

Institute for Cyber Security

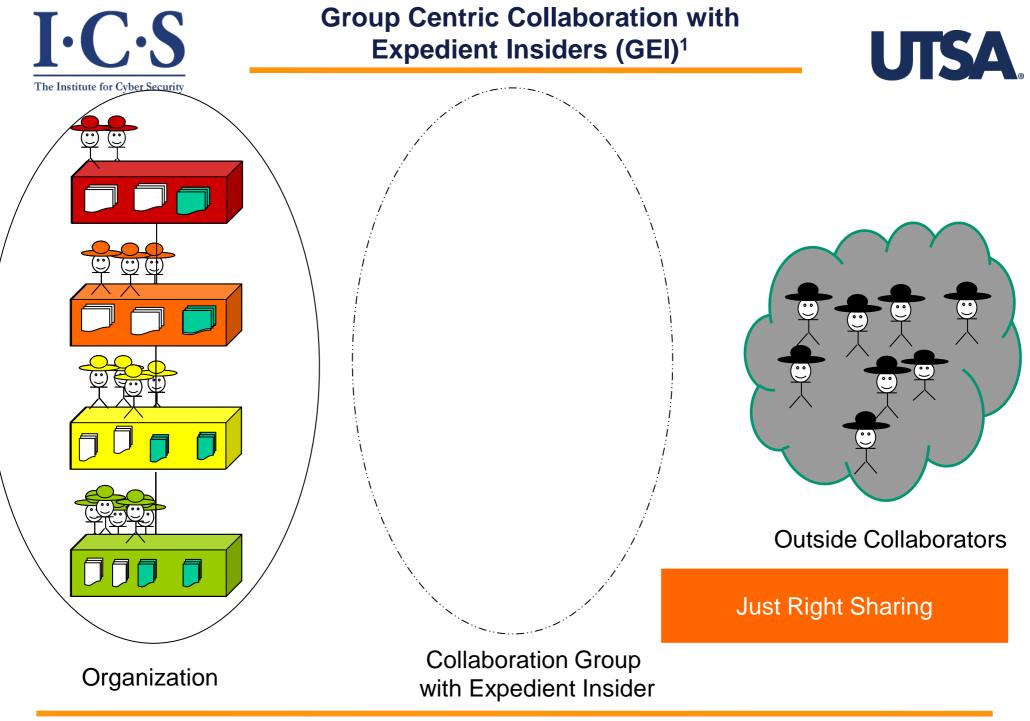
A Lattice Interpretation of Group-Centric Collaboration with Expedient Insiders

Khalid Zaman Bijon, Tahmina Ahmed, Ravi Sandhu, Ram Krishnan Institute for Cyber Security University of Texas at San Antonio

- Who are expedient insiders?
 - Any outside Collaborators, i.e. Domain specialists, cybersecurity experts, etc.
- Difference with respect to true insiders
 - Transient rather than persistent
 - Information sharing is based on need-to-consult basis
 - Less commitment than long time employees


What are the Challenges?

Information selection for collaboration
 Restrict unnecessary access
 Import Results



Collaboration with Expedient Insiders in Traditional LBAC

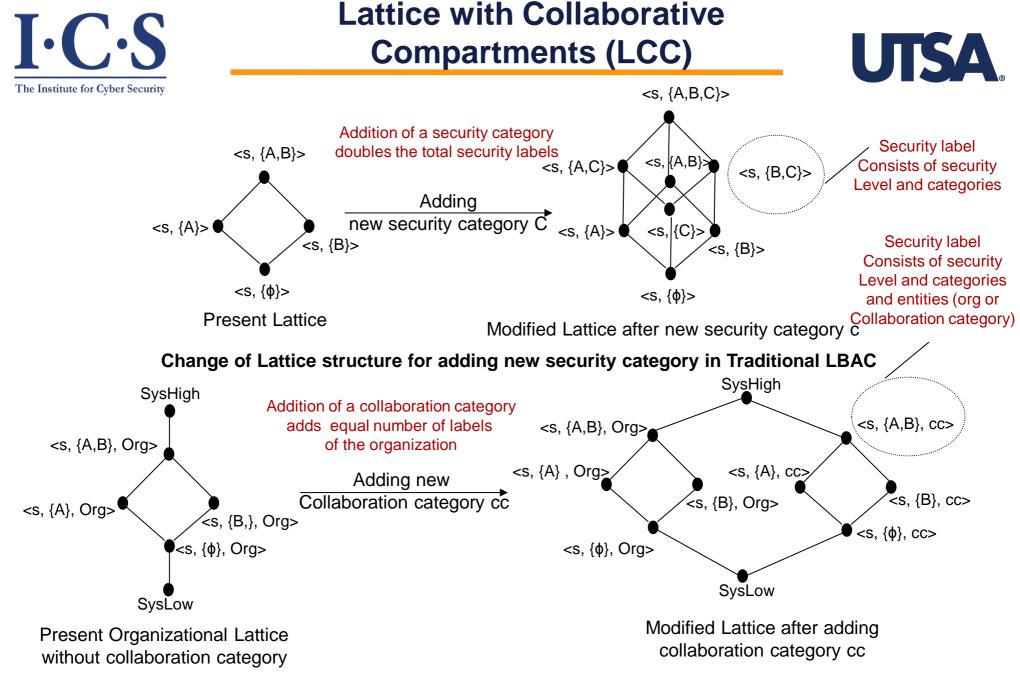
World-Leading Research with Real-World Impact!

1. K. Bijon, R. Sandhu, and R. Krishnan. A group-centric model for collaboration with expedient insiders in multilevel systems. In *Secots*, 2012.

- Organizations and groups maintain separate piece of lattice
- Information flow and security properties for the overall system are informally addressed
- No comparison with traditional LBAC

Motivation & Goal:

- Construct a single lattice for group-centric organizational collaboration
- Achieve all requirements of GEI as well as well-known formal security properties of a LBAC system
- Proof of equivalence with GEI
 - 1. K. Bijon, R. Sandhu, and R. Krishnan. A group-centric model for collaboration with expedient insiders in multilevel systems. In *Secots*, 2012.



- Traditional-LBAC
 - Information objects are attached with security labels.
 - Information flows on partial ordered of those security labels
 - A security label is formed by combining a security level with a subset of security categories
 - Security levels are ordered (e.g. TS>S>U>C)
 - Security categories are unordered (e.g. ProjA, ProjB)
 - A user is cleared to a
 Users can access objection dominated by their sec
 These security labels are not suitable for expedient insiders (i.e. too many sharing) Need to find a way to construct security labels (solely for a collaboration purpose)

- Each collaboration group introduces a new collaboration category (cc).
- New security labels are formed for each cc in combination with the entire set of security labels of the organization (different than new traditional security categories)
- Existing lattice structure is modified accordingly (different than new traditional security categories)
- One single lattice structure is maintained for all collaboration groups and organization.

Change of Lattice structure for adding new collaboration category in LCC

World-Leading Research with Real-World Impact!

$\mathbf{I} \cdot \mathbf{C} \cdot \mathbf{S}$

Formal Definition of Lattices from components

A: Lattice with Traditional Compartments (LTC)	B: Lattice with Collaboration Compartments (LCC)
L: is a finite set of linearly ordered security levels C: is a finite set of unordered categories SL: is a finite set of security labels where $SL = (L \times 2^{C})$ $\succeq: is a finite dominance relation defined so that \succeq \subseteq SL \times SL, where\succeq = \{((11,c1),(12,c2)) \mid \land (11,c1) \in SL \land (12,c2) \in SL \land 11 \succeq 12 \land c1 \supseteq c2\} \Leftrightarrow: SL \times SL \rightarrow SL \text{ is a join operator defined as} \forall 11,12 \in L \text{ and } \forall c1,c2 \in C (11,c1) \oplus (12,c2) = (\max(11,12),c1 \cup c2)$	L: is a finite set of linearly ordered security levels C: is a finite set of unordered categories CC: is a finite set of unordered collaboration categories Org, is the entity Organization, a constant SysHigh: system high (constant label) SL: is a finite set of security labels where $SL = \{(L \times 2^{C}) \times (CC \cup \{Org\})\} \cup \{SysHigh, SysLow\}$ $\succeq : is a finite dominance relation defined so that \succeq \subseteq SL \times SL, where\succeq = \{(1, c_1, c_1), (12, c_2, c_2)\} \cup (11, c_1, c_1) \in SL \land (12, c_2, c_2) \in SL \land 11 \succeq 12 \land c_1 \supseteq c_2 \land c_1 = c_2\} \cup \{(SysHigh, x), (x, SysLow) \mid x \in SL \} \Leftrightarrow : SL \times SL \rightarrow SL \text{ is a join operator defined as} \forall 11, 12 \in L \text{ and } \forall c_1, c_2 \in C \text{ and } \forall cc_1, c_2 \in CC \cup \{Org\} (11, c_1, c_1) \oplus (12, c_2, c_2) = (max(11, 12), c_1 \cup c_2, c_1), \text{ if } cc_1 = cc_2 (11, c_1, c_1) \oplus (12, c_2, c_2) = SysHigh, \text{ if } cc_1 \neq cc_2 \forall 1 \in L \text{ and } \forall c \in C \text{ and } \forall cc \in CC \cup \{Org\} (1, c, cc) \oplus SysHigh = SysHigh, SysHigh \oplus (1, c, cc) = SysHigh (1, c, cc) \oplus SysHigh = SysHigh, SysHigh \oplus SysLow = SysHigh SysLow \oplus SysHigh = SysHigh, SysLow \oplus SysLow = SysLow$
World-Leading Research with Real-World Impact! ⁹	

True Insiders Vs Expedient Insiders In LCC

True Insiders	Expedient Insiders
 Unlike traditional LBAC, users might have multiple clearances in this system. However, hierarchical clearance is always same for each user. 	
2. True insiders might get the clearance to both organization or collaboration categories	2. Expedient insiders cannot get clearance to organization.
 3. Can access all objects that Satisfy dominance relation in organization or joined collaboration categories 	 3. Can access all objects that Satisfy dominance relation in joined collaboration categories only

- Each object can have multiple version. (necessary for sharing information among different collaboration groups and org)
- Security classification of an object and its versions could be different based on which groups or org it is belongs to. (However, hierarchical classification of them are always same).
- Any update to an object version creates a new version of that object.
- Sharing an object to a group also creates a new object version

Read Only	Read Write	
1. Can not write, read is restricted by BLP simple security property	1. Can read and write, however, write is restricted by BLP strict * property	
2. User determines the security clearance (<= user's clearance)		
3. Unlike users, a subject can have only one clearance.		
4. Can read objects from any compartments where the user has clearance	4. restricted within the same collaboration category it was created	
5. Read operation does not create new object versions	5. Only a write operation always create a new version of the respective object, however, does not change the classification of the version	

World-Leading Research with Real-World Impact!

Global Sets and Symbols:

 $U_{\gamma} \subset \mathcal{U}$, is a finite subset of countably infinite set \mathcal{U} , i.e. existing users in γ $O_{\gamma} \subset \mathcal{O}$, is a finite subset of countably infinite set \mathcal{O} , i.e. existing objects in γ $S_{\gamma} \subset S$, is a finite subset of countably infinite set S, i.e. existing subjects in γ UTYPE $_{\gamma}$ = UTYPE = {insider, expedient_insider, outsider} is the finite set of user's types STYPE $_{\gamma}$ = STYPE = {RO, RW} is the finite set of subject's types

User Related State Elements:

hierclearanceOfUser: $U_{\gamma} \rightarrow L$, this function maps each user to a security level compcategoryOfUser: $U_{\gamma} \rightarrow 2^{C}$, this function maps each user to a set of security categories uCC: $U_{\gamma} \rightarrow 2^{CC\gamma}$, this function maps each user to zero or more collaboration categories orgAdmin: $U_{\gamma} \rightarrow \{$ true,false $\}$, this function maps each user to true if she is an admin of Org ccAdmin: $U_{\gamma} \rightarrow 2^{CC\gamma}$, this function maps each user to zero or more groups if he is an administrative user of a collaboration group uType: $U_{\gamma} \rightarrow UTYPE_{\gamma}$, this function maps each user to a user type

Objects Related State Elements:

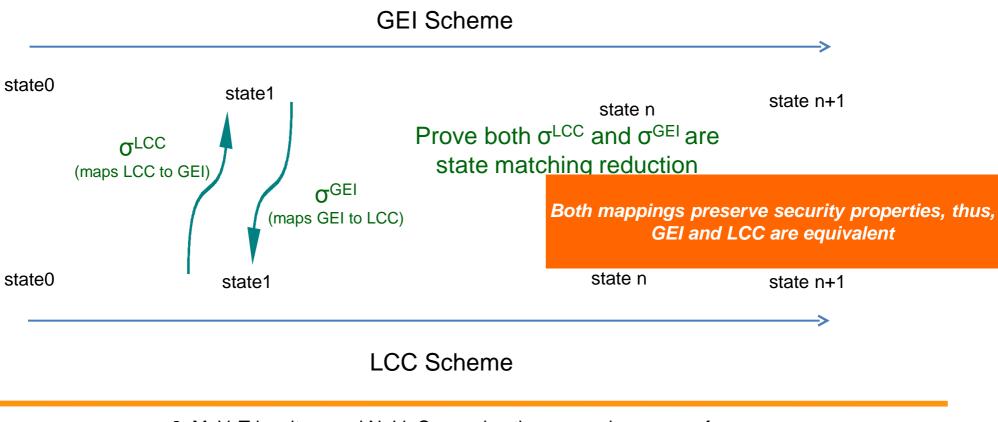
hierclassificationOfObject: $O_{\gamma} \rightarrow L$, this function maps each object to a security level compcategoryOfObject: $O_{\gamma} \rightarrow 2^{C}$, this function maps each object to a set security categories origin: $O_{\gamma} \rightarrow CC_{\gamma} \cup \{Org\}$, this function maps each object to the entity (collaboration category or Org) where it was created $V_{\gamma} \subset \mathcal{V}$, is a finite subset of countably infinite set \mathcal{V} , i.e. existing versions in γ versions: $O_{\gamma} \rightarrow 2^{V\gamma} - \phi$, this function maps each object to all its existing versions in γ

Subject Related State Elements:

hierclearanceOfSubject: $S_{\gamma} \rightarrow L$, this function maps each subject to a security level compcategoryOfSubject: $S_{\gamma} \rightarrow 2^{C}$, this function maps each subject to a set of security categories owner: $S_{\gamma} \rightarrow U_{\gamma}$, this function maps each subject to the user who created it belongsTo: $S_{\gamma} \rightarrow CC_{\gamma}$, this function maps each RW subject (not RO subject) to the collaboration category where it was created. Hence, it is a partial function type: $S_{\gamma} \rightarrow STYPE_{\gamma}$, this function maps each subject to a subject type

Object Version Related State Elements:

For each $o \in O_{\gamma}$, vMember_o: versions(o) $\rightarrow 2^{CC_{\gamma} \cup \{Org\}}$ - ϕ , this functions maps each version of every object to one or more entity (collab category or Org) where this version is available to access For each $o \in O_{\gamma}$, hierclassificationOfVersion_o: versions(o) $\rightarrow L$, this function maps each version to a security level


For each $o \in O_{\gamma}$, compcategoryOfVersion_o: versions(o) $\rightarrow 2^{C}$ this function maps each version to a set of security categories

Proof of Equivalence of GEI¹ and LCC

- Developed operations for administrative and operational management for LCC
 - Operation name, authorization queries and updates of attributes
- Show proof of equivalence of GEI and LCC using method in Tripunitara and Li²

2. M. V. Tripunitara and N. Li. Comparing the expressive power of access control models. In *ACM CCS*. ACM, 2004.

- A new lattice construction process for group centric organizational collaboration with expedient insiders
 - Introduces collaboration category
 - separate compartments for organization and each collaboration groups.
 - Easy to identify the position of an expedient insider within the lattice
- Proof of Equivalence formally shows GEI also preserves the well-known security properties of a LBAC system.

Thank You 🙂