
Engineering Access Control Policies
for Provenance-aware Systems

Lianshan Sun12, Jaehong Park2 and Ravi Sandhu2

1. Shaanxi University of Science and Technology (SUST), Xi’an, Shaanxi, China, 710021
2. University of Texas at San Antonio (UTSA), San Antonio, Texas, USA, 78249
sunlianshan@gmail.com, jae.park@utsa.edu, ravi.sandhu@utsa.edu

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 1 / 19

Outline

Engineering access control policies for
provenance-aware systems

Background
What is provenance
Provenance-aware systems
Provenance-aware access control policies

Motivations
Solution and Case Study

Typed Provenance Model (TPM)
A TPM-Centric Process for engineering Access Control Polices
A case study on Homework Grading System (HGS)

Conclusion

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 2 / 19

Background

What is provenance

Provenance is information about entities, activities, and people involved in
producing a piece of data or thing, which can be used to form assessments
about its quality, reliability or trustworthiness.

Figure: The provenance of a piece of cake

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 3 / 19

Background

A Running Example – Homework Grading System (HGS)

Students upload, replace, and submit their homework;
Professors as well as some students on behalf of professors review the
submitted homework;
Professors grade a homework to generate a grade report having some of
existing reviews of the homework as appendix.

Figure: The provenance of a submitted homework.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 4 / 19

Background

Provenance-aware systems

A provenance-aware system generates, stores, processes, and disseminates
provenance to answer various provenance questions.

Key issues in building provenance aware systems include provenance collection,
storage, and retrieval.
A provenance data model defines the scheme of provenance to be captured and
is the conceptual basis of building provenance aware systems.

A public provenance data model – Open Provenance Model (OPM).
A directed graph captures entities and casuality dependencies among entities.
Entities: artifact, process, agent.
Casuality dependency : e! f means e is caused by f .
Dependency types: direct (u, g, c), indirect (d, t).

submit

h1

h2

u1

u

c g

review
u

d

t

c : wasControlledBy; d : wasDerivedFrom

u : used; t : wasTriggeredBy

g : wasGeneratedBy;

AgentProcessArtifact

Figure: An OPM graph.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 5 / 19

Background

Access control in provenance-aware systems

Provenance-aware systems need to deploy some access control facilities to
protect both normal data items and their provenance.
Provenance differs from traditional data and meta-data in that it is an
immutable directed acyclic graph called provenance graph and can only be
captured at run-time.
Some subgraphs of a provenance graph as a unit may show meaningful
provenance semantics and could be treated as sensitive resources or be
used to adjudicate access requests.

submit

h1

h2

u1

u

c
g

review

u

Figure: A subgraph of provenance.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 6 / 19

Background

Access control in provenance-aware systems

Traditional access control models, policy languages do not work well in
provenance aware systems.
Researchers have proposed some provenance-aware access control models
and corresponding policy languages.

Provenance access control, PAC

Protecting sensitive provenance.
A reviewer cannot see who has submitted a homework. prov: (h! submit ! u).

Provenance-based access control, PBAC

Protecting both sensitive provenance and sensitive data items with provenance by
using provenance to adjudicate access requests.
Only a submitted homework can be reviewed. prov: (h! submit)

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 7 / 19

Background

Provenance-aware Access Control Policies

A provenance-aware policy may be either a PAC policy, a PBAC policy, or the
combination of both, which may refer to provenance answering certain
provenance questions

A user u can see the owner of a homework h if u has started to grade h.
u 2 GradedBy(h) (P(u, query,OwnedBy(h)).

Here, both GradedBy(h) and OwnedBy(h) are two provenance questions
against the homework h whose semantics can be easily understood by users
without technical knowledge.

Although there are provenance-aware policy languages, it is far from
straightforward for developers to specify provenance-aware policies due to
various reasons.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 8 / 19

Background

Provenance-aware Access Control Policies

A provenance-aware policy may be either a PAC policy, a PBAC policy, or the
combination of both, which may refer to provenance answering certain
provenance questions

A user u can see the owner of a homework h if u has started to grade h.
u 2 GradedBy(h) (P(u, query,OwnedBy(h)).

Here, both GradedBy(h) and OwnedBy(h) are two provenance questions
against the homework h whose semantics can be easily understood by users
without technical knowledge.
Although there are provenance-aware policy languages, it is far from
straightforward for developers to specify provenance-aware policies due to
various reasons.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 8 / 19

Motivations

Motivations

First, it is very difficult to specify provenance-aware policies due to the
complexity of provenance graph.
For example, policy architects need to identify one or more subgraphs in a
provenance graph in defining provenance-aware policies.
u 2 GradedBy(h) (P(u, query,OwnedBy(h))

Figure: Provenance Graph of HGS.

We need some mechanisms to abstract
complex provenance graph into
user-comprehensible and meaningful
controlling units that can be used to
efficiently define provenance-aware
policies at development time when the
provenance graph is even not available.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 9 / 19

Motivations

Motivations

First, it is very difficult to specify provenance-aware policies due to the
complexity of provenance graph.
For example, policy architects need to identify one or more subgraphs in a
provenance graph in defining provenance-aware policies.
u 2 GradedBy(h) (P(u, query,OwnedBy(h))

Figure: Provenance Graph of HGS.

We need some mechanisms to abstract
complex provenance graph into
user-comprehensible and meaningful
controlling units that can be used to
efficiently define provenance-aware
policies at development time when the
provenance graph is even not available.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 9 / 19

Motivations

Motivations

Second, implications on software architecture
Provenance impacts software architecture and makes some traditional functional
requirements possibly be implemented as provenance-aware policies.

An activity A can start only after another activity B is finished
Only users who did not review a homework before can review the homework.

Developers need to decide which requirements can be and should be modeled
as provenance-aware requirements from the beginning of software development.

So it is conducive to take some engineering solutions in developing
provenance-aware policies.

Modeling provenance in abstractions
Designing process to guide the identification, specification, and refinement of
provenance aware policies.

Figure: Motivations.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 10 / 19

Motivations

Motivations

Second, implications on software architecture
Provenance impacts software architecture and makes some traditional functional
requirements possibly be implemented as provenance-aware policies.

An activity A can start only after another activity B is finished
Only users who did not review a homework before can review the homework.

Developers need to decide which requirements can be and should be modeled
as provenance-aware requirements from the beginning of software development.

So it is conducive to take some engineering solutions in developing
provenance-aware policies.

Modeling provenance in abstractions
Designing process to guide the identification, specification, and refinement of
provenance aware policies.

Figure: Motivations.
Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 10 / 19

Solution and Case Study

Typed Provenance Model

Figure: Provenance abstractions.

An entity type is a class that is instantiated into nodes in a provenance graph
Artifacts: Homework, Review, Grade
Processes: upload, replace, submit, review, grade
Agents: Student, Professor

A dependency type is a class of causality dependencies with similar
provenance semantics

T := N(E,C), e.g T := ReviewedBy(Homework, User)
ReviewedBy(Hw1, u1) instantiated from T means that the homework Hw1 was
reviewed by the user u1.
ReviewedBy(Hw1, u1) can also be denoted as u1 2 ReviewedBy(Hw1).

Primitive dependency types and complex dependency types.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 11 / 19

Solution and Case Study

Primitive dependency types

Each primitive dependency type abstracts the semantics of a set of edges in
a provenance graph and could be from a process type to either an artifact
type or an agent type, or from an artifact type to a process type.
Primitive dependency types related to the same process type can be grouped
together to form a process-centered directed graph of provenance in
abstractions, called provenance type graph.

Figure: Primitive dependency types.

T1 := UrepHwOld(rep,Hw), T2 := UrepHwNew(rep,Hw),
T3 := GrepHW (Hw, rep), T4 := Crep(rep,Stud).

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 12 / 19

Solution and Case Study

Complex dependency types

A complex dependency type encapsulates complex provenance semantics
that cannot be carried by individual primitive dependency types.
Each CDT can be defined as a composition of primitive dependency types.

The concatenation operator ‘·’.
T5 := GupHw(Hw, up); T6 := Cup(up,Stud)
T7 := U ploadedBy(Hw,Stud) := T5 · T6,

The inversion operation ‘ �1’.

T8 := GrevRw(Rw, rev),
T9 := UrevHw(rev,Hw),

T10 := Crev(rev,User),
T11 := ReviewOn(Rw,Hw) := T8 · T9,

T12 := T11
�1 := ReviewOn�1(Hw,Rw)

:= T9
�1 · T8

�1.

The regular expression operators ‘⇤| + |?’.

T13 := GsubHw(Hw, sub),T14 := UsubHw(sub,Hw),
T15 := S ubmisionOn(Hw,Hw) := T13 · T14 · (T3 · T1) ⇤ .

The conjunctive and disjunctive operators ‘^|_’.

T16 := ReplacedBy(Hw,Stud) := ((T3 · T1)⇤) · T3 · T4;
T17 := S ubmittedBy(Hw,Stud) := T13 ·Csub(sub,Stud);
T18 := OwnedBy(Hw,Stud)

:= T17 _ (T15? · T16) _ (T15? · (T3 · T1) ⇤ ·T7);

T19 := ReviewedBy(Hw,User) := T9
�1 · T10;

T20 := ReviewedCOI(Hw,User) := T18 ^ T19,

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 13 / 19

Solution and Case Study

Composition constraints among dependency types

C1 : A dependency type should has a unique name.
C2 : A dependency type could be instantiated into multiple instances with not only

unique identifiers but unique cause element or effect element;
C3 : A dependency type can only defined on given element types;
C4 : A dependency type Ta can concatenate with (using “·” operator) another type

Tb only if the cause element type of Ta is same to the effect element type of
Tb;

C5 : A dependency type can be combined with another type via the operator _ or
^ only if they have the same cause element type and effect element type.

C6 : A dependency type cannot precede another type. In the HGS, a dependency
type Tr denotes a homework was a replacement of another homework and Ts
denotes a homework is a submitted version of another homework. Tr · Ts is
syntactically right while semantically wrong because the replace activity on a
homework cannot be activated after the submit process on the same
homework happened.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 14 / 19

Solution and Case Study

A TPM-Centric Process for Engineering ACPs

Figure: A TPM-Centric Process for Engineering ACPs.

This process emphasizes the role of typed provenance model in identifying
and specifying provenance-aware policies in overall software development
process.
This process itself is intuitive and does not promise to produce a good
enough set of policies, which heavily depends on the expertise of policy
architects.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 15 / 19

Solution and Case Study

A TPM-Centric Process for Engineering ACPs

Figure: A TPM-Centric Process for Engineering ACPs.

This process emphasizes the role of typed provenance model in identifying
and specifying provenance-aware policies in overall software development
process.
This process itself is intuitive and does not promise to produce a good
enough set of policies, which heavily depends on the expertise of policy
architects.
Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 15 / 19

Solution and Case Study

Case Study

Table: A list of scenarios of the HGS.
No. actor operation data objects conditions
1.1 Student upload a homework C0: Any student in the HGS

1.2 Student replace/submit a homework to get a
new or submitted homework

C1: Owner of homework
C2: Homework was non-submitted.

2 Student or Professor review a homework to produce a review

C3: (Not C1) Not Owner of the homework
C4: (Not C2) The homework was submitted
C5: Not reviewed the homework before
C6: The homework was not graded
C7: Number of reviews of the homework < 3

3 Professor grade a homework to produce a grade C8: Number of reviews of the homework � 2

4 Student query-prov-of a homework on its reviewed times
and graded state C9: (C1) Owner of the homework

5 Student or Professor query-prov-of a review as part of a grade C10: Owner of the review

6 Professor query-prov-of
a homework on its author, reviewers,
and whether it is reviewed by
a user involved in conflict of interests.

C11: Any professor in the HGS

Table: Entity types of the HGS.

ET := UT | AT | PT .
UT := User | Stud | Prof.
AT := Homework | Review | Grade.
PT := upload | replace | submit

| review | grade | query-prov-of.

Table: Dependency types from prov. questions.

No Dependency types Question (type description)
1 UrevHw(rev,Hw) 4 (review used Hw)
2 UgrdHw (grd,Hw) 4 (grade used Hw)
3 UgrdRw (grd,Rw) 5 (grade used Rw)
4 ReviewedBy(Hw,User) 6 (Hw was ReviewedBy user)
5 OwnedBy(Hw,Stud) 6 (Hw was OwnedBy stud)
6 ReviewCOI(Hw,User) 6 (Hw was Reviewedby owner)

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 16 / 19

Solution and Case Study

Case study

Table: Dependency types from ACRs.

No Dependency types used to specify conditions in Table 1
1 OwnedBy(Hw,Stud) C1, C3, C9
2 GsubHw(Hw, sub) C2, C4
3 ReviewedBy(Hw,User) C5
4 UgrdHW (grd,Hw) C6
5 ReviewOn(Rw,Hw) C7, C8
6 ReviewO f (Rw,User) C10

T18 := OwnedBy(Hw,Stud)
:= T17 _ (T15? · T16) _ (T15? · (T3 · T1) ⇤ ·T7); Figure: The class diagram of the HGS.

Table: Access Control Policies of HGS.

No. Policies
1.2 8u8h (u 2 OwnedBy(h) ^ S ubmittedby(h) = �)(P(u, replace/submit, h)

2 8u8h

u 2 OwnedBy(h) ^ GsubHW (h) , � ^ u < ReviewedBy(h)^
UgrdHw

�1(h) = � ^ |ReviewOn�1(h)| < 3

!
(P(u, review, h)

3 8u8h (|ReviewOn�1(h)| � 2)(P(u, grade, h)
4 8u8h (u 2 OwnedBy(h))(P

⇣
u, query-prov-of, {|UrevHw

�1(h)|,UgrdHw
�1(h)}

⌘

5 8u8r (u 2 ReviewO f (r))(P(u, query-prov-of,UgrdRw
�1(r))

6 8u8h (u 2 Pro f (P(u, query-prov-of, {OwnedBy(h),ReviewedBy(h),ReviewedCOI(h)}))

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 17 / 19

Solution and Case Study

Case study

Table: Dependency types from ACRs.

No Dependency types used to specify conditions in Table 1
1 OwnedBy(Hw,Stud) C1, C3, C9
2 GsubHw(Hw, sub) C2, C4
3 ReviewedBy(Hw,User) C5
4 UgrdHW (grd,Hw) C6
5 ReviewOn(Rw,Hw) C7, C8
6 ReviewO f (Rw,User) C10

T18 := OwnedBy(Hw,Stud)
:= T17 _ (T15? · T16) _ (T15? · (T3 · T1) ⇤ ·T7); Figure: The class diagram of the HGS.

Table: Access Control Policies of HGS.

No. Policies
1.2 8u8h (u 2 OwnedBy(h) ^ S ubmittedby(h) = �)(P(u, replace/submit, h)

2 8u8h

u 2 OwnedBy(h) ^ GsubHW (h) , � ^ u < ReviewedBy(h)^
UgrdHw

�1(h) = � ^ |ReviewOn�1(h)| < 3

!
(P(u, review, h)

3 8u8h (|ReviewOn�1(h)| � 2)(P(u, grade, h)
4 8u8h (u 2 OwnedBy(h))(P

⇣
u, query-prov-of, {|UrevHw

�1(h)|,UgrdHw
�1(h)}

⌘

5 8u8r (u 2 ReviewO f (r))(P(u, query-prov-of,UgrdRw
�1(r))

6 8u8h (u 2 Pro f (P(u, query-prov-of, {OwnedBy(h),ReviewedBy(h),ReviewedCOI(h)}))

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 17 / 19

Conclusion

Conclusion

It is increasingly difficult to build an access control system in a specific
application because access control itself is increasingly relying on the
complex application-level concepts, such as role and provenance.
Our research interest is to explore the engineering solutions in building
access control systems on the basis of existing achievements in security
field, including access control models, policy languages, and underlying
enforcement mechanisms.
Contributions of this paper.

Identified issues motivating the research on solutions to engineer access control
policies in provenance-aware systems.
Introduced the typed provenance model to model semantically meaningful
provenance for more efficiently defining and managing access control policies.
Designed a TPM-centric process to discipline the identification, specification,
and refinement of access control policies.
Illustrated our achievements in a homework grading system.

We are working on an enforcement architecture for provenance-aware
policies specified using TPM.

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 18 / 19

Conclusion

Sun et al. (SUST & UTSA) Engineering ACPs for provenance-aware systems CODASPY13, February 19, 2013 19 / 19

	Outline
	Background
	Motivations
	Solution and Case Study
	Conclusion

