Classifying and Comparing Attribute-Based and Relationship-Based Access control

by

Tahmina Ahmed, Ravi Sandhu and Jaehong Park
ACM CODASPY
March 22-24, 2017
Outline

• Introduction
• Background & Motivation
• Attributes: Definitions and Assumptions
• ReBAC Classification
• ABAC Classification
• Multilevel Relationship Expression With Attributes
• Comparison: ABAC Vs. ReBAC
• Conclusion
Figure 1: Using Relationship in Authorization policy expression is used for social and beyond social environment.
Figure 2: ABAC can configure DAC, MAC and RBAC [Zin et al. 2012]
• Are they Comparable?
• Can Attributes Express Relationships?
• Can ReBAC Configure ABAC? Vice versa?
• Do they have equal expressive power?
If not
• Which one is more expressive?
1. Attribute Value Structure
 - Atomic-valued or Single-valued Attribute (e.g. gender)
 - Set-valued or Multi-valued Attribute (e.g. phoneNumber)
 - Structured Attribute (e.g. person-Info (name, age, phoneNumber))

2. Attribute Value Scope
 - Entity Attribute (e.g. friend)
 - Non-entity Attribute (e.g. age)

3. Boundedness of attribute range
 - Finite Domain Attribute (e.g. gender)
 - Infinite Domain Attribute (e.g. time)

4. Attribute association
 - Contextual or Environmental Attribute (e.g. currentTime)
 - Meta Attribute (e.g. role(user) = manager, task(manager) = supervise)

5. Attribute mutability
 - Mutable Attribute
 - Immutable Attribute
Attribute Function Composition

\[f : X \rightarrow Y \]

\[g : Y \rightarrow Z \]

\[x \in X \, , \, g(f(x)) \in Z \]
Assumptions

• All non entity attribute are finite domain
• Entity attribute functions are partial functions defined on existing entities only
• Inner attribute function in an attribute function composition should always be entity attributes
• Structured attribute is a multivalued tuple of atomic or set-valued attributes. So it is more expressive than atomic or set-valued attribute.
ReBAC Classification

ReBAC_BNES
+Structured Attribute

ReBAC_BNE
+Node Attribute
+Edge Attribute

ReBAC_BN
+Node Attribute

ReBAC_BE
+Edge Attribute

Relationship Dynamic

Attribute Dynamic

Static

(a) ReBAC Structural Models

(b) ReBAC Dynamics

Figure 3.: ReBAC Framework
Figure 4.: A Simple Relationship Graph Expressible in ReBAC_B [Crampton et al. 2014]
Figure 5: An Example of Node Attributes in Relationship Graph Expressible in ReBAC_{BN}

Figure 6: An Example of Edge Attributes in Relationship Graph Expressible in ReBAC_{BE}
Example (Continued…)

Figure 7: An Example of Node Attributes in Relationship Graph Expressible in ReBAC_{BNES} [Cheng et al. 2016]
Figure 8: ABAC Framework

(a) ABAC Structural Models

(b) ABAC Dynamics
Expressing Relationship Graph with Attributes

- Entity types = \{user, project, folder, document\}
- Attributes:
 - User attributes = \{Participant-of, Supervises\}
 - Folder attributes = \{Resource-for, FolderMember-of\}
 - Project attributes = \{
 - Document attributes = \{DocMember-of\}

Relationship Graph in Figure 4 is Expressible with ABAC$_E$
Expressing Relationship Graph with Attributes (Continued…)

Relationship Graph in Figure 5 is Expressible with ABAC_E

- entityType = \{user\}
- Attribute:
 - User’s entity attribute =\{friend\}
 - User’s Non Entity Attribute =\{Name, Age, Gender\}

Relationship Graph in Figure 6 is Expressible with ABAC_ES

- entityType = \{user, project, tenant\}
- Attribute:
 - user’s atomic entity attribute =\{supervises\}
 - User’s structured entity Attribute =\{assignedBy\}
 - e.g. assignedBy(Bob) = (“Project1”, “supervises”, “Alice”)

© Tahmina Ahmed
World-Leading Research with Real-World Impact!
Expressing Relationship Graph with Attributes (Continued…)

- Entity types: \{user, tenant, role\}
- Attribute:
 - User’s atomic entity attribute: \{UO, UA\}
 - Users Structured Entity Attribute: \{dependentEdge\}
 \[\text{dependentEdge}(u) = ("r","UA", \{(y,x,TT)\})\]

Relationship Graph in Figure 7 is Expressible with ABAC\textsubscript{ES}
Attribute Composition

- Needs one attribute: friend
- Policy Expression uses Attribute composition

friend(Alice)={Bob}
friend(friend(Alice))={Carol}

Composite Attribute

- Needs two attributes
 1. friend
 2. friendOfFriend
- Policy Expression uses direct attributes

friend(Alice)={Bob}
friendOfFriend(Alice)={Carol}
friend(Alice) = \{Amy, Carol\}
friendOfFriend(Alice) = \{John\}

Figure 10. A simple Relationship Graph

If the friend relationship between Amy and John deleted

friendOfFriend(Alice) = ?

Instead of keeping the end user as attribute value we have to keep the exact path information.
Figure 12: Multilevel Relationship Expression with Attribute

Attribute Composition:

friend ("Alice") = {"Carol"}
coworker ("Alice") = {}
friend (friend("Alice")) = { "John"}
coworker(coworker("Alice")) = {}
friend (coworker("Alice")) = {}
coworker (friend("Alice")) = {"Bob"}

Composite Attribute:

friend ("Alice") = {"Carol"}
coworker ("Alice") = {}
friendOffFriend("Alice") = { "Carol.John"}
coworkerOfCoworker("Alice") = {}
friendOfCoworker("Alice") = {}
coworkerOfFriend("Alice") = {"Carol.Bob"}
Figure 12: ReBAC Dynamics, ABAC Dynamics and Attribute Domain wise Comparison between ReBAC and ABAC

\[ABAC_X \equiv ReBAC_Y \text{ Means} \]

- Static and finite attribute domain \(ABAC_X \equiv Static \ ReBAC_Y \)
- \(ABAC_X \) Attribute value changes with finite domain \(\equiv Relationship \ Dynamic \ ReBAC_Y \)
- \(ABAC_X \) with entity changes and infinite domain entity attribute \(\equiv node \ dynamic \ ReBAC_Y \)
Comparison: Equivalent Structural Models for ReBAC and ABAC

Figure 13: Equivalence of ReBAC and ABAC Structural Classification
Comparison: Non-Equivalent Structural models for ReBAC and ABAC

Figure 14: Non-Equivalence of ReBAC and ABAC Structural Classification
Comparison: On Performance

- Attribute Composition is similar to ReBAC and Both have polynomial complexity for authorization policy and constant complexity on update.
- Composite attribute has constant complexity on authorization policy and polynomial complexity on update to maintain relationship changes.
- Performance Depends on:
 - Node Dynamics
 - Relationship Dynamics
 - Density of the Relationship Graph
For static system or only non entity attribute change------Composite attribute is the best approach

System with huge node dynamics, relationship dynamics and high relationship density----- Attribute composition is the best option

If the system is in the middle between two extremes ---- A hybrid approach where both composite attribute and attribute composition is used.

Hybrid Approach:
To achieve p level relationship composition it uses m level composite attribute and n level attribute composition where p = n X m.
Comparison: In Respect of PEI Framework

Figure 15: PEI Framework

- Security and System Goals (Objectives/Policies)
- Policy Models
- Enforcement Models
- Implementation Models
- Concrete Systems

- No Difference
- Both the approaches differ here
• Our results indicate that the relationship between ABAC and ReBAC is subtle and variable depending on the precise flavor of these two access control approaches in any given model. At the same time we are able to make some general statements about this comparison.

• Metrics beyond theoretical equivalence need to be brought into consideration to better understand the relative advantages and disadvantages of these two approaches. Performance is one such metrics but others such as maintainability, robustness, and agility, also need to be studied.
Questions/Comments