5 have been used. As per discussions with

NIST PM team, a new version—PM 1.6 is soon to be released

with new features and better performance. The newer release

addresses the performance issues observed in PM 1.5.

A. Enforcement Architecture

The enforcement architecture is shown in Figure 4 and

has been adapted from PM architecture in Figure 2. In this

architecture, we utilize the PM server as a centralized policy

administration point that returns a set of user permissions

on objects based on the policy definitions. It is connected

to an active directory (AD), a back-end database for PM

that stores all the users and their associated user attributes.

We also assume that OpenStack uses the same AD as its

user identity back-end in order to store all users related

information, including attributes. Due to dynamic nature of

cloud objects, we consider OpenStack commands as objects

in the policy defined in PM. The commands are specific to

each service in OpenStack such as Nova, Glance, Cinder, etc.

The policy definitions, typically listed in OpenStack policy

file have been defined in PM Admin Tool in an “OpenStack”

policy class. One instance of OpenStack policy class, from

“Objects/Attributes with ACE’s” view, is shown in Figure 5.

This is a sample policy defined for Nova keypair com-

mands in OpenStack. These commands are used to generate

ssh keys for a user which in turn are used while creating

VMs. In Figure 5, Admin and Manager are roles (depicted

as user attributes in PM), and compute extension-keypair-
index, compute extension-keypair-create, compute extension-

Figure 5: OpenStack Authorization using AE and PM

keypair-delete, and compute extension-keypair-show are Nova

commands (depicted as objects in PM). The user attributes

and objects in PM are associated with a specific operation set,

e.g., “06932852” is an operation set with “read” permissions

defined between user attributes—Admin and Manager, and

object—compute extension-keypair-index. That means that at-

tribute values Admin and Manager have read permissions on

compute extension-keypair-index, so that a user with any of

these roles is authorized to do this operation in OpenStack.

The enforcement architecture utilizes a server-client archi-

tecture where PM server and AE has server-client relationship,

and similarly AE, itself, acts as a server for different services

of OpenStack. OpenStack services communicate, through a

RESTful API, to AE which in turn communicates to PM server

for making authorization decisions.

B. Authorization Engine

The authorization engine (AE) is an interface for commu-

nication between PM server and different OpenStack services.

It is written in Java using a RESTful API and acts as a

RESTful server for OpenStack services. For any operation to

be performed by a user in OpenStack, AE initially verifies

the project in the target and the token. Then, it connects to

PM server and queries it via different PM commands to make

access control decisions based on our ABAC extension for

OpenStack.

AE replaces the existing policy engine in OpenStack and

is responsible for evaluating the policy defined in PM and

returning access decisions to OpenStack services. OpenStack

Services (S) are the policy enforcement points (PEP) that

enforces the access decisions returned by AE and responds

to the users with appropriate results.

A sequence diagram presenting authorization in OpenStack

using AE and PM is shown in Figure 6. It shows the sequence

of actions involved in the authorization process. Currently, AE

works with two types of policies, a RBAC policy (same as

414141

Figure 6: OpenStack Authorization using AE and PM

OpenStack’s current access control policy), and a role-centric

ABAC policy with user attributes (our user-attribute enhanced

OSAC), and can be easily extended to enforce other types of

access control policies as required.

This is a proof-of-concept implementation and is mainly

designed to show the applicability and feasibility of our

proposed model in OpenStack cloud platform. However, it has

not been optimized for performance. AE can be designed to

be a more general and independent component which could

be used with any policy-configuration tool, like PM, and be

applicable to other cloud platforms besides OpenStack.

V. USE CASE

Here, we present two use cases—first with only roles,

and second with roles and user attributes. These use cases

respectively illustrate how a simplified OSAC model and

a user-attribute enhanced OSAC model can be enforced in

OpenStack using PM and AE.

A. A Simplified OSAC RBAC Policy

In this first use case, we present a sample RBAC policy,

equivalent to simplified OSAC policy in OpenStack, with two

roles Admin and Manager, and four Nova commands:

compute extension-keypair-index, compute extension-
keypair-create, compute extension-keypair-delete, and

compute extension-keypair-show. These are example

commands that we choose for the use case. Similar to

these commands, we can define authorization policies for

other commands in different services of OpenStack. The

permissions are determined by the roles that a user has been

assigned in a specific project. The Nova keypair commands

are used to generate ssh keys for a user. These keys are used

while creating VMs. A user can create, delete, list, and show

details of keypairs using these commands. The authorization

rules for each command, for a generic user u are given below.

Roles: {Admin, Manager}

Figure 7: A Role-Based Access Control Policy in PM

Commands (c): compute extension-keypair-index,
compute extension-keypair-create, compute extension-
keypair-delete, and compute extension-keypair-show

Authorization rules for any user u:
- compute extension-keypair-create � Role(u) = Admin
- compute extension-keypair-delete � Role(u) = Admin
- compute extension-keypair-index � (Role(u) = Admin
� Role(u) = Manager)
- compute extension-keypair-show � (Role(u) = Admin
� Role(u) = Manager)

Here, the rules state that a user must have an Admin role to

create or delete keypairs, whereas compute extension-keypair-
index and compute extension-keypair-show are authorized to

be performed by an Admin role or Manager role. To enforce

this authorization policy, we defined an equivalent policy to

authorize each of these commands in PM. Figure 7 shows the

policy defined in PM. There are two roles defined Admin and

Manager as shown on the left side, and associations between

commands and roles via operation sets (alpha-numerically

named by default) are shown on the right in Figure 7. As

shown on the right side, compute extension-keypair-index can

be done by Admin or Manager, whereas compute extension-
keypair-create and compute extension-keypair-delete can be

done by Admin only. On OpenStack end, we defined two

roles Admin and Manager and assigned a single role or a

combination of these roles to some users in a test tenant, for

example user1 is an Admin and user2 is a Manager. The policy

was tested in OpenStack by executing different commands for

these users. A screenshot of the authorization results for few

commands are shown in Figure 8.

B. A Role-Centric ABAC Policy

Here, we present a role-centric ABAC policy with user at-

tributes only. This is an example of our user-attribute enhanced

OSAC policy. Besides roles and commands, there is a user

attribute—Department that can be assigned only one value

from its Range = �IT,OPS� for any user. User attributes are

atomic valued unlike roles, which implies that a user can have

424242

Figure 8: OpenStack Enforcement Results

multiple roles assigned but it can only be in one department,

either IT or OPS. For any user, accesses are defined based

on their roles and their associated user attributes. In a real

organization, there are multiple roles and user attributes, and

permissions are assigned based on roles and user attributes.

The authorization policy is defined based on roles and user

attributes and is given below. As per the first rule, a user

u is authorized to compute extension-keypair-create only if

the user has been assigned role Admin and the user is in

department IT. Both of these requirements need to be true,

otherwise, a user without the specified role and user-attribute

value will be denied access. The second rule is similar. In

the third rule, a user u needs to have an Admin or Manager
role along with user-attribute value as IT or OPS. This is a

role-centric policy which means that first the role is checked,

then only user-attribute value will be checked. If a role check

fails, then access is denied and user-attribute value is not

checked.

Roles: {Admin, Manager}
Department: {IT, OPS}
Commands (c): compute extension-keypair-index,

compute extension-keypair-create, compute extension-
keypair-delete, and compute extension-keypair-show

Authorization rules for any user u:
- compute extension-keypair-create � (Role(u) = Admin
� Dep(u) = IT)
- compute extension-keypair-delete � (Role(u) = Admin
� Dep(u) = IT)
- compute extension-keypair-index � ((Role(u) = Admin
� Role(u) = Manager) � (Dep(u) = IT � Dep(u) =
OPS))
- compute extension-keypair-show � ((Role(u) = Admin
� Role(u) = Manager) � (Dep(u) = IT � Dep(u) =
OPS))

Policy definition in PM is shown in Figure 9. Unlike the pre-

vious use case, there is an additional PM container Attributes
which contains user attribute Department with two values IT
and OPS. Associations shown on the right side also include

user attributes besides the roles. In OpenStack, we defined a

number of users with different roles and user attribute values

Figure 9: A User-Attribute Enhanced OSAC Policy in PM

and tested access for them against desired results. For example,

a user user1 is defined with role Admin and user attribute

department as OPS, and another user user4 is defined with role

Admin and user attribute department as IT. In this case, user4
has access to execute command compute extension-keypair-
create, whereas user1 is denied access due to the department

attribute value OPS. A screenshot of results in OpenStack is

presented in Figure 10.

Figure 10: OpenStack Enforcement Results

VI. EVALUATION

In this section, we present the details of our experiments

carried out for performance evaluation. We discuss our results

and analyze the applicability of our enforcement model with

possible performance enhancements. The experiments were

performed on two types of policies discussed in the use cases.

We created scripts to test performance of Nova commands

and compute the time taken for a set of number of requests

(Nova command). The graph in Figure 11 shows the overall

time for a set of requests executed by an OpenStack user.

Here, our main objective is to evaluate the time taken for

authorization decisions in existing OpenStack access control

framework and an ABAC extended OpenStack access control

framework utilizing the PM and AE.

The results showing only the policy check time in Open-

Stack are depicted in Figure 12. These graphs contain three

434343

curves, one for a RBAC policy in OpenStack without any

modifications (OS RBAC), second for the same RBAC pol-

icy in OpenStack with modified policy engine (i.e. AE) and

the PM (OS PM RBAC), and third for our user-attribute

enhanced role-centric policy in OpenStack with AE and PM

(OS PM ABAC). The overall request-response time for

these three cases are quite similar, however, the policy check

time for each of these cases significantly differ from each

other. A centralized policy administration point PM, and a

RESTful service AE in between PM and OpenStack adds

latency in policy evaluation time.

Discussion and Analysis

There is always some trade-off between performance and

enhanced functionality or capability. In this paper, our main

goal is to enforce our proposed ABAC extension for Open-

Stack in an OpenStack platform. This model incorporates all

the benefits of existing OpenStack access control mechanism

and adds great flexibility by adding user attributes. These user

attributes included in the policy allows a user to be assigned

least possible permissions and allows to define more fine-

grained access control policies avoiding problems such as role

explosion and role-permission explosion.

Generally, an admin user is supposed to have maximum per-

missions but in a real enterprise, there are various departments

and there could be an admin for each department. Similarly,

there are many employees working in a department having

different skill levels. Thus, creating a role for each of these

combinations result in role explosion. However, having user

attributes such as department and skills along with role admin

in a policy avoids such problems and significantly enhances

the capability and flexibility of access control policy.

Performance evaluations of our ABAC extension against

existing OSAC gives an idea of the cost of applying it in

real systems. However, there are a number of reasons for

the performance latency. First, our implementation is a proof-

of-concept implementation and hasn’t been optimized for

performance yet. It was rather driven by applicability of the

model in a real platform, i.e., OpenStack. PM, the tool utilized

to enforce this model, is mainly designed as a general attribute-

based access control framework but needs some performance

enhancements to be used in a real production environment.

Also, there is network latency contributing to the time for each

request from OpenStack to a centralized PM server which is

currently residing on a node in different subnet.

We identify here a few techniques to achieve performance

improvements: i) using performance enhanced server to host

PM and AE in order to improve policy evaluation time, ii)

caching policy evaluation results locally on the services, and

iii) having PM, AE, and OpenStack services installed on an

isolated subnet, similar to a typical OpenStack installation in

a production environment.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an ABAC extension for Open-

Stack and enforced it utilizing the PM and AE. We presented

Figure 11: Overall Time Taken in Requests-Response

Figure 12: Policy Check Time for Requests by User

use cases to depict applicability and benefits of our ABAC

extension with user attributes. We also investigated the cost

and feasibility of this model and its enforcement architecture.

This is an initial attempt towards applying a combination

of ABAC model and RBAC model in a widely used cloud

computing platform—OpenStack.

We believe this work will facilitate the transition towards

ABAC models and will open prospective avenues to apply

ABAC in real world applications using the PM. There are

many interesting capabilities of PM that can be explored as

extensions to our model such as applying combination of

different access control policies defined in PM, or incorpo-

rating deny relations and constraints in the policies. Attribute

and Role hierarchy is one of the possible extensions that is

supported in PM and can be incorporated in our model. Be-

sides these, the future work includes applying above discussed

performance enhancements to the enforcement framework.

444444

ACKNOWLEDGMENT

The authors would like to thank NIST and the Policy

Machine team, especially Dr. David Ferraiolo, Serban I.

Gavrila, and Gopi Katwala for their continuous support and

useful suggestions. This research is partially supported by NSF

Grants CNS-1111925 and CNS-1423481, and DoD ARL Grant

W911NF-15-1-0518.

REFERENCES

[1] B. Tang and R. Sandhu, “Extending OpenStack access control with
domain trust,” in International Conference on Network and System
Security. Springer, 2014, pp. 54–69.

[2] R. Sandhu, E. J. Coyne, H. Feinstein, and C. Youman, “Role-based
access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[3] R. Sandhu, “Role-based access control,” Advances in Computers, vol. 46,
pp. 237–286, 1998.

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[5] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[6] “Amazon Web Services (AWS) - Cloud Computing Services.” [Online].
Available: https://aws.amazon.com

[7] “Microsoft Azure.” [Online]. Available: https://azure.microsoft.com
[8] L. Fuchs, G. Pernul, and R. Sandhu, “Roles in information security–a

survey and classification of the research area,” Computers & Security,
vol. 30, no. 8, pp. 748–769, 2011.

[9] Q. M. Rajpoot, C. D. Jensen, and R. Krishnan, “Integrating attributes
into role-based access control,” in IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 2015, pp. 242–249.

[10] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control.” IEEE Computer, vol. 48, no. 2, pp. 85–88, 2015.

[11] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and
K. Scarfone, “Guide to attribute based access control (ABAC) definition
and considerations,” NIST Special Publication 800-162, 2014.

[12] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering DAC, MAC and RBAC,” in IFIP Annual
Conference on Data and Applications Security and Privacy. Springer,
2012, pp. 41–55.

[13] M. A. Al-Kahtani and R. Sandhu, “A model for attribute-based user-
role assignment,” in Proceedings of 18th Annual Computer Security
Applications Conference, 2002. IEEE, 2002, pp. 353–362.

[14] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based
access control,” IEEE Computer, vol. 43, no. 6, pp. 79–81, 2010.

[15] X. Jin, R. Sandhu, and R. Krishnan, “RABAC: role-centric attribute-
based access control,” in International Conference on Mathematical
Methods, Models, and Architectures for Computer Network Security.
Springer, 2012, pp. 84–96.

[16] D. Ferraiolo, V. Atluri, and S. Gavrila, “The Policy Machine: A novel
architecture and framework for access control policy specification and
enforcement,” J. of Sys. Architecture, vol. 57, no. 4, pp. 412–424, 2011.

[17] D. Ferraiolo, S. Gavrila, and W. Jansen, “Policy machine: features,
architecture, and specification,” National Institute of Standards and
Technology Internal Report 7987, 2014.

[18] D. W. Chadwick, K. Siu, C. Lee, Y. Fouillat, and D. Germonville,
“Adding federated identity management to OpenStack,” Journal of Grid
Computing, vol. 12, no. 1, pp. 3–27, 2014.

[19] C. A. Lee and N. Desai, “Approaches for virtual organization support in
OpenStack,” in IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 2014, pp. 432–438.

[20] N. Pustchi and R. Sandhu, “MT-ABAC: A multi-tenant attribute-based
access control model with tenant trust,” in International Conference on
Network and System Security. Springer, 2015, pp. 206–220.

[21] X. Jin, R. Krishnan, and R. Sandhu, “Role and attribute based collabo-
rative administration of intra-tenant cloud IaaS,” in IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2014, pp. 261–274.

[22] “XACML.” [Online]. Available: https://en.wikipedia.org/wiki/XACML
[23] “Policy Machine.” [Online]. Available: http://csrc.nist.gov/pm/

[24] Y. Zhang, F. Patwa, R. Sandhu, and B. Tang, “Hierarchical secure
information and resource sharing in OpenStack community cloud,” in
IEEE International Conference on Information Reuse and Integration
(IRI). IEEE, 2015, pp. 419–426.

454545

