
Clustering-Based IaaS Cloud Monitoring

Mahmoud Abdelsalam∗, Ram Krishnan† and Ravi Sandhu‡
∗†‡Institute for Cyber Security, ∗‡Department of Computer Science, †Department of Electrical and Computer Engineering

University of Texas at San Antonio, San Antonio, Texas, USA
Email: ∗mahmoud.abdelsalam@utsa.edu, †ram.krishnan@utsa.edu, ‡ravi.sandhu@utsa.edu

Abstract— Organizations increasingly utilize cloud services
such as Infrastructure as a Service (IaaS) where virtualized
IT infrastructure are offered on demand by cloud providers.
A major challenge for cloud providers is the security of
virtual resources provided to its customers. In particular, a
key concern is whether, for example, virtual machines (VMs)
in the datacenter are performing tasks that are not expected
of those machines. Given the scale of datacenters, continuous
security monitoring of the virtual assets is essential to detect
unexpected (and potentially malicious) behavior. In this paper,
we develop a continuous monitoring framework for cloud
IaaS. The proposed framework uses a modified version of
sequential K-means clustering algorithm for anomaly detec-
tion based on variations in resource utilization that can be
observed when cloud insiders or malware perform malicious
tasks on cloud customers’ VMs. Our approach assumes no
prior knowledge of the installed applications on the VMs.
Finally, our experiments are performed on data collected from
our OpenStack (a popular open-source cloud IaaS software)
testbed based on a standard 3-tier web architecture with
the ability to scale-out (i.e., multiple copies of the server
are spawned) and scale-back (i.e., the number of copies are
reduced) on demand. The experiments are based on real-
world as well as synthetically injected anomalies.

Keywords-Anomaly Detection; Cloud IaaS; Insider Threat;
Malware; Ransomware

I. INTRODUCTION

Cloud systems are becoming increasingly complex due

to the large number of services, resources and tenants

(customers) involved. In the case of an Infrastructure as a

Service (IaaS) cloud—where virtualized resources such as

compute, storage and networking are provided as a service

to various tenants by a cloud service provider—the tenants’

resource usage ranges from a few VMs to hundreds of

VMs. For example, applications that use Hadoop are often

deployed over hundreds of VMs. Hence automatic and

continuous monitoring of VMs for security has become

a necessary task for not only the cloud service providers

but also their tenants.

Such a monitoring capability is necessary to address

many different concerns and threats that arise in IaaS

clouds. For example, tenant users could be malicious and

infect other tenants’ VMs via co-resident attacks [1]. Some

of the end users accessing tenant provided services (e.g., a

web application hosted on a 3-tier architecture) could inject

malware into its VMs. Such issues need to be continuously

and automatically monitored given the scale of modern

cloud platforms. It is worth mentioning that cloud security

monitoring takes place at many points in the cloud (e.g.

cloud services APIs, storage, network or VMs). In this

work, we focus our scope on monitoring VMs in IaaS

clouds.

In this paper, we investigate an approach to monitor IaaS

clouds using clustering of VMs based on similar resource

usage and interaction. Most anomaly detection approaches

in cloud do not leverage the properties of the application

architecture (such as n-tier architecture and Hadoop) or the

specific characteristics of cloud (e.g. autoscaling). Instead,

they attempt to characterize anomalous behavior of a

specific VM without the context of cloud. As a matter of

fact, the behavior that is considered anomalous for one

VM might not be anomalous for another VM. In practice,

a cloud system has many tenants and each tenant has

many VMs. Typically, those VMs are not randomly created,

but rather created in a systematic manner (e.g. based on

a specific autoscaling policy), with each group of VMs

performing a specific kind of task. In this paper, we take

a holistic view of cloud rather than individual VMs in

order to detect anomalies for a given tenant. The major

contributions of this paper are two-fold:

• We develop an approach for detecting anomalous

behavior of VMs in scenarios involving autoscaling

in IaaS clouds by employing machine learning. In

particular, we develop a modified version of sequential

K-means [2] clustering algorithm.

• We implement this approach in OpenStack, build a

realistic hardware testbed using OpenStack, and eval-

uate its effectiveness against real-world and synthetic

anomalies.

To the best of our knowledge, this is the first clustering

approach to profile VMs with respect to each other in order

to detect anomalous behaviour.

The rest of the paper is organized as follows. Section II

describes related work. Section III describes the clustering

techniques and their usage for this work. Section IV pro-

vides an overview of the proposed framework and explains

the methodology for implementing the framework. Section

V explains the OpenStack-based tested setup. Section VI

discusses the experiments we performed on an OpenStack-

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.90

672

based tested and its results. Finally, Section VII concludes

our findings and gives some directions for future work.

II. RELATED WORK

Cloud monitoring has recently been the focus of many

works. Several approaches have been proposed for cloud

security monitoring. One of the most used techniques is

Intrusion Detection Systems (IDS). The work in [3] pro-

vides a comprehensive overview of the approaches for IDS.

Mainly, these are categorized into two main approaches:

signature-based and anomaly-based. Signature-based ap-

proaches are effective methods for known attacks, however

they are not effective to detect unknown attacks or even a

variant of a known attack since they depend on signatures

of known attacks. Anomaly-based approaches are effective

against new attacks because they are behavioral-based.

However, they suffer from accuracy rate. This paper’s

approach is behavior-based anomaly detection for VMs that

belong to a specific tenant. As we will see, the behavior-

based approach has a significant advantage in malware

detection in the context of auto-scaling VMs in IaaS.

The work in [4] give a summary of the different tech-

niques for anomaly detection. In this work, a framework

for choosing the right anomaly detection technique is

presented. The key components include the research area,

nature of data, data labels, anomaly type, application do-

main and output. These components must be determined

carefully based on the context. Although more than one

anomaly detection technique may be suitable for a single

situation, each technique has its own drawbacks. The

work in [4] also categorizes the anomaly detection tech-

niques into classification-based, clustering-based, nearest

neighbour-based and statistical-based.

Statistical techniques [5], [6] for anomaly detection

suffer from performance overhead due to their complexity,

lack of scalability and the need of prior knowledge.

Clustering VMs of similar behaviour has been addressed

in [7]–[9], however the purpose of the clustering is mainly

focused on the monitoring system scalability (by reducing

the number of instances to monitor) in multi-cloud systems

rather than security, since an attack can be on one of the

unmonitored instances.

Classification of VMs has been previously used for

anomaly detection. The work in [10] is based on one class

Support Vector Machine (SVM) for detection of malware

in cloud infrastructure. The approach gathers features at the

system and network levels. The system level features are

gathered per process which includes memory usage, mem-

ory usage peak, number of threads and number of handles.

The network level features are gathered using CAIDA’s

CoralReef1 tool. The study shows high accuracy results.

1CoralReef Suite: https://www.caida.org/tools/ measurement/coral-
reef/

However, gathering features per process is an exhausting

and intrusive operation. A datacenter with thousands of

VMs each with hundreds of processes running can have

a significant performance degradation. Furthermore, it is

not obvious how one would determine what processes to

monitor and how to characterize malicious and benign

behaviors of various processes.

Thus, in this paper, we consider VMs as blackboxes and

we assume no prior knowledge of applications or processes

running on the VMs. We take a cluster-based approach to

cluster VMs of similar behavior and look for deviations

in their behavior with respect to the behavior of their

respective clusters. This is an effective approach in cloud,

since clusters of auto-scaling VMs, typically, are expected

to exhibit similar behavior within each cluster.

III. CLUSTERING

Clustering is a technique to group similar data samples

into clusters. One of the main assumptions, which is

essential in using clustering for anomaly detection, is that

the number of normal data samples are far greater than the

number of anomalies. We believe that this is true in the

security domain since having anomalies is not always the

case in any system. We refer to anomalies as any malicious

behaviour due to system breach or malware. Clustering

techniques are not as effective if anomalies create a cluster

by themselves. False anomalies remain a big challenge to

clustering techniques. We discuss reducing the number of

false anomalies in section IV-E.

A. K-means

K-means clustering algorithm is one of the most popular

clustering algorithms due to its better performance and

simplicity. It groups data samples based on their feature

values into k clusters. Data samples that belongs to the

same cluster have similar feature values. Knowing the

best k value remains a challenge, although there are some

proposed approaches [11]. Our framework is intended to be

practical so it can be used by cloud customers (tenants) in

real-world scenarios where performance and simplicity of

security capabilities are given more importance. We make

a reasonable assumption that the tenants, at the very least,

know of the kind of web application architecture that they

are planning to deploy in cloud. For example, a tenant

might host a web application on the cloud using a 3-

tier web architecture (web servers, application servers, and

database servers). Therefore, there are three clusters, so

k = 3 is an input to the monitoring system. Here are the

high-level steps of K-means clustering:

1) Set the number of clusters (k).

2) Initialize k centroids/means (by guessing their initial

values or by randomly choosing them).

3) For each data sample, compute the distance to all

centroids and assign it to the closest centroid.

673

4) Modify the values of the centroids based on the new

data sample.

5) Repeat steps 3 and 4 until each of the centroid values

do not change.

The Euclidean distance is used to compute the distance

between a data sample and the centroids. It is defined as:

dis(x, c) =

√√√√
n∑

i=1

(xi − yi)2

where x and c are vectors of quantitative features of the

data sample and the centroid respectively.

B. Sequential K-means

Since our framework is meant to be as practical as

possible, there are a few assumptions that need to be

addressed:

• The data is time series, meaning that we process one

data sample at a time.

• A training phase is infeasible since each cloud cus-

tomer would need to go through a separate training

phase as the nature of its data can be very different

from those of others.

Since we are dealing with time series data, sequential K-

means is used, which is a variation of the original K-means

clustering algorithm. In sequential K-means, the data are

infinite and arrive one sample at a time. Another difference

between K-means and Sequential K-means is that K-means

iterates over the same data samples many times until the

centroid values no longer changes while Sequential K-

means does not as illustrated in Listing 1.

make initial guesses f o r means (centroids)
m1,m2, ...,mk

set the counters n1, n2, ..., nk to zero
u n t i l interrupted
get the next sample x
i f mi is closest to x
increment ni
replace mi with mi + (1/ni) ∗ (x−mi)

e n d i f
e n d u n t i l

Listing 1: Sequential K-means

IV. FRAMEWORK OVERVIEW

This section provides an overview of the proposed

framework as well as a description of the methodology

to detect anomalies using modified sequential K-means.

First, we define the features of the VMs. These features

will be collected and used for clustering. Then, the features

are normalized since they are not of the same scale. Nor-

malization is done based on the Min-Max [12] approach.

Lastly, a real-time clustering (based on modified sequential

K-means) is applied and anomalies are detected based on

the specified threshold.

Table I: Virtual machines features/metrics

Metric Description Unit
CPU util Average CPU utilization %
Memory usage Volume of RAM used by the

VM from the amount of its
allocated memory

MB

Memory resident Volume of RAM used by the
VM on the physical machine

MB

Disk read requests Rate of disk read requests rate/s
Disk write requests Rate of disk write requests rate/s
Disk read bytes Rate of disk read bytes rate/s
Disk write bytes Rate of disk write bytes rate/s
Network outgoing bytes Rate of network outgoing bytes rate/s
Network incoming bytes Rate of network incoming

bytes
rate/s

A. Features Definition
VM features are usually divided in two categories:

internal and external. For the sake of practicality, we

assume no prior knowledge of any information internal to

the VMs. Our framework deals with VMs as blackboxes.

Table I shows the external features that are selected to be

collected for every monitored VM. (Note that these are just

a selection for illustration purposes–in practice, many more

features are available.)

B. Features Normalization
Clustering algorithms can be very sensitive to data scales

(since more weight goes to features with higher values).

Since data samples are not of the same scale, data nor-

malization is needed. We use a simple data normalization

technique called Min-Max. Min-Max normalization is a

technique where you can fit the data with a pre-defined

boundary. Min-Max normalization is simply defined as:

A′ =
A−minV alueA
maxV alueA −A

,

where A is a data sample and A′ is the normalized data

sample. Pre-defining the maxV alueA can be tricky for

time series data. Thus, we employ a Min-Max normaliza-

tion based on a fixed-size sliding window. Note that our

overall detection approach is not dependant on the specific

normalization approach used.

C. Modified Sequential K-means
As stated in section III, one challenge in using clustering

is the number of false positives. To reduce the rate of false

positives, we add a stabilizing time parameter. Stabilizing

time is an input parameter which represents the time to wait

until each newly created VM is booted up and configured.

For example, if a new VM is created by the scaling

policy, the cloud system may need to tie it to a load-

balancer, bootup the operating system, install a webserver

and perform other configurations. The monitoring frame-

work should not be influenced by measurements during

this period. Rather, it should wait until the webserver is

completely up and running as intended.

674

make initial guesses f o r means (centroids)
m1,m2, ...,mk

set the counters n1, n2, ..., nk to zero
counter j //Number of current VMs
set stabilizingT ime[1..j] to y minutes
set assigningT ime[1..j] to z minutes
def VMClusters[1..k] //VM i belongs to cluster

[1..k]
set VMClusterCounts[1..j][1..k] to zero
u n t i l interrupted
get the next sample x
get VM v //x sample belongs to VM v
i f stabilizingT ime[v] > 0
decrease stabilizingT ime[v]
c o n t i n u e //get next sample

e n d i f
i f v is assigned to a cluster

c = VMClusters[v]
i f x is not anomaly
increment nc

replace mc with mc + (1/nc) ∗ (x−mc)
e l s e
//Anomaly code here
Report anomaly

e n d i f
e n d i f
i f v is not assigned to any cluster

i f mi is closest to x
increment ni

replace mi with mi + (1/ni) ∗ (x−mi)
e n d i f
//If time end assign it to a cluster
i f assigningT ime[v] <= 0
set VMClusters[v] to index of

max(VMClusterCounts[v])
e l s e

i f mi is closest to x
increment VMClusterCounts[v][i]

e n d i f
decrease assigningTime[v]

e n d i f
e n d i f

e n d u n t i l

Listing 2: Modified Sequential K-means

Each data sample that belongs to a VM will be clustered

according to the clustering algorithm used. Therefore, a

data sample from a particular VM can belong to a cluster

x at one time while another data sample of the same

VM can belong to cluster y. The clustering algorithm will

not report this as an anomaly. Since we assume no prior

information about each whether a particular VM is a web

server or an app server or a DB service (because many VMs

can be created automatically by some scaling policy) and

cannot decide if a data sample really belongs to a particular

cluster or not, this presents a problem. We overcome this

problem by slightly modifying the clustering algorithm

by adding a new parameter called assigning time. This

parameter represents the time needed for the monitoring

system to make sure that a VM belongs to a certain cluster.

Once this is done, all the data samples that arrive for a

particular VM will be compared to its assigned cluster.

For example, assume there are three clusters: web servers,

application servers and database servers. Suppose VM x is

newly created. For the first m minutes, x’s data samples

are compared and provisionally aligned to all the three

clusters. The cluster with the maximum number of data

samples is the cluster that is assigned to VM x. After that,

x’s data samples are compared only to its assigned cluster

to check for anomalies as well as for updating the cluster’s

information. Listing 2 shows pseudo-code for the modified

sequential K-means.

It is worth mentioning that one of the most critical

aspects of cloud monitoring is the complexity of the

monitoring system in place. The modified sequential k-

means still iterates only once over any data sample, which

results in a linear complexity.

D. Anomaly Detection

A sample is considered an anomaly if it is far from its

centroid by a specified threshold. There are two parameters

that need to be set up by the cloud customer. Anomaly
threshold (x%) and Anomaly number (y/min). Anomalies

are detected based on x. If a particular sample is off by x%
from its assigned centroid, then it is marked as an anomaly.

Once, there are y anomalies per minute, an alarm will be

raised. This is done to reduce the number of false alarms

due to behaviour fluctuations.

E. Parameters Tuning

The framework has some important parameters that need

to be set up as accurate as possible since they affect

the clustering algorithm as well as the anomaly detection.

These parameters are given by the cloud customer because

they differ based on each scenario.

Clustering parameter: stabilizing time(s). This parameter

is dependant on each customer scenario because it is

affected by the resources assigned to a VM, the operating

system boot time and the internal configurations. This

parameter can be easily set by having the VM send a

signal to the monitoring component after booting and

configuration activities are completed.

Anomaly detection parameter: anomaly threshold(t).
While increasing the threshold reduces the number of

false alarms, it also increases the chance of not detecting

real anomalies. On the other hand, while decreasing the

threshold increases the number of false alarms, it also

decreases chance of anomalies getting through undetected.

Thus, tuning these parameters are very important.

Normalization parameter: window size(w). This parame-

ter represents the window size in which the sliding-window

Min-Max normalization should keep record. On one hand,

keeping many history samples might affect the new data

samples that started shifting toward different values. On

675

Figure 1: Testbed Setup

the other hand, keeping few history samples will distort

the data samples during the normalization stage.

Automatic parameter tuning is a non-trivial challenge

for many behavior-based anomaly detection techniques. We

plan to further investigate such issues in future work.

V. EXPERIMENTS SETUP

A. Testbed Environment

The cloud testbed used in this work uses OpenStack2,

which is a major cloud orchestration software used by

many cloud providers. Figure 1 shows the setup of our

cloud testbed that has been built for our experimentation.

The testbed is composed of five high-capacity physical

nodes. One controller node is responsible for services

such as the dashboard, storage, network, identity, and

compute. Four compute nodes are responsible just for the

compute service. The compute nodes also contain network

agents as well as polling agents responsible for collecting

data samples. Data collection agents are configured to 30

seconds intervals.

B. Use Case Application

In order to simulate a real environment as much as

possible, a three-tier web application is implemented as

a use case, which is one of the most common cloud

architectures according to 3. A three-tier web application is

an application program that is organized into three major

parts, where each tier can be hosted on one or more

different hosts. In our case, these hosts are the cloud nodes

hosting the compute services.

Figure 2 shows the 3-tier web application built on

top of our testbed. The application used for this work

is Wordpress4, a major open-source content management

system (CMS) based on PHP and MySQL. In a typical 3-

tier web application, a web server hosts the static pages,

an application server hosts the application logic, and a

2Openstack website. https://www.openstack.org/
3Amazon architecture references. https://aws.amazon.com/architecture/
4Wordpress website. https://wordpress.org/

Figure 2: 3-tier Web Application

database server stores the data. The workflow typically is

as follows:

1) Web server receives a request from a client.

2) Web server replies back if it is a static page request

that doesn’t need computation in the application

logic.

3) Otherwise, it sends the request to an application

server.

4) Application server accesses the database server if it

needs any stored data and replies back to the web

server.

5) Web server replies back to the client.

Separating the application into three tiers allows for

the concurrent development and configuration of the three

different tiers. It also allows for the scaling of the three-

tiers separately depending on demand. In our case, scaling

out and back is enabled for the web and application servers

but not the database server. We do not scale DB servers for

simplicity since that would require replicating and keeping

the databases consistent.

The 3-tier web application used for this work utilizes

two load balancers. A web server load balancer, which

is responsible for distributing the requests to various web

servers and an application server load balancer, which

is responsible for distributing the requests to various the

application servers. The policy of distribution of load can

be configured.

C. Traffic Generation

Many works in the literature use the Poisson process

for generating traffic because of its simplicity. While still

applicable in many cases, it has proven to be inaccurate for

Internet traffic. Internet traffic is known to be of self-similar

nature [13]–[16]. All of our experiments were conducted

twice based on two traffic generation models: Poisson
process and ON/OFF Pareto.

676

Poisson On/Off Pareto
0

20

40

60

80

100
%

Precision Recall Accuracy F score

Figure 3: Injected anomaly detection with optimally tuned

classifier

A multi-process program is built, acting as large number

of concurrent users, to send requests to the webservers’

load-balancer. The simulation parameters are as follows:

• Generator: On/Off Pareto, Poisson

• Number of concurrent clients: 50

• Requests arrival rate/hour: 3600

• Type of requests: GET and POST (randomly gener-

ated)

The On/Off Pareto input parameters are set according to

the NS25 tool defaults. The amount of traffic is chosen to

stress the VMs to trigger the scalability policy. The scale-

out policy is set to scale whenever the CPU util average

of a specific tier (e.g. app server tier or web server tier) is

above 70% and scale-back when the CPU load average is

below 30%.

VI. RESULTS AND DISCUSSION

Anomaly injection is randomized along two dimensions:

time of injection and magnitude of the anomaly. We explore

the effectiveness of our framework based on three use

cases. In each use case, Poisson process and On/Off Pareto

traffic generation models are used. The duration of all the

experiments was one hour.

Evaluation methodology. We use four metrics6,7 to

evaluate the effectiveness and applicability of our approach

[17].

Precision =
TP

TP + FP

Recall =
TP

TP + FN

5NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html
6Wikipedia F score. https://en.wikipedia.org/wiki/F1 score
7Wikipedia precision and recall. https://en.wikipedia. org/wiki/Preci-

sion and recall

Accuracy =
TP + TN

TP + TN + FP + FN

Fscore = 2× Precision×Recall

Precision+Recall

When the system detects an anomaly, it is considered

a positive outcome. When the system does not detect an

anomaly, the outcome is negative. Therefore:

1) True Positive (TP): anomaly occurred and was suc-

cessfully detected.

2) False Positive (FP): anomaly did not occur and was

detected.

3) True Negative (TN): anomaly did not occur and was

not detected.

4) False Negative (FN): anomaly occurred and was not

detected.

Precision refers to the number of data samples, detected

as anomalies, that are actually true anomalous samples.

On the other hand, recall refers to the percentage of

correctly detected anomalies based on the total number

of anomalies of the data samples. Accuracy measures the

correct classification of all data samples. The harmonic

mean (F Score) is the weighted average of precision and

recall.

We now discuss three kinds of attacks that we evaluated.

Two of these were simulated and one was using real-world

samples of malware. All attacks are injected into a random

application server.

A. Injected Anomalies

The effectiveness of the framework is tested by injecting

anomalies in randomly chosen VMs. Injected anomalies are

cpu, memory and disk intensive.

Figure 3 shows the detection results of the experiment.

The results show that the detector performs similarly well

on both traffic models with accuracies over 90%. The

precision suffers a considerable amount of FPs due to the

nature of the fluctuated traffic load and resource usage.

B. EDoS

Not all threats intensively use resources. For instance,

Economic Denial of Sustainability (EDoS) [18] attacks

try to avoid the intensive resource usage by keeping a

low-profile. One form of EDoS is to create many VMs

while remaining dormant and idle (which can be done by

stealing the credentials of one of the cloud tenants who has

authority to create VMs).

Such attacks try to waste resources in way that is not

obvious to the tenants. This can impact neighboring VMs

because of unavailability of resources. In our experiment,

EDoS was simulated by randomly injecting VMs, with

the only outcome during the life-time of each injected

anomalous VM being TPs or FNs. The injected VMs

remain dormant and maintain a low-resource usage profile.

677

Poisson On/Off Pareto
0

20

40

60

80

100
%

Precision Recall Accuracy F score

Figure 4: EDoS detection with optimally tuned classifier

w=40, t=0.31

w=40, t=0.33

w=40, t=0.35

w=50, t=0.31

w=50, t=0.33

w=50, t=0.35

0

20

40

60

80

100

%

Precision Recall Accuracy F score

Figure 5: KillDisk ransomware detection - Poisson

Figure 4 shows the detection evaluation performance for

this experiment. It is clear that the detector is effective

against this kind of EDoS attack since the injected VMs

have very different profiles than the 3-tiers (clusters). The

results show a loss of precision due to detected FPs. After

investigation, this was determined to be due to spawning

high load of VMs (by injecting and scaling). The cloud

was unresponsive which prevented any traffic load from

reaching the VMs resulting in sudden drop in resource

usage. As such, this is not caused by poor detection. In fact,

this helps security administrator’s detecting times when

their system is down.

C. Ransomware

Ransomware is popular kind of malware. Netskope8

quarterly cloud report states that 43.7% of the cloud mal-

ware types detected in cloud apps are common ransomware

delivery vehicles. Ransomware basically encrypt various

8Netskope website. https://www.netskope.com

w=40, t=0.31

w=40, t=0.33

w=40, t=0.35

w=50, t=0.31

w=50, t=0.33

w=50, t=0.35

0

20

40

60

80

100

%

Precision Recall Accuracy F score

Figure 6: KillDisk ransomware detection - On/Off Pareto

files on victim’s hard drives and then seeks a ransom to

get the files decrypted. KillDisk linux-variant ransomware

is used for experiments. The samples were obtained from

VirusTotal9. The one hour experiment was divided in two

phases: normal phase (first 20 minutes) and malicious

phase (the next 40 minutes). The malicious phase is the

time after the ransomware is injected, with the only valid

outcome being TPs or FNs. The ransomware was injected

into a random application server due to the fact that

applications are more likely vulnerable than the widely

used web servers.

The results of this experiment are shown in Figures

5 and 6 where the bars are produced by calculating the

performance metrics for each set of modified sequential

k-means parameters. The two most critical parameters

are chosen (by experimentation) for optimal (w = 50,

t = 0.33) and near optimal results. In the case of Poisson

traffic, the detector suffers many FPs. On the other hand, in

the case of On/Off Pareto traffic, it is clear from the results

that the detector is effective with detection performance of

more than 90% overall.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated clustering-based cloud

monitoring for detecting anomalies in scale-out and scale-

back scenarios in IaaS cloud. In order to have a better

security in the cloud, we proposed a framework to cover

a subset (i.e., VMs resource usage and interaction) of

the cloud monitoring space in IaaS. The framework uses

clustering for IaaS monitoring in cloud. It uses a modified

version of the Sequential K-means algorithm to overcome

the problem of high false alarm rate when using cluster-

ing. The results showed how the framework can detect

anomalies in three scenarios. The experiments show that

9VirusTotal website. https://www.virustotal.com

678

parameter tuning is a very important issue and is dependent

on the use case.

One limitation of our framework is that it is vulnerable to

low-profile anomalies and malware. Detecting those types

of anomalies are proven to be hard using only resource

usage metrics. A general concern is when attacks try to

gradually change normal behavior of a VM. However

our approach makes the task harder since the change of

behavior has to be in all the VMs of the same cluster at the

same time. Another limitation is that an expert is necessary

for parameter tuning.

In the future, we plan to investigate various issues such

as dynamic parameter tuning, which is essential for getting

more accurate results. Also, we plan to experiment on

different cloud reference architectures other than the 3-tier

web architecture. Lastly, we plan to use and compare dif-

ferent machine learning algorithms for anomaly detection.

ACKNOWLEDGMENT

This work is partially supported by DoD ARL Grant

W911NF-15-1-0518 and NSF grants CNS-1111925, CNS-

1423481, and CNS-1553696.

REFERENCES

[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in Proc. of the 16th ACM CCS.
ACM, 2009, pp. 199–212.

[2] J. MacQueen et al., “Some methods for classification and
analysis of multivariate observations,” in Proc. of the fifth
Berkeley symposium on mathematical statistics and prob-
ability, vol. 1, no. 14. Oakland, CA, USA., 1967, pp.
281–297.

[3] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “In-
trusion detection system: A comprehensive review,” Journal
of Network and Computer Applications, vol. 36, no. 1, pp.
16–24, 2013.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec-
tion: A survey,” ACM computing surveys (CSUR), vol. 41,
no. 3, p. 15, 2009.

[5] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Sat-
terfield, and K. Schwan, “Statistical techniques for online
anomaly detection in data centers,” in 12th IFIP/IEEE IM.
IEEE, 2011, pp. 385–392.

[6] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan,
“Online detection of utility cloud anomalies using metric
distributions,” in 2010 IEEE NOMS 2010. IEEE, 2010, pp.
96–103.

[7] C. Canali and R. Lancellotti, “Automated clustering of
virtual machines based on correlation of resource usage,”
Communications Software and Systems, vol. 8, no. 4, pp.
102–109, 2012.

[8] C. Canali and R. Lancellotti, “Automated clustering of
vms for scalable cloud monitoring and management,” in
Software, 20th SoftCOM, 2012. IEEE, 2012, pp. 1–5.

[9] C. Canali and R. Lancellotti, “Automatic virtual machine
clustering based on bhattacharyya distance for multi-cloud
systems,” in Proc. of MultiCloud. ACM, 2013, pp. 45–52.

[10] M. R. Watson, A. K. Marnerides, A. Mauthe, D. Hutchison
et al., “Malware detection in cloud computing infrastruc-
tures,” IEEE TDSC, vol. 13, no. 2, pp. 192–205, 2016.

[11] D. T. Pham, S. S. Dimov, and C. Nguyen, “Selection of k in
k-means clustering,” Proc. of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science, vol. 219, no. 1, pp. 103–119, 2005.

[12] T. Jayalakshmi and A. Santhakumaran, “Statistical normal-
ization and back propagationfor classification,” International
Journal of Computer Theory and Engineering, vol. 3, no. 1,
p. 89, 2011.

[13] M. E. Crovella and A. Bestavros, “Self-similarity in world
wide web traffic: evidence and possible causes,” IEEE/ACM
Transactions on networking, vol. 5, no. 6, pp. 835–846,
1997.

[14] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of ethernet traffic (extended
version),” IEEE/ACM Transactions on networking, vol. 2,
no. 1, pp. 1–15, 1994.

[15] A. Varet and N. Larrieu, “Realistic network traffic profile
generation: theory and practice,” Computer and Information
Science, vol. 7, no. 2, pp. pp–1, 2014.

[16] M. Wilson, “A historical view of network traffic mod-
els,” Unpublished survey paper. See http://www. arl. wustl.
edu/ mlw2/classpubs/traffic models, 2006.

[17] O. Maimon and L. Rokach, Data mining and knowledge
discovery handbook. Springer, 2005, vol. 2.

[18] G. Somani, M. S. Gaur, and D. Sanghi, “Ddos/edos attack
in cloud: affecting everyone out there!” in Proc. of the 8th
SIN. ACM, 2015, pp. 169–176.

679

