
Engineering Access Control Policies for
Provenance-aware Systems ∗

Lianshan Sun
Dept. of Computer Science

Shaanxi Univ. of Sci. & Tech.
Xi’an, Shaanxi, China.

sunlianshan@gmail.com

Jaehong Park
Insitute for Cyber Security

Univ. of Texas at San Antonio
San Antonio, TX, USA
jae.park@utsa.edu

Ravi Sandhu
Insitute for Cyber Security

Univ. of Texas at San Antonio
San Antonio, TX, USA

ravi.sandhu@utsa.edu

ABSTRACT
Provenance is meta-data about how data items become what
they are. A variety of provenance-aware access control mod-
els and policy languages have been recently discussed in the
literature. However, the issue of eliciting access control re-
quirements related to provenance and of elaborating them
as provenance-aware access control policies (ACPs) has re-
ceived much less attention. This paper explores the ap-
proach to engineering provenance-aware ACPs since the be-
ginning of software development. Specifically, this paper
introduces a typed provenance model (TPM) to abstrac-
t complex provenance graph and presents a TPM-centric
process for identification, specification, and refinement of
provenance-aware ACPs. We illustrate this process by mean-
s of a homework grading system.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Representation,
Methodologies; D.4.6 [Security and Protection]: Access
Controls

Keywords
Provenance; typed provenance model; provenance-aware ac-
cess control policy; PAC; PBAC; TPM; OPM

1. INTRODUCTION
Provenance captures the origins and processes by which

a data item became what it is [3]. In the last decade we have
seen the emergence of provenance-aware systems (PAS), which
generate, store, process, and disseminate provenance to im-
prove trustworthiness of data items in domains such as sci-
entific workflow, intelligence, and healthcare systems [7].
Provenance itself must be securely protected when it is

used to verify trustworthiness and integrity of data items in

∗This work is partially supported by NSF (No. CNS-
1111925), NSF of China (No. 61202019), and SUST Foun-
dation (No. BJ09-13).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

PAS [9]. However, provenance differs from traditional da-
ta items and meta-data in that it is an immutable directed
graph incrementally captured at run-time. We refer to the
provenance in a PAS as a provenance graph. It includes
nodes for artifacts (data objects), processes, or agents in-
volved in producing a piece of data and edges for causality
dependencies (provenance dependencies) among nodes [12].
Note that a sub-graph of a provenance graph as a unit may
show meaningful provenance semantic and could be treated
as sensitive resources or be used to adjudicate access req-
uests [4, 15]. Traditional access control models, policy lan-
guages, policy authoring tools, enforcement infrastructures,
as well as methodologies for engineering access control poli-
cies can not be straightforwardly adopted for provenance-
aware access control [2, 9].

Researchers have recently proposed a variety of provenance-
aware access control models [1, 2, 9, 15] and corresponding
policy languages [4, 14]. Provenance could affect access con-
trol in at least two ways. The first is the so-called provenance
access control or PAC, where provenance itself could be sen-
sitive and should be properly protected [1]. Note that data
items with provenance do not have to be sensitive when their
provenance is sensitive. For example, provenance of an in-
sensitive report, such as which agent had authored a report
and how, could be sensitive. The second is the provenance-
based access control or PBAC [15], where provenance as the
immutable history about data items can be used to adjudi-
cate access requests on the data items. For example, in a
homework grading system, a professor can grade homework
of her students if and only if the homework was not graded
before and has been reviewed at least two times.

However, provenance-aware access control policies (ACP-
s), including PAC policies and PBAC policies, could be very
complex due to the complexity of provenance. Even with the
availability of provenance-aware access control models and
policy languages, several practical issues need to be further
examined and corresponding solutions need to be developed
for engineering provenance-aware ACPs.

First, provenance is usually very complex and hard to be
understood in a semantically meaningful way. Also, while
existing policy languages [4, 15] assume the availability of
some form of provenance graphs [12], the provenance graph
is usually not available when eliciting security requirements
and defining provenance-aware ACPs at the beginning of
PAS development [13, 15]. Therefore, we suggest provenance
should be modeled in abstractions, which are meaningful e-
nough and readily available for policy authors to efficiently
define provenance-aware ACPs. Recently, Park et al pro-

285

pose to construct provenance-aware ACPs from the named
abstract dependency path patterns of a provenance graph,
called dependency names [13, 15]. However, the nature of
abstracted dependency names, relationships among them,
and the manner of modeling and using them to construct
provenance-aware ACPs should be further studied.
Second, some access control requirements that can be im-

plemented as provenance-aware ACPs are originally func-
tional requirements in a traditional provenance-unaware sys-
tem and were implemented inside functional modules. For
example, in workflow systems, one common constraint is
that an activity A can start only after another activity B
is finished. Such constraints are typically implemented as
hard-coded logic in a provenance-unaware system. Howev-
er, as shown in the rest of this paper, these constraints can
be implemented as PBAC policies. That means, from the
beginning of PAS development, developers need to decide
what parts of general user requirements can be and should
be captured as access control requirements that will be im-
plemented as provenance-aware ACPs.
Inspired by the idea of security engineering1 [6, 21], this

paper explores the issues of engineering provenance-aware
ACPs, specifically the issues of identifying access control re-
quirements out of user requirements that can be implement-
ed as provenance-aware ACPs, modeling provenance in ab-
straction for efficient specification of ACPs, and engineering
provenance-aware ACPs in a systematic manner. Specifical-
ly, this paper introduces a typed provenance model (TPM)
to abstract complex provenance graph at design level. A
TPM captures semantically meaningful provenance abstrac-
tions which can be used to efficiently define and manage
provenance-aware ACPs. These ACPs can then be evaluated
according to the provenance graph. Furthermore, this paper
presents a TPM-centric policy development process for iden-
tification, specification, and refinement of provenance-aware
ACPs from the beginning of PAS development. We illus-
trate the concept of TPM and the process by a homework
grading system.
We organize the rest of this paper as follows. Section

2 introduces preliminaries used in the rest of this paper.
Section 3 presents the typed provenance model. Section 4
introduces a TPM centric process for engineering ACPs and
applies it in a homework grading system. Section 5 discusses
related work and section 6 concludes the paper.

2. PROVENANCE-AWARE SYSTEMS
This section introduces the Open Provenance Model, the

general form of provenance-aware ACPs, and a homework
grading system used as an example in the rest of the paper.

2.1 Provenance Data Model
A provenance data model defines the scheme of the prove-

nance to be captured. Recently, a community-developed
provenance data model, called Open Provenance Model (OP-
M), has been crafted, refined, and formally defined following
a series of challenge workshops. OPM has gained attention
as it provides a foundation for the causality dependencies
of provenance and enables inter-operability of provenance

1Security engineering believes that access control models
and policy languages regulate what kind of ACPs can be
specified. However, it is sometimes necessary or at least
helpful to identify, specify, and verify ACPs from the begin-
ning of software development.

across systems [12]. As shown in Figure 1, OPM organizes
provenance as a directed acyclic graph, which includes three
types of entities, three types of direct dependencies (shown
in solid line) and two types of indirect dependencies (shown
in dashed line). A provenance graph conforming to OPM is
referred as an OPM graph in the rest of this paper.

Entities include artifacts, processes, and agents. In PAS,
artifacts are data objects; processes are modules which take
some artifacts as inputs, generate some artifacts as output-
s; and agents are users who control the processes. Direct
dependencies are dependencies directly related to a process
and consist of used, wasGeneratedBy, and wasControlledBy,
which are abbreviated as u, g, and c respectively. Figure 1
shows that a process p2 used an artifact a2 which was gen-
erated by a process p1. Process p1 used another artifact a1
and was controlled by an agent Ag.

Figure 1: OPM Causality Dependencies.

OPM also defines indirect dependencies, such as wasDerived-
From and wasTriggeredBy. The edge d(a2, a1) in Figure 1
denotes that a2 was derived from a1 and t(p2, p1) denotes
that p2 was triggered by p1. The semantic of an indirect de-
pendency could to some extent be characterized by a path
in the OPM graph. For example, d(a2, a1) could be mapped
to the path g(a2, p1) · u(p1, a1), where ‘·’ operator concate-
nates two adjacent edges. This paper assumes only direct
dependencies will be captured in an OPM graph. Indirect
dependencies can be derived from the direct ones.

2.2 Provenance-aware Access Control Policies
Access control is the process of meditating each access

request and evaluating it against some access control poli-
cies according to given facts to grant or deny the access
request [17, 18]. An access control policy is generally a set
of predicates and can be defined as a first-order formula [8]:

∀x1 · · ·xm(f ⇒ P(s, a, o)), (1)

where f is a first-order formula, xi (i=1,...,m) is a variable
used in formula f , the predicate P(s, a, o) being true means
the subject s is allowed to perform action a on an object o
and the vector (s, a, o) forms an access request, ‘⇒’ denotes
that f is sufficient in granting an access request.

A provenance-aware access control policy is a policy de-
fined with regard to provenance data. Policy architects need
to define ACPs by utilizing some meaningful control units
of provenance, which are often not the individual nodes or
edges of a provenance graph but the entire subgraphs of a
provenance graph. It is necessary to apply some grouping
strategies on a provenance graph to identify these control
units. One strategy is to define regular expression of path
patterns on a provenance graph [4]. Park et al further named
the regular expressions by literally meaningful dependency
names to improve the efficiency of specifying PBAC Poli-
cies [13, 15]. Each dependency name can be seen as a short
name of a provenance question against a particular starting
node v to compute all nodes which caused v in a prove-
nance graph. For example, OwnedBy is a short name of the
provenance question “who are the owners of a document?”.

286

In PAC, the access request (s, a, o) in the policy equation
1 could be extended to include some provenance questions.
An access request in PAS can be defined as a 3-tuple as
follows (s, a, [q](o)). Here [q](o) denotes provenance answers
of a set of optional provenance questions against the object
o. [q] denotes that provenance questions are optional.
In PBAC, the formula f in the policy equation 1 could be

defined using provenance, which is the answer of some spe-
cial provenance questions for the purpose of access control.
That is, f could include a sub-formula f ′ = p1 (∧|∨) p2
· · · (∧|∨) pn, where each access condition pi is an expres-
sion of applying set operations, common logical operations,
and basic mathematical operations on the answers of prove-
nance questions against either s or o. Similar to the formula
1, a provenance-aware access control policy can be formally
specified in a form:

∀x1 · · ·xm(f ′ ⇐ P(s, a, [q](o))), (2)

where f ′ and (s, a, [q](o)) has semantics as explained above.
Note that the left arrow ‘⇐’ means that the provenance as-
sertions are conditions necessary but not sufficient for grant-
ing an access request because PAC and PBAC usually do not
work alone but together with other traditional access control
models, such as role-based ones.
For example, consider a policy that says a user u can see

who is the owner of a homework h if u is the grader of the
homework. This policy can be formulated as follows

∀h∀u(u ∈ GradedBy(h) ⇐ P(u, query,OwnedBy(h)),

where OwnedBy and GradedBy are two provenance ques-
tions which query who owned and graded the homework h.

2.3 A Homework Grading System
A homework grading subsystem (HGS) is a running ex-

ample in the rest of this paper. We assume that HGS has
deployed a simple role-based subsystem, which can authen-
ticates a user as either a Student or a Professor.

R1. A student can upload, replace and submit her own
homework. A homework can be submitted only once
but can be replaced many times before final submis-
sion.

R2. A student or a professor can review a submitted home-
work if she was neither the owner nor one of existing re-
viewers of the homework, and the homework has been
reviewed less than three times and not been graded.

R3. A professor can grade a homework by appending some
existing reviews of the homework if the homework has
been reviewed at least two times.

R4. A student can see how many times her homework has
been reviewed or graded.

R5. A reviewer can see whether her review on a homework
was appended to a grade or not.

R6. A professor who grades a homework can see who are
the author and reviewers of the homework, and whether
a homework was reviewed with conflict of interests (i.e.
a homework was reviewed by its owner).

3. PROVENANCE IN ABSTRACTION
A PAS needs to answer various provenance questions. Most

of them are proposed by domain users without enough tech-
nical knowledge. For example, a professor may ask who

owned a homework and whether and when a homework was
submitted. Domain users usually do not understand the
complex provenance graph, not to mention how to use it
to answer the obscure provenance questions in natural lan-
guage [4, 10]. Because a provenance graph can only be cap-
tured at run-time, what developers can perceive at design
time are only elements of conceptual software models, such
as use cases, scenarios, or classes. An intuitive idea is to
allow developers to design application specific types of pos-
sible provenance dependencies among different conceptual
entities such as classes, actors, and business operations.

This section introduces an abstract model of a provenance
graph, the typed provenance model (TPM). TPM is about
application-specific conceptual provenance types while OPM
is about the application-independent scheme of representing
provenance instances. TPM captures entity types, prove-
nance dependency types among entity types, as well as re-
lationships and constraints among dependency types.

3.1 Entity types and dependency types
Each entity type in a TPM is a class which can be in-

stantiated into nodes in an OPM graph. In the provenance
graph of the HGS, an artifact node could be instantiated
from a class in design model, for example Homework. A
process node could be instantiated from a business opera-
tion in requirements model or a method of a class in design
model, for example upload and submit. An agent could be
instantiated from an actor of the target system, for example
organizational roles the Student and Professor.

Dependency type is the core concept of a TPM. It has
roots in the notion of “dependency name” [13, 15] and is ac-
tually a classifier of similar semantics of multiple dependency
paths in an OPM graph. We formally define a dependency
type T as a composition of its literal name (N), an effect
entity type E, and a cause entity type C as follows.

T := N(E,C). (3)

Note that N is a unique name of T and literally shows se-
mantics of T . We will use the symbolic identifier T or the
literal nameN interchangeably to refer to a dependency type
in the rest of this paper. A dependency type can be instanti-
ated into a provenance dependency instance by instantiating
both the effect node type and cause node type. For exam-
ple, a dependency type ReviewedBy(Homework,User) can
be instantiated into ReviewedBy(hw1, u1) to denote that
a homework instance hw1 was reviewed by a user u1. If
we view each dependency type as a mapping from the ef-
fect node to its cause nodes, ReviewedBy(hw1) returns the
set of users who reviewed the homework hw1, and we have
ReviewedBy(hw1, u1) ≡ u1 ∈ ReviewedBy(hw1).

TPM includes two kinds of dependency types, the prim-
itive ones, which can be instantiated into individual edges
of an OPM graph, and the complex ones, which cannot be
instantiated into individual edges rather into subgraphs of
an OPM graph. Each complex type needs to be mapped to
a composition of primitive types to make itself interpretable
according to an OPM graph.

3.2 Primitive dependency types
Each primitive dependency type abstracts the semantics

of a set of edges in a provenance graph and could be from a
process type to either an artifact type or an agent type, or
from an artifact type to a process type. Primitive dependen-

287

cy types related to the same process type can be grouped
together to form a process-centered directed graph of prove-
nance in abstraction, called provenance type graph.

Figure 2: Primitive dependency types.

Figure 2-a is a provenance type graph centered at the
replace process in the HGS. It shows that a process replace
(rep) will take two homework as inputs. One is the old ver-
sion of a homework (hw) to be replaced and the other is the
new homework that is used to replace the old one. The pro-
cess replace is controlled by students (stud) and generates
a new version of homework as its output. Figure 2-a defines
four primitive dependency types T1 to T4 as follows. Note
that we assume that data is never overwritten or updated
in place. Any modification to a data object will create a
uniquely new instance of it in a provenance graph.

T1 := UrepHwOld(rep,Hw), T2 := UrepHwNew(rep,Hw),

T3 := GrepHW (Hw, rep), T4 := Crep(rep,Stud).

Here, UrepHwOld, UrepHwNew, GrepHW , and Crep are unique
type names, which literally expose the application specific
semantics of dependency types. U, G, and C indicates that
the type is an application specific subtype of Used, wasGen-
eratedBy, and wasControlledBy dependencies in OPM re-
spectively. For example, UrepHwOld means a process replace
used an old version of homework as its input. Figure 2-b is
a provenance type graph centered at the review process.
Each process type that can be finally instantiated into pro-

cesses at run-time is a method in software design model or a
business operation that can be refined into a set of method-
s. Each method signature could leads to a provenance type
graph as shown in Figure 2.

3.3 Complex dependency types
TPM also includes the so-called complex dependency typ-

es to encapsulate the complex semantics which cannot be
captured by individual primitive dependency types. Each
complex dependency type can be defined as a composition
of primitive dependency types.
First, the most basic complex dependency type is the

concatenation of two primitive dependency types with the
operator ‘·’. To put formally, a complex dependency type
T := Ti · Tj means that the effect node type and the cause
node type of T are the effect node type of Ti and the cause
node type of Tj respectively, and the cause node type of Ti

is same as the effect node type of Tj . For example, T7 below
captures the semantics that a homework (Hw) was uploaded
(up) by a student (Stud).

T5 := GupHw(Hw, up); T6 := Cup(up,Stud)

T7 := UploadedBy(Hw,Stud) := T5 · T6,

where GupHw and Cup mean that an upload process gener-
ates homework and is controlled by students respectively.
Second, each edge of a provenance graph is directional.

Its tail node is the cause that its head node became what it

is. However, users could ask which are the effect nodes of a
given cause node. We can formally denote the inversion of
a dependency type T as T−1 = N−1(C,E). It means that
a cause node of type C caused one or more effect nodes of
type E in the sense of N . For example, T12 below computes
the set of reviews related to a specific homework. T8 - T10

are primitive dependency types in Figure 2-b.

T8 := GrevRw(Rw, rev), T9 := UrevHw(rev,Hw),

T10 := Crev(rev,User), T11 := ReviewOn(Rw,Hw) := T8 · T9,

T12 := T11
−1 := ReviewOn−1(Hw,Rw) := T9

−1 · T8
−1.

Third, some semantics of provenance dependency can be
denoted by paths with arbitrary lengths in OPM graph. We
can apply regular expression operators over existing depen-
dency types to concisely compose dependency types model-
ing these semantics. They are the operator “*” for 0 or more
of the preceding element, the operator “+” for 1 or more of
the preceding element, and the operator “?” for 0 or one of
the preceding element. For example, an uploaded homework
can be replaced many times before final submission by its
author. T15 captures the provenance dependency between
the submitted homework and its history versions.

T13 := GsubHw(Hw, sub), T14 := UsubHw(sub,Hw),

T15 := SubmisionOn(Hw,Hw) := T13 · T14 · (T3 · T1) ∗ .

Fourth, some semantics can be validated by several paths
in a provenance graph either disjunctively or conjunctively.
To this end, we introduce two operators to reason about the
provenance. The conjunctive and disjunctive operator ∧ and
∨ enable the refinement of a dependency type into multiple
conjunctive or disjunctive sub-types. Note that a dependen-
cy type can be composed with another via the operator ∨
or ∧ if and only if they have the same cause node type and
effect node type. In the HGS, only the owner of a homework
can upload, replace, and submit it and a homework reviewed
by its owner is involved in conflict of interests. T18 and T20

below capture semantics between Homework and Student.

T16 := ReplacedBy(Hw,Stud) := ((T3 · T1)∗) · T3 · T4;

T17 := SubmittedBy(Hw,Stud) := T13 · Csub(sub,Stud);

T18 := OwnedBy(Hw,Stud)

:= T17 ∨ (T15? · T16) ∨ (T15? · (T3 · T1) ∗ ·T7);

T19 := ReviewedBy(Hw,User) := T9
−1 · T10;

T20 := ReviewedCOI(Hw,User) := T18 ∧ T19,

where T18 is defined as three disjunctive sub-types. In T18,
T17 says that the user who submitted the homework is its
owner; (T15? · T16) says that the user who replaced it is its
owner; (T15? · (T3 ·T1)∗ ·T7) says that the user who uploaded
it is its owner. Notice that Stud is a subclass of User.

Note that developers have to ensure that complex depen-
dency types are correctly composed to ensure the correctness
of the ACPs specified with them. Various constraints may
exist among dependency types. For example one dependen-
cy type can be combined with another via the operator ∨ or
∧ provided they have the same cause node type and effect
node type. Another typical constraint would be that one
dependency type cannot be preceded by another one. In the
HGS, suppose a dependency type Tr denotes a homework is
the new replacement of another homework, and Ts denotes
a homework is a submitted version of another homework.

288

Ts · Tr is semantically right while Tr · Ts is wrong because
the replace process on a homework cannot be activated after
the submit process on the same homework happened. Note
that we do not explore the formalization and verification of
various syntactical and semantical constraints in this paper
but leave them as our future work.
The set of composition operators introduced in this sec-

tion is complete in a sense that the concatenation operator
‘·’ and the inversion operator ‘ −1’ provide sufficient expres-
siveness of our TPM in terms of abstracting any paths of
a provenance graph which carry meaningful provenance de-
pendencies among two nodes. However, new operators can
still be added because developers can define their own rea-
soning rules on provenance types and formulate the rules
as new operators of composing complex dependency types
for convenience. By introducing complex dependency types
and their mapping to compositions of primitive dependen-
cy types, a TPM enables the developers to efficiently define
ACPs for PAS even when the provenance graph is not avail-
able, and ensures that the ACPs defined using dependency
types can be evaluated according to the provenance graph
captured at run-time.

4. ENGINEERING ACPS BASED ON TPM
This section first describes a TPM-centric process for engi-

neering provenance-aware ACPs, then applies it in the HGS.

Figure 3: A TPM-centric process.

4.1 Process Overview
The process for engineering ACPs is embedded in the over-

all process of PAS development. As shown in Figure 3, rect-
angles in solid lines are activities and arrows are control
flows between two activities. Two white rounded rectangles
in dashed lines are containers for requirements analysis ac-
tivities and architecture design activities. As the dark area
shows, the activities for defining ACPs over typed prove-
nance model spread across at least requirements analysis
and architecture design phases. We introduce these activi-
ties and the related artifacts as follows.

1. Identify scenarios: actors, operations, data objects, and
conditions. Identify scenarios of the target system by
general requirements analysis methods. Each scenario
is a short story of how a user interacts with the system
to accomplish her task in a specific circumstance. In
particular, some provenance questions may be identi-
fied as special scenarios [11], which are the sources of
identifying data objects with provenance. Each sce-
nario usually describes who can perform what opera-
tions on what objects under what conditions.

A set of tuples (actor, operation, object, conditions)
can be identified from each scenario. Each user ap-
pears only as a general actor, for example organiza-
tional roles Student and Professor in the HGS. Some

conditions could be identified as access control require-
ments guarding business operations against data ob-
jects. For provenance questions, the operations are
mainly various queries on provenance of data objects
and conditions defined using provenance.

2. Identify entity types and dependency types. Analyzing
each provenance question, identify a set of data objects
whose provenance is needed to answer the provenance
question, as well as actors and operations related to
these data objects and define them as entity types in
typed provenance model. Identify dependency types
that are necessary for answering provenance questions.
Choose appropriate and unique type names to carry
the semantics of provenance dependencies.

3. Identify access control requirements (ACRs). After ac-
tivities 1 and 2 are done, developers can start identify-
ing ACRs related to provenance. On one hand, some
provenance dependencies denoted by provenance types
are sensitive and corresponding ACRs should be de-
fined to protect them. On the other hand, some con-
ditions guarding the operations against data objects
identified in step 1 can be recognized as ACRs related
to provenance, which could have not been identified
as dependency types in step 2. So an iteration exists
between activities 2 and 3.

4. Design software architecture (SA). Designing a soft-
ware architecture entails allocating requirements into
different components and defining connections among
them. Each component provides a set of interfaces con-
sumed by other components. Each interface includes a
set of method signatures. In our opinion, the method
is the minimal unit out of which primitive dependency
types can be derived. For example, a replace method
may lead to primitive dependency types of T1 to T4.
A software architecture often includes multiple views.
This paper only shows the role of the class diagram in
deriving the primitive dependency types. Other views,
such as state diagram, might also affects the way of
modeling provenance types.

5. Elaborate entity types and dependency types. Refine
both process types (the business operations) and ar-
tifact types (the classes at requirements level) into
method signatures and classes in the software architec-
ture. Derive necessary primitive dependency types out
of the software architecture model. Map each complex
dependency type to a composition of primitive depen-
dency types, which is the key to refine ACRs identified
in step 3 as ACPs that can be evaluated against the
OPM graph.

6. Define and validate ACPs. Formally specify ACPs cor-
responding to the ACRs identified in step 3 according
to the refined entity types and dependency types. Val-
idate consistency among the ACPs and ACRs.

This process emphasizes the role of typed provenance mod-
el in specifying provenance-aware ACPs in the overall PAS
development process. Note that the process itself is intu-
itive and does not promise to produce a good enough set of
ACPs, which heavily depends on the experiences of policy
architects. Several issues including the automatic derivation
of primitive dependency types out of software architecture
and the formalization and automatic verification of the cor-
rectness of a TPM model should be solved in the future.

289

Table 1: A list of scenarios of the HGS.
No. actor operation data objects conditions
1.1 Student upload a homework C0: Any student in the HGS

1.2 Student replace/submit
a homework to get a
new or submitted homework

C1: Owner of homework
C2: Homework was non-submitted.

2 Student or Professor review a homework to produce a review

C3: (Not C1) Not Owner of the homework
C4: (Not C2) The homework was submitted
C5: Not reviewed the homework before
C6: The homework was not graded
C7: Number of reviews of the homework < 3

3 Professor grade a homework to produce a grade C8: Number of reviews of the homework ≥ 2

4 Student query-prov-of
a homework on its reviewed times
and graded state

C9: (C1) Owner of the homework

5 Student or Professor query-prov-of a review as part of a grade C10: Owner of the review

6 Professor query-prov-of
a homework on its author, reviewers,
and whether it is reviewed by
a user involved in conflict of interests.

C11: Any professor in the HGS

4.2 Process in Action
In this section, we further articulate the provenance-related

activities shown in Figure 3 by applying them in the HGS.

4.2.1 Step 1: Identify and specify scenarios
Identifying scenarios is a common task in primary software

development methodologies. We do not discuss in detail
but just present the resulted scenarios in table 1, which are
elicited from the requirements of the HGS in section 2.3.
Scenarios 1.1-1.2 are from the requirement R1. Scenarios 2-
6 are from the requirements R2-R6 respectively. Note that
scenarios 4-6 are provenance questions.

4.2.2 Step 2: Define entity and dependency types
Based on provenance questions 4-6 in Table 1, we can

easily identify the data classes whose provenance should be
captured. They are Homework, Review and Grade. We can
further identify actors (UT) and operations (PT) related
to these data classes (AT) as shown in Table 2. Most op-
erations are literally comprehensible while query-prov-of is
an operation to query provenance of either a homework, a
review, or a grade.

Table 2: Entity types of the HGS.
ET := UT | AT | PT .
UT := User | Stud | Prof .
AT := Homework | Review | Grade.
PT := upload | replace | submit

| review | grade | query-prov-of .

We identify dependency types as shown in Table 3 that
are necessary to answer provenance questions (scenarios 4-6)
in Table 1. Most of them have been introduced in section 3
except for the second and third types, which denote that a
homework (Hw) or a review (Rw) is used by a grade (grd)
process. Table 3 also shows the provenance questions that
can be answered using a specific dependency type.

Table 3: Dependency types from prov. questions.
No Dependency types Question (type description)
1 UrevHw(rev,Hw) 4 (review used Hw)
2 UgrdHw(grd,Hw) 4 (grade used Hw)
3 UgrdRw(grd,Rw) 5 (grade used Rw)
4 ReviewedBy(Hw,User) 6 (Hw was ReviewedBy user)
5 OwnedBy(Hw,Stud) 6 (Hw was OwnedBy stud)
6 ReviewCOI(Hw,User) 6 (Hw was Reviewedby owner)

The dependency types listed in Table 3 include both prim-
itive types (1-3) and complex types (4-6) but are not exhaus-
tive. Dependencies types could be identified and further
specified among any two entity types in ET . In addition,

both the entity types and dependency types may need to be
refined while designing a software architecture.

4.2.3 Step 3: Identify Provenance-aware ACRs
Based on proper access control models, developers can

decide which conditions in Table 1 can be and should be
ACRs. This paper focuses on identifying ACRs that can
be implemented as provenance-aware ACPs under the guid-
ance of both PAC model [1, 2, 9], where provenance is sensi-
tive resources to be protected, and PBAC model [15], where
provenance is used to adjudicate access requests.

In the HGS, we first identify PAC requirements from prove-
nance questions (scenarios 4-6) in Table 1. Second, we iden-
tify access conditions that can be defined using provenance,
i.e. identifying PBAC requirements. Note that all scenarios
with conditions C1-C10 in Table 1 can be defined as PBAC
requirements except for those only related to roles, such as
C0 and C11. These PBAC requirements introduce new de-
pendency types (such as 2, 5, 6 in Table 4) that were not
identified in Table 3.

Table 4: Dependency types from ACRs.
No Dependency types used to specify conditions in Table 1
1 OwnedBy(Hw,Stud) C1, C3, C9
2 GsubHw(Hw, sub) C2, C4
3 ReviewedBy(Hw,User) C5
4 UgrdHW (grd,Hw) C6
5 ReviewOn(Rw,Hw) C7, C8
6 ReviewOf(Rw,User) C10

Finally, we need to identify new PAC requirements for
the newly identified dependency types. For simplicity, we
assume that provenance is not accessible to users if it is not
explicitly permitted by provenance questions in table 1.

4.2.4 Step 4: Design software architecture
Based on the scenarios in Table 1, we define the soft-

ware architecture of the HGS as a class diagram. Figure
4 defines a class hierarchy of various documents, including
Document,Homework, Review, and Grade, and a class hi-
erarchy of organizational roles which include User, Stud, and
Prof. These classes except for the super class Document
have been introduced as entity types in table 2. In Figure
4, each descendant class of Document overloads its methods
to implement different business operations in Table 2. For
example, the method Hw.create(...) is a refinement of the
business operation upload while Rw.create(...) is a refine-
ment of review. For simplicity, we omit the details of the

290

signature of each method. The class diagram is an impor-
tant source for identifying primitive dependency types.

4.2.5 Step 5: Elaborate entity and dependency types
With software architecture models, we can elaborate some

entity types, especially the process types and artifact types,
define primitive dependency types according to method sig-
natures implementing business operations in requirements
model, and elaborate complex dependency types in Table 3
and 4 into compositions of primitive dependency types.

Figure 4: The class diagram of the HGS.

Some business operations identified as process types should
be elaborated into method signatures according to software
architecture. For example, Hw.create(· · ·) is a process type
elaborated from the process type upload given in table 2
while Rw.create(· · ·) is elaborated from the process type
review given in table 2. According to the elaborated pro-
cess types, we can define primitive dependency types. For
example, the method Hw.create(· · ·) takes the homework
content which is a string with arbitrary length as its in-
put and produces a homework object as its output. So we
can define corresponding primitive dependency types to cap-
ture provenance dependencies related to the process type
Hw.create(· · ·) as follows. T22 is the more accurate form of
T5 introduced in section 3.3, and T23 for T6.

T21 := UupHw(Hw.create, String),

T22 := GupHW (Hw.create,Hw), T23 := Cup(Hw.create, Stud).

If one business operation is implemented as a chain of meth-
ods concatenated via method invocations in software archi-
tecture, the corresponding process type could be elaborated
into multiple process types and the primitive dependency
types related to the original process type should then be-
come complex dependency types.
Complex dependency types in Table 3, 4 can be elaborated

into compositions of available dependency types. For exam-
ple, the dependency type OwnedBy captures the provenance
dependency between a homework and its owner. However,
designers have to clearly define how the owning relationship
was established, such as from the successful execution of the
methods create, edit, and submit of the Homework class.
We have defined the OwnedBy dependency type as T18 in
section 3.3, where T1, T3, T4, T6, and T7 need to be redefined
because the process types (the business operations, upload
and replace) they relied on have been refined as Hw.create
and Hw.edit in software architecture. In this way, we can
map all complex dependency types in Table 3, 4 into com-

positions of available dependency types along with the re-
finement of software architecture.

4.2.6 Step 6: Define and validate ACPs
Using dependency types in Table 3 and 4 and their in-

versions, we can formally define ACPs in Table 5 to im-
plement access conditions in Table 1. We formalize ACPs
as a first-order formula given in equation 2. In Table 5,
the letters ‘u’, ‘h’, ‘g’, and ‘r’ denotes an instance of User,
Homework, Grade, and Review respectively. Each depen-
dency type serves as a mapping from the effect node to its
cause nodes. For example, ReviewedBy(h) returns a set of
users who have reviewed the homework h.

Note that ACPs in table 5 are defined on business op-
erations so that we can easily validate them against access
control requirements (access conditions) in table 1. Howev-
er, each business operation may be implemented as a series
of methods of architectural components in real settings. De-
velopers need to further refine the ACPs given in Table 5 to
get ACPs defined over architectural methods and validate
them against access control requirements. Sun et al have
discussed this issue in role-based access control systems built
on component middleware [20, 22]. We will conduct the sim-
ilar research on provenance-aware access control systems in
the future.

5. RELATED WORK AND DISCUSSION
Provenance differs from traditional data and meta-data in

that it is immutable and in a form of directed graph [2]. Not
only individual nodes and edges but paths with arbitrary
length among nodes in a provenance graph will be treated
as a whole unit when it is protected or used to adjudicate
access requests. Traditional security models and policy lan-
guages are not appropriate for PAS [1, 2]. Correspondingly,
policy authoring tools that worked well for traditional access
control policies would not work well in the PAS [16].

Policy languages for provenance-aware ACPs have em-
ployed regular expressions to dynamically identify protect-
ed resources as a control unit [4, 14]. Park et al further
introduced the dependency names that envelops a path pat-
tern specified in regular expressions to improve the efficient
specification of PBAC policies [13, 15]. The dependency
names inspired us to introduce the typed provenance mod-
el, which explicitly differentiate the provenance types and
their instances, and serves as the basis of efficiently specify-
ing provenance-aware ACPs. As far as we know, no research
has previously modeled provenance as we do in this paper.

Provenance-aware security models like PAC [1, 2, 9, 15]
and PBAC [13, 15] often do not work alone in real system-
s. They need to integrate with other access control models,
such as RBAC [17, 18]. This paper emphasized on specifica-
tion of ACPs over provenance in a similar way that is found
in role engineering [19] on RBAC policies over roles. Is-
sues of co-design of provenance-aware and other provenance-
unaware ACPs are beyond the scope of this paper though
we believe our approach is somewhat analogous with role-
engineering and it is possible to integrate them together.

This work is the first step of our efforts in realizing idea
of security engineering [5, 6, 19, 21] in provenance-aware ac-
cess control systems. As far as we know, No similar work
has been done on engineering provenance-aware ACPs with
considerations of the special characteristics of provenance
in contrast to general data and meta data. Similar to a

291

Table 5: Access Control Policies of HGS.
No. Policies

1.2 ∀u∀h (u ∈ OwnedBy(h) ∧ Submittedby(h) = ϕ) ⇐ P(u, replace/submit, h)

2 ∀u∀h
(

u ∈ OwnedBy(h) ∧ GsubHW (h) ̸= ϕ ∧ u ̸∈ ReviewedBy(h)∧
UgrdHw

−1(h) = ϕ ∧ |ReviewOn−1(h)| < 3

)
⇐ P(u, review, h)

3 ∀u∀h (|ReviewOn−1(h)| ≥ 2) ⇐ P(u, grade, h)

4 ∀u∀h (u ∈ OwnedBy(h)) ⇐ P
(
u, query-prov-of , {|UrevHw

−1(h)|, UgrdHw
−1(h)}

)
5 ∀u∀r (u ∈ ReviewOf(r)) ⇐ P(u, query-prov-of , UgrdRw

−1(r))
6 ∀u∀h (u ∈ Prof ⇐ P(u, query-prov-of , {OwnedBy(h), ReviewedBy(h), ReviewedCOI(h)}))

general security engineering solution, our method should be
integrated with the overall software development process.
So fat there exists only one development methodology spe-
cific for PAS, called PrIMe [11]. PrIMe instructs developers
to identify provenance questions and then to adapt the tar-
get system to collect provenance for answering provenance
questions [11]. However, PrIMe did not identify and model
provenance at an abstract enough level for efficient specifi-
cation and management of ACPs.

6. CONCLUSION AND FUTURE WORK
In provenance-aware systems, developers need to identify

some original functional requirements as access control re-
quirements that can be implemented as provenance-aware
ACPs. They also need some kinds of provenance in abstrac-
tions to efficiently define the provenance-aware ACPs before
a real provenance graph is captured at run-time. To solve
these issues of developing provenance-aware ACPs, this pa-
per argues that it is necessary to engineer provenance-aware
ACPs from the beginning of PAS development. We intro-
duce a typed provenance model (TPM) to abstract complex
provenance graph. TPM forms a solid basis for efficient def-
inition of provenance-aware ACPs. Furthermore, we present
a TPM-centric process embedded in the overall software de-
velopment process to guide the identification, specification,
and refinement of provenance-aware ACPs from the very be-
ginning of PAS development. In the future, we will apply
our approach in additional systems to empirically evaluate
its practicality of working together with the overall PAS de-
velopment methodology, such as PrIMe [11], and other secu-
rity engineering methodology, such as role-engineering [19].
We will also try to define a formal modeling language for
TPM to automatically validate its consistency.

7. REFERENCES
[1] U. Braun and A. Shinnar. A security model for

provenance. Technical Report TR-04-06, Harvard
University Computer Science, Jan 2006.

[2] U. Braun, A. Shinnar, and M. Seltzer. Secure
provenance. In The 3rd USENIX Workshop on Hot
Topics in Sec., pages 1–5, Berkeley, CA, USA, 2008.

[3] P. Buneman, S. Khanna, and W. C. Tan. Data
provenance: Some basic issues. FST TCS 2000, pages
87–93, 2000.

[4] T. Cadenhead, V. Khadilkar, and et al. A language for
provenance access control. CODASPY ’11, pages
133–144, 2011.

[5] R. Crook, D. Ince, and B. Nuseibeh. On modelling
access policies: relating roles to their organisational
context. RE’05, pages 157–166, 2005.

[6] B. Fabian, S. Gürses, and et al. A comparison of

security requirements engineering methods. Requir.
Eng., 15(1):7–40, Mar. 2010.

[7] P. Groth, S. Jiang, and et al. An architecture for
provenance systems. Technical report, University of
Southampton, February 2006.

[8] J. Y. Halpern and V. Weissman. Using first-order logic
to reason about policies. ACM Trans. Inf. Syst.
Secur., 11(4):21:1–21:41, July 2008.

[9] R. Hasan, R. Sion, and M. Winslett. Introducing
secure provenance: problems and challenges.
StorageSS ’07, pages 13–18, 2007.

[10] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Opql: A
first OPM-level query language for scientific workflow
provenance. SCC ’11, pages 136–143, 2011.

[11] S. Miles, P. Groth, and et al. Prime: A methodology
for developing provenance-aware applications. ACM
Trans. Softw. Eng. Methodol., 20(3):8:1–8:42, 2011.

[12] L. Moreau, B. Clifford, and et al. The open
provenance model — core specification (v1.1). Future
Generation Computer Systems, December 2009.

[13] D. Nguyen, J. Park, and R. Sandhu. Dependency path
patterns as the foundation of access control in
provenance-aware systems. Tapp ’2012, 2012.

[14] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An
access control language for a general provenance
model. SDM ’09, pages 68–88, 2009.

[15] J. Park, D. Nguyen, and R. Sandhu. A
provenance-based access control model. In 10th
Annual Conf. on Privacy, Security and Trust, 2012.

[16] R. W. Reeder, L. Bauer, and et al. Expandable grids
for visualizing and authoring computer security
policies. CHI ’08, pages 1473–1482, 2008.

[17] P. Samarati and S. D. C. d. Vimercati. Access control:
Policies, models, and mechanisms. FOSAD ’00, pages
137–196, London, UK, 2001. Springer-Verlag.

[18] R. Sandhu and P. Samarati. Access control: principle
and practice. Communications Magazine, IEEE,
32(9):40 –48, sept. 1994.

[19] M. Strembeck. Scenario-driven role engineering. IEEE
Security and Privacy, 8:28–35, 2010.

[20] L. Sun and G. Huang. Towards accuracy of role-based
access control configurations in component-based
systems. J. Syst. Archit., 57(3):314–326, Mar. 2011.

[21] L. Sun, G. Huang, and et al. An approach for
generation of J2EE access control configurations from
requirements specification. QSIC ’08, pages 87–96.
IEEE Computer Society, 2008.

[22] L. Sun, G. Huang, and H. Mei. Validating access
control configurations in J2EE applications. CBSE
’08, pages 64–79, 2008.

292

