
Role and Attribute Based Collaborative
Administration of Intra-Tenant Cloud IaaS

(Invited Paper)

Xin Jin
Department of Computer Science

Institute for Cyber Security
University of Texas at San Antonio

San Antonio, Texas

Ram Krishnan
Department of Electrical and Computer Engineering

Institute for Cyber Security
University of Texas at San Antonio

San Antonio, Texas

Ravi Sandhu
Department of Computer Science

Institute for Cyber Security
University of Texas at San Antonio

San Antonio, Texas

Abstract—Cloud Infrastructure as a Service (IaaS), where
traditional IT infrastructure resources such as compute, storage
and networking are owned by a cloud service provider (CSP) and
offered as on-demand virtual resources to customers (tenants),
is the fastest maturing service model in cloud computing. The
transformation of physical resources into virtual offers great
flexibility to CSP customers including network based remote
collaborative administration. This flexibility can be fully availed
only if complemented by commensurately flexible access control
to the customers remote IT resources by the customer’s IT
users. Since customer policies in this regard can vary greatly,
the CSP needs a flexible model to accommodate diverse policy
requirements. In this paper, we investigate attribute-based access
control (ABAC) in cloud IaaS. In ABAC, access requests are
evaluated based on the attributes of cloud tenant users and those
of objects such as virtual machines, storage volumes, networks,
etc. We investigate the access control models supported by
commercial IaaS providers such as Amazon AWS and opensource
OpenStack, as well as other models in the literature, which
mostly use role-based access control (RBAC). We demonstrate
their limitations and motivate the need for ABAC support to
realize the true potential of IaaS. Building on prior published
ABAC models we define a formal ABAC model suitable for IaaS.
As proof-of-concept we implement this model in OpenStack,
a widely-used open source cloud IaaS software platform. We
discuss enforcement alternatives in this context and partially
evaluate their performance.

Index Terms—attribute based access control, cloud computing,
infrastructure as a service

I. INTRODUCTION

Cloud computing is revolutionizing the way businesses and
governments manage their information technology (IT) assets.
Infrastructure as a Service (IaaS) cloud, where traditional IT
infrastructure such as compute resources complemented by
storage and networking capabilities are owned and operated by
a cloud service provider (CSP) and offered as an on-demand
service to its customers (tenants), is being rapidly adopted by
many organizations [1], [5]. Many newer companies such as
Netflix, Dropbox and Instagram have eschewed development
of proprietary IT infrastructure in favor of CSPs. Established
companies such as SAP, GE, Adobe and Domino’s Pizza, are
increasingly migrating to the cloud. In this paper, we use
the following terminology. We have CSP, organizations and
tenants. An organization becomes a tenant of a particular

Fig. 1: Access Control in IaaS Cloud

CSP when it signs up for services with that CSP. For our
purpose, it suffices to assume that an organization has at most
one tenant at a CSP. We use the terms tenant and customer
interchangeably.

Although the functional aspects of IaaS are maturing, the
security issues involving this technology are not yet fully un-
derstood. Security is often cited as a leading concern in moving
to cloud [10], [26], [27], for reasons including uncertainty in
continued control over a customer’s assets and lack of interop-
erability between the customer and CSP, and across different
CSPs. In particular, when an organization uses the cloud, it
faces unfamiliar and non-standard abstractions of access con-
trol facilities provided by the CSP over its virtualized resources
(compute, storage, networking, etc.). Several challenges arise
when an IT infrastructure is outsourced to the cloud. We
illustrate them through figures 1(a) and 1(b). Figure 1(a) shows
that CSP#1 has multiple tenants. Figure 1(b) shows that tenant
A is a customer of CSP#1 to CSP#N. What access control
requirements arise in this scenario? Consider the resources in
IaaS including virtual machines (VM), storage and network.
In a traditional enterprise data center, an organization specifies
policies for its IT personnel over its assets including who can
access server rooms, maintain servers, add or remove server
capacity, start, stop or take a snapshot of the server, establish a



network, modify network configurations, add storage, backup,
connect a storage volume to a server, etc. When moving to
IaaS cloud, these resources become virtual and remote. Access
control policies in the physical world are in part achieved via
physical keys, access cards and fingerprints, and will need to
be comparably specified and enforced in the cloud. That is, in
IaaS, there is a need to mimic policies enforcing both physical
and digital controls in traditional IT operations.

Two major issues emerge in context of figure 1(a). Before
moving to cloud, each organization has its own in-house access
control policies. However, when it becomes a tenant of CSP
#1, the organization must re-think their native policies in
terms of the CSP’s access control facilities. A dual problem
manifests for the CSP. Each customer will want to configure
their own access control policies which may be vastly different
from that of others. With an unknown number of potential
customers, it is unrealistic to pre-design and implement all
kinds of access control models in the cloud or design one by
one on demand [27]. The cloud platform should provide a
flexible and intuitive access control framework such that cus-
tomers can easily configure their own access control policies.
Furthermore, in order to distribute their resources (e.g., for
availability), some organizations may be tenants of multiple
CSPs as in figure 1(b). This poses an additional problem of
dealing with multiple different access control interfaces and
integrating them.

Current access control models for IaaS in the academic
literature and industry are mostly built on role-based access
control (RBAC), sometimes extended with attributes. These
models fall short with respect to the above challenges, since
RBAC caters more for ease of management as opposed to
flexibility and fine-grained control.

Consider the following scenarios. Bob, an IT person in
tenant A creates a VM. As the creator, he has complete rights
over this VM. However, he may wish to grant selected rights
over this VM to other IT users in tenant A. Consider Alice,
an IT person in tenant B who creates a set of VMs that need
to be highly available. First, she wants to ensure that these
VMs are managed only by users with “networkOperator” role.
Next, she wants to ensure that not all VMs are in “stopped,”
“underMaintenance” or “underMigration” state simultaneously
to guarantee availability. Alice also wants to create a storage
volume to store sensitive information, so she wants to ensure
that this storage volume can only be attached to VMs with an
image with the right patches and security updates. That is, a
“sensitive” volume can only be attached to “hardened” VMs.

These scenarios illustrate the diverse access control needs
that may arise in IaaS. The original RBAC models have
been consistently extended in various directions with novel
features to meet various demands [12]. The large body
of RBAC literature over the last two decades has identified
compelling new features that are necessary. We believe that
a unified model, which is capable to cover existing RBAC-
related models as well as new models which enhance RBAC,
is required for cloud IaaS to respond to the demand of various
enterprise infrastructure applications. To our best knowledge,

such a model has not yet been studied.
Attribute-based access control (ABAC) is a natural and

intuitive candidate for this purpose, and is gaining traction in
enterprises [2]. In ABAC, access control decisions are based
on attributes of various entities such as users, subjects and
objects. Sufficient abstractions can be built on top of ABAC in
order to closely mimic the access control abstractions expected
by each tenant. A sufficiently flexible ABAC engine at the
CSP-side can be configured to enforce each tenant’s access
control expectations. Thus the requirements of figure 1(a) can
be met. Figure 1(b) requires standardization of the ABAC IaaS
capabilities supported by different CSPs, which may emerge
over time [14].

Although there has been considerable work in ABAC [3],
[14], [17], [18], [21], [30], [32], what is lacking today is
an ABAC framework for IaaS that is intuitive and easy to
administer and use, yet with formal foundations to provide
ease of extensions to cover RBAC-related models and adding
new features to RBAC. This is vital for successful adoption
of ABAC in IaaS given the complex real-world nature of
the domain. Defining such an ABAC model is an interesting
and challenging research task. We address this problem by
systematically evaluating major access control models in IaaS
cloud in academia and industry and showing limitations of
these models compared with the core requirements of access
control in cloud IaaS. We then present a formal framework
of ABAC which satisfies those requirements. To demonstrate
practicality, we conduct implementation and partial evaluation
of the models in the prominent IaaS platform OpenStack [4].
OpenStack is a robust open-source IaaS software for building
public, private or hybrid clouds that is developed and main-
tained by a vibrant community with participation from more
than 200 world-leading organizations.

The rest of this paper is organized as follows. Section II mo-
tivates the design of IaaS access models. Section III discusses
why existing ABAC models are not sufficient. Section IV
defines our proposed ABAC model for IaaS cloud. Section V
introduces enforcement models for ABAC in OpenStack. Sec-
tion VI presents experimental results and section VII gives our
conclusions.

II. MOTIVATION

In this section, we first discuss some basic terminology and
a typical process for initiating a tenant account in the cloud.
We then present two examples of tenants of a cloud IaaS
provider. Based on these we summarize the core requirements
for access control in IaaS. We then review access control mod-
els in two leading cloud IaaS platforms: OpenStack (Grizzly
release) and Amazon Web Services (AWS). For our purpose,
the concept of an “account” in AWS and a “project” in
OpenStack are the same as “tenant.” In our discussion below,
we uniformly use the term tenant. We also review models
discussed in the IaaS access control literature.



Fig. 2: Access Control Challenges In IaaS Cloud

A. Access Control Approach for Cloud IaaS

The users who interact with cloud IaaS in a management
or administrative capacity are categorized into different types
(shown in four ovals in figure 2). A cloud root user is a
user who manages cloud resources for the CSP. For ease of
presentation we assume there is a single all-powerful cloud
root user who is described as carrying out various functions
manually. In practice many functions of the cloud root user
would be automated and triggered by commitment of payment,
in keeping with the self-service on-demand paradigm.

On the tenant side, we have there three types of IT users.
By IT user we mean a user in an organization that provides
IT support to that organization. A tenant root user represents
an IT user who has root access to the tenant. For ease of
presentation, we assume that for each tenant, there is only one
root user who has full permissions in the tenant. The tenant
root user is created by the cloud root user. A tenant admin
user represents an administrative IT user with administrative
permissions in the tenant. Administrative permissions allow
management of regular IT users (discussed below) and their
attributes in a tenant. A tenant regular user is a regular
IT user with permissions for standard IT operations such
as creating and deleting virtual machines, storage volumes,
networks, etc., on the tenant’s behalf. Note that in figure 2
an administrative model is necessary to guide the tasks of
tenant root and administrative IT users while an operational
model is necessary for managing the tasks of regular IT users.
The administrative model facilitates creating and updating
attributes while the operational model facilitates specifying
authorization policies that control the actions of regular IT
users. We emphasize that non-IT users of a tenant who only
interact with the cloud for using the VMs and other services
are not considered in figure 2. They do not manage any
cloud IaaS resources and are controlled by access control
mechanisms within the VMs and within applications running
in VMs.

A simplified general process for an organization to move
to cloud is as follows. In order to use cloud services, the
first step is that an organization’s representative (say Alice)
obtains an account from the CSP typically via some automated
process which is a surrogate for the cloud root user. Thereby

the organization becomes a tenant of the CSP with Alice
as that tenant’s root user. Now it is not practical for Alice
to create and manage all the resources herself. Instead, in
the second step Alice sets up tenant specific access control
and administrative policies using the CSP-provided facilities,
and creates some number of tenant admin users. Then, the
tenant admin users create regular IT users and administer their
attributes. Finally, regular IT users can then create and manage
virtual resources as per the policies specified by the tenant root
user and attribute values administered by tenant admin users.

B. Example Scenarios

Let us consider two tenants of a CSP: TechU and iGame.
TechU. A university called TechU wants to create a data

center in the cloud. Bob leads the project and becomes the
root user of this tenant. Bob then specifies and configures the
administrative and operational policies.The university contains
certain number of colleges under which there are several
departments. The university, each college and each department
maintain certain amount of resources for different purposes.
For consistency, all departments, colleges and the university
are called domains. Each domain contains different types of
resources. There are instances, volumes, networks and images.
Each domain requires certain number of different types of
resources for different services such as Web, Email, LibApp
and SMSApp. IT architects are added as tenant regular users
so that they can manage cloud resources. They are assigned
with one or multiple service and domain pairs. The following
administrative and operational policies need to be specified:
• TP1. Bob has all the permissions (i.e., create instances,

add users, assign roles, etc.) within the tenant. ITManager
is a role which can add and delete tenant regular users and
assign their role to be ITArchitect. ITManager can further
assign ITArchitect to any domain and service pairs.

• TP2. When new resources are created, the creating user
can only assign those resources to the domain and service
that she is assigned to.

• TP3. ITArchitects can access a resources only if they are
assigned to the same domain and service as the resource.

• TP4. A user can choose to activate any service and
domain pair(s) for each login session with the server.

iGame. In this game development company, there are
users (i.e., tenant regular user) with different roles such as
ServerIT, StorageIT and Manager. Some of these ServerIT
users are assigned to the project called DeepLearning. All
virtual machines (VM) that serve as game servers are assigned
to one of the types from Tablet, TV, Phone and Laptop. The
VMs are configured with different CPUs, memories and disks
depending on their type. The purpose is to deliver smooth
performance to different client devices as there could be more
phone users than TV or Laptop users. In addition to the
type, game servers are also assigned to different countries
because the number of users from different countries vary
and the content can also vary with the locality and local
law. Additional VMs are created for the purpose of running
machine learning algorithms to study the habit of game payers.



Those virtual machines are also assigned with type (e.g., user
habit can be different on Laptop and Phone) and country. User
logs are saved in storage media which are assigned to different
countries and time ranges (we consider logical time such as
Morning, Noon, Afternoon and Evening) because those factors
can impact user habits. The following operational policies need
to be specified:
• GP1. ServerIT users can only start and stop game servers

which are assigned to the same country as the user and
the user must be assigned to the game which is running
on the server. In order for ServerIT users to start and stop
servers for learning user habits, they must be assigned to
a project called DeepLearning. StorageIT users can resize
the storage of the country to which the users are assigned.
Manager inherits permissions from ServerIT. In addition,
Managers can take a snapshot of game servers for games
they manage.

• GP2. When a ServerIT user creates a new server, it
should be labeled with the same country as that of the
creator.

• GP3. ServerIT users can be assigned to multiple coun-
tries. However, a user can only have access to one country
for each login session with the server.

C. Core Requirements

Based on our illustration in section II-A and the example
scenarios in section II-B, we summarize a list of core require-
ments that are specific for access control in cloud IaaS.
• Req 1. Tenants’ full control over their access control de-

sign and specification. Each tenant should have full con-
trol over their access control policies and management of
their users, which include tenant-specific administrative
and authorization capabilities. This implies two things.
First, each tenant root user is able to specify its own
attribute design and create access control abstractions
(e.g. an RBAC abstraction built over the CSP-provided
ABAC engine) that are suitable for that tenant. Second, all
operations (i.e., create a virtual machine, add a user, etc.)
within a tenant can be controlled by that tenant instead
of depending on the cloud root user.

• Req 2. Simple yet flexible administrative policy. As there
is a tenant root user who configures and manages admin-
istrative aspects, the administrative model should provide
certain ease in its configuration. At the same time, this
model should be able to specify fine-grained control over
tenant regular users and their information (i.e., sensitive
information such as role or attributes that are used for
authorization).

• Req 3. Flexible operational model with potential to cover
RBAC-based models. Our analysis of existing cloud IaaS
providers reveals that most access control abstractions
are RBAC-based. Note we say RBAC-based since roles
are typically augmented with additional parameters for
flexibility. Thus the third requirement is that the oper-
ational model supported by the cloud provider should
provide sufficient flexibility to specify policies based on

Fig. 3: OpenStack Access Control

different aspects including system defined attributes such
as time and location, and tenant defined attributes such
as roles, department, groups, sensitivity, etc. This allows
each tenant to design their own abstractions of access
control that is intuitive to them.

• Req 4. Strong formal foundations. Formal foundations al-
low rigorous security specification and analysis enabling
precise understanding of the capabilities of the access
control system of IaaS.

D. Existing Access Control in Cloud IaaS

1) OpenStack: OpenStack is an open source IaaS software
adopted by many cloud service and technology providers such
as Rackspace, IBM, Dell and RedHat. The structure of Open-
Stack access control model is shown in figure 3(a). The major
components in each tenant include Users, Objects, Roles,
Operations, Permissions, and Expressions. A permission is an
operation on an object. Each user may be assigned to multiple
roles, such as “professor” or “manager”. Each operation is
associated with a boolean expression specified using the usual
∧ and ∨ operators on terms of the form r and r̄ where r is a
role. The expression is evaluated for a user by interpreting
r to be true if the user is assigned with role r and r̄ to
be true if user is not assigned with role r. E.g., consider
“compute : create instance: r1 ∧ r2 ∧ r̄3”. It says that the
user is authorized to perform the compute : create instance
operation if he is assigned with roles r1 and r2 and is not
assigned with role r3. If a user tries to operate on an object,
the policy check is as follows: the user’s roles in the same
tenant as the object should satisfy the expression associated
with the operation. E.g., a user is assigned with roles {r1, r2} in
tenant t1 and roles {r1, r3} in tenant t2. According to the above
policy, he is authorized to perform compute : create instance
operation in t1 but not in t2. The formal model is summarized
in figure 3(b).

This model is RBAC-based and thus has some formal
foundations (Req 4). However, it does not satisfy Req 1, Req 2
and Req 3. More specifically, OpenStack access control has
two major issues. Firstly, tenants are not provided with full
control over access control policies. All tenants share the
same policy for all OpenStack components such as Nova
(compute), Keystone (identity and access management) and
Glance (VM image repository), and these policies can only be
configured by CSP root users. There is no mechanism to cus-
tomize access control policies for individual tenants. Clearly,



Fig. 4: Amazon Web Service Access Control

OpenStack cannot intuitively configure the policies in tenants
iGame and TechU. Secondly, access control in OpenStack is
coarse grained because only operation level authorization is
supported. If an operation such as compute : stop instance
is authorized to a user, that user can stop any VM instance
in the tenant. Authorization of this operation for particular
tenant VMs cannot be specified. A recent release of OpenStack
introduces the concept of domain, which is roughly equal
to the concept of tenant with regard to administration, and
supports domain to define their own roles. The operational
model does not change. Thus it does not satisfy Req 3.
Although OpenStack has evolved (it has a release cycle of
6 months), changes to the access control model [29] do not
address the above limitations so far.

2) Amazon Web Service: AWS [22], [31] is the commer-
cially dominant cloud IaaS platform. Example services include
elastic compute cloud (EC2), simple storage service (S3) and
elastic block storage (EBS). We discuss the AWS Identity and
Access Management (IAM) component which concerns access
control as related to the above cloud services.

The access control model structure is shown in fig-
ure 4(a). The major components in each tenant are
Users, Objects, Groups, Policies, Actions, Conditions,
User-Group-Assignment, User-Policy-Assignment and Policy-
Group-Assignment. A permission is defined in the format
of Action on Object under certain Conditions. Conditions
are in the form of key-value pairs. Each key-value pair
can be one of following types including String, Numeric,
Date & Time, Boolean, and IP-address. For example, the
condition “DateLessThan: {aws : CurrentTime : “2013-09-
01T00:00:00Z”}” uses the Date & Time type DateLessThan
condition restricting the requests to be made before Sep 1,
2013 [31]. A group is a similar concept as role in RBAC.
It is associated with a set of policies which define a set
of permissions. Users can either be assigned to groups or
directly to policies. Each policy is specified using the policy
specification language provided by AWS. Each policy consists
of a number of statements which contain a description of the
requests they apply to, plus an effect, which may be allow or
deny. Each statement contains lists of actions, lists of resources
and lists of principals plus a number of conditions which must
be met. Principals can be users, groups or roles. As roles are
used mainly for cross account access, they are out of scope for
this paper. The formal model is summarized in figure 4(b).

In summary, AWS is also RBAC-driven with fixed attributes

such as time and location in addition to the group (role) at-
tribute. Since those attributes are unalterable, it does not satisfy
Req 3. Although AWS supports adding tags (i.e., key and value
pairs) to resources (e.g., EC2, S3), tags cannot be added to
users. In addition, tags are only used for managing resources
and cannot be used in access control policies. Furthermore,
commercial models (including OpenStack) are developed in
an ad hoc manner. They are designed as simple as possible
at the beginning and extended based on incremental customer
requirements. The nature of this development process limits
the formal foundation of the model and thus the system
may need cumbersome extensions in the future or even force
a redesign to fulfill new requirements. Hence Req 4 is not
satisfied.

Evidently, AWS cannot configure TP3 in TechU and GP1
in iGame unless tags can be used in authorization policy. In
addition, AWS cannot intuitively configure TP1, TP2 and TP4
in TechU and GP2 and GP3 in iGame because the tagging
operation is not constrained so the user can tag the resource
with any key and value pairs.

3) Other RBAC-Driven IaaS Models: Most of the access
control models for IaaS in the literature are RBAC-driven.
The classical RBAC model is not sufficient. Firstly, RBAC
cannot configure TP1 in TechU because its administrative
models such as [23] are inadequate. Secondly, RBAC can only
configure TP3 and TP4 for tenant TechU and GP1 and GP3
for iGame, but the configurations are cumbersome because of
two major problems. The first limitation is role explosion. In
order to configure these policies, a large set of roles needs to
be defined. The second problem is role-permission assignment.
The virtual resources may be dynamically created and deleted.
In traditional RBAC, role-permission assignments have to be
reconfigured manually for created or deleted objects.

Wu et al. [31] designed and implemented access control as
a service (ACaaS) based on RBAC to extend the AWS access
control model. ACaaS introduced role hierarchies, sessions,
constraints and an administration model. Domain based access
controls (dCloud) [24], [25] were proposed based on the
original RBAC model. The general idea is to group related
resources and users into a domain so that administration can
be delegated to each domain. Daniel et al. provided an autho-
rization system to control the execution of virtual machines
(VMs) to ensure that only administrators and owners could
access them [20]. Berger et al. [7] proposed an authorization
model based on both RBAC and security labels to control
access to shared data, VMs, and network resources. Almutairi
et al. [6] proposed a distributed access control architecture for
cloud computing, focussing on enforcement aspects where the
actual policy is RBAC-based. Chadwick et al. [9] proposed a
federated identity management system for cloud. Takabi et
al. [28] proposed a comprehensive security framework for
cloud computing environments illustrating a big picture of
security requirements in cloud. Although some customized
RBAC can configure the policies for iGame and TechU, a
common drawback of RBAC-related models above is that they
do not satisfy Req 1 and/or Req 3.



III. EXISTING ABAC MODELS

In order to be flexible, the ABAC models for cloud IaaS
require many of the well-known constructs in access control.
For example, to configure GP3 in iGame tenant, it is necessary
to distinguish user and subject (processes, connections and
activities in systems that perform operations on behalf of
users) and specify policy to constrain subject attributes based
on user attributes. However, this user-subject separation is not
widely supported in most ABAC models. We further review
related work as follows.

Firstly, there are limited number of initial works on using
ABAC for cloud in general as opposed to specifically for
IaaS. Cha et al. [8] proposed ABAC in cloud computing
environment. Iqbal et al. [15] proposed semantic-enhanced
ABAC for cloud services. Danwei et al. [11] proposed access
control for cloud service based on UCON. However, these
works are neither focused on IaaS access control nor present
a formal ABAC model. In addition, they did not present the
functionalities for the entire lifecycle of tenant management
(e.g., tenant creation, policy configuration, administration,
etc.). Secondly, general ABAC has been studied in many areas.
Formal ABAC models are proposed [19], [21], [30]. However,
[21] does not incorporate subject and user distinction. [19]
defines credentials to specify user role assignment delegation
rules and it is focussed on an attribute called role. [30] uses
set theory for authorization policy specification which is only
one part of ABAC. Many policy languages have also been
proposed. While important, a policy language by itself is not
sufficient for ABAC. For example, XACML [3] provides for-
mats for request and policy specification. Its main focus is how
to process authorization using policy structure including policy
integration and conflict resolution. Key-Policy Attribute-Based
Encryption (KP-ABE) [13] associates policy trees instead of
lists of attributes with private keys. [33] presented a new
ABE scheme called Attribute-Based Encryption with Attribute
Lattice (ABE-AL) that provides an efficient approach to
implement comparison operations between attribute values
on a poset derived from attribute lattice. In general, ABE
is a method for securely enforcing ABAC policies on data
sharing and access control. Due to the complexity and cost,
the access control policies (AND, OR, NOT, etc.) included in
these techniques are very limited in expressive power. Thus,
XACML and ABE can only express policy TP3 in TechU
and GP1 in iGame. They cannot express other policies as
they do not distinguish user and subject and are based on the
assumption that user and object attributes are already provided.
ABAC enforcement models are also discussed. For example,
[32] proposed to use ABAC in web service. In summary,
we find that an ABAC framework equipped with necessary
features to satisfy the core requirements of access control in
IaaS cloud is currently lacking.

IV. FORMAL MODELS

In this section, we provide formal specifications of two
related models: the operational model IaaSop and the ad-
ministrative model IaaSad. IaaSop enables specification of

authorization policy for day to day operations of the tenant
regular IT users. IaaSad enables specification of administrative
policy for user management.

We first design the IaaSop model based on the recently
proposed unified ABACα [17] model with necessary modi-
fications. The general idea of IaaSop is as follows. Users,
subjects and objects are associated with attributes. Subject and
object attributes are set and modified by users and subjects
respectively. The modification of subject and object attributes
are guided by constraint policies specified in the model. A
subject is able to perform an action on an object (e.g. stop a
VM) as allowed by the authorization policies in the model.
For the purpose of this paper, the ABACα model serves as
an adequate IaaSop model as long as one necessary change is
made: objects are partitioned into types and each type of object
is associated with a set of object attributes. In the original
ABACα model, all objects are associated with the same set
of attributes. We thus adopt ABACα for IaaSop and integrate
the necessary change. With this modification, Req 3 and Req 4
(section II-C) are satisfied.

We then design the IaaSad model also based on the recently
proposed user-attribute assignment model GURA [16]. In this
model, administrative permissions such as add and assign
user attributes are associated with administrative roles. Tenant
administrative IT users are then assigned these roles.While
this model is simple, being role-based, it provides fine-grained
access control over user attributes. However, GURA doe not
address user management and relationship between different
types of users. Hence, we adopt GURA as our base adminis-
trative model and extend it with the necessary features (i.e.,
user provisioning and deletion). With this new IaaSad model
Req 2 is satisfied.

Note that after combining the two models, Req 1 is also
satisfied. In this paper we only deal with access control issues
where there is a strict separation between tenants. Each tenant
maintains their specific IaaSop and IaaSad policy and only
users within the same tenant are authorized to access resources
in that tenant. For example, tenant administrative users can
only create tenant regular users for the tenant she belongs
to. When defining our model, we do not explicitly show the
mappings between model components (i.e., users, attributes)
and the tenants to simplify presentation. Even though we focus
on isolated tenants in this paper, cross-tenant access control
can be achieved by suitably extending our models.

A. The Operational Model IaaSop

1) Components: The structure of IaaSop is shown in the
right part of figure 5. The IaaSop model is configured by the
tenant root user. We use “configure” to signify the operation
of system architects who design the elements in the system
based on formal models. The major components are regular
users (TReU), subjects (S), objects (O), user attributes (UA),
subject attributes (SA), object attributes (OA), operations
(PER), subject (ConstrSub) and object (ConstrObj) attribute
constraint and authorization policies (Authz).



Fig. 5: IaaSop and IaaSad Access Control

An attribute is a function which takes an entity and returns
certain properties of the entity. Each attribute is associated
with a finite set of atomic values as its scope. There are
two types of attributes: set valued and atomic valued. The
major difference is set valued attributes can take multiple
values from their scope while atomic valued attributes take
a single value from their scope. Example set valued attributes
are role and division and example atomic valued attributes
are clearance and level.

A user is an entity which interacts with the cloud. We
have introduced cloud root user, tenant root user, tenant
administrative user and tenant regular user in section II-A.
User attributes reflect the properties of users. In this paper,
only regular users are associated with attributes since we
employ ABAC only for the operational component of IaaS.
A subject is a program or process created by a user to
access resources on behalf of that user. Only the creator
can terminate a subject. For example, when a user creates a
connection from his mobile phone to the cloud, the connection
is a subject. He can also create another concurrent subject
from his laptop. A subject carries attributes which can be
used for authentication and authorization. Examples are ip,
timestamp and networktype (public, private, etc.). Besides
those, there may be attributes inherited from user attributes. In
some systems, subjects are associated with a signed credential
of the users’ information and can be encoded in a token (e.g.,
token in OpenStack [4] or temporal token issued by Security
Token Services (STS) in AWS [1]). The cloud authenticates
and authorizes all requests submitted by this subject based on
information included in the token or access key and secret key
pair. Subjects created by a user may take attributes and values
that differ from that of its user. Subject attribute constraint
policy specifies the constraints on subject attributes when
users create subjects and set values for subject attributes. For
example, a user may be assigned to the following groups {web,
email, app} in a tenant. The user get different permissions
for each group. Each time the user logs in, he can choose
to activate permissions within certain groups instead of all
the groups. In this way, user accesses the tenant with least
privilege. The specification language is defined in [17].

Objects represent the virtual resources in cloud. Examples

TABLE I: Basic Sets and Functions for IaaSop Model

TReU, S and O represent finite sets of existing regular users, subjects and objects
respectively.

UA, SA and OA represent finite sets of user, subject and object attribute functions
respectively.

objType: O → OT. For each object, objType gives its type.

∀ t ∈ OT, Ot = {obj | obj ∈ O ∧ t = objType(obj)}, represents objects of type
t.

oaType: OA→ 2OT. For each object attribute, oaType gives its types.

∀ t ∈ OT, OAt = {oa | oa ∈ OA ∧ t ∈ oaType(oa)}, represents object attributes
of type t.

SubCreator: S → U . For each subject SubCreator gives its creator.

For each att in UA ∪ SA ∪ OA, SCOPEatt represents the attribute’s scope, a
finite set of atomic values.

attType: UA ∪ SA ∪ OA→ {set, atomic}. It specifies attributes as set or atomic
valued.

PER represents finite set of operations.

Each attribute function maps elements in TReU, S and O to atomic or set values.

∀ua ∈ UA. ua : TReU→
{

SCOPEua if attType(ua) = atomic
2SCOPEua if attType(ua) = set

∀sa ∈ SA. sa : S→
{

SCOPEsa if attType(sa) = atomic
2SCOPEsa if attType(sa) = set

∀t ∈ OT.∀oa ∈ OAt.oa : Ot →
{

SCOPEoa if attType(oa) = atomic
2SCOPEoa if attType(oa) = set

are virtual machines, virtual networks, images, volumes and
storages. Objects are created by subjects on behalf of users.
Objects are also associated with attributes and those attributes
are set and modified by their owner who creates them. Differ-
ent types of objects may be associated with different sets of
object attributes. For example, volumes may be associated with
size and attachedVM attributes while it is not meaningful
to associate virtual machines with these attributes. When a
user sets or modifies the attributes of objects, there are also
constraints. Object attribute constraint policy specifies the
constraints on the values that object attributes may take. An
example object attribute constraints policy may require that
when a subject creates a volume, the volume should be labelled
with the same division (or department) as the subject and
the volume’s owner is set to the subject’s creator.

An operation represents an access mode on objects. Oper-
ations are defined by the CSP and will vary across different
CSPs. For example, operations on virtual machines include
create, start, stop and resize. Operations on images include
upload and list.

Authorization policy specifies policies for evaluating re-
quests made by subjects (on behalf of regular IT users). It is
specified based on attribute values of the involved subject and
object. It returns either true or false meaning the request is
authorized or rejected. For example, if a user requests to stop
a virtual machine, the user and the virtual machine should be
of the same division.

2) Formal Definition: The formal operational (IaaSop)
model is summarized in table I. This model is configured



TABLE II: Selected Operations For Tenant Regular Users

Operations Updates
1.1 createSubject(req:TReU, sub:NAME, saset:SASET) S′ = S ∪ sub, for each (sa, val) ∈ saset, sa(sub) = val, SubCreator(s) = req
1.2 createObject(sub:S, obj:NAME, oaset:OASETt, t: OT) O′ = O ∪ {obj}, objType(obj) = t, for each (oa, val) ∈ oaset, oa(obj) = val
1.3 Operations(sub:S, obj:O) None

by tenant root users. The basic sets and functions in IaaSop
model are as follows: TReU, S and O represent finite sets of
tenant regular users, subjects and objects respectively. There is
one distinguished attribute for object, objType, which maps
objects to their respective types. OT represents the scope of
this function and thus Ot represents the set of objects of
type t. We define a finite set of object types based on the
current architecture of cloud IaaS. For example, OT = {vm,
file, image, network, volume}. UA, SA and OA represent
finite sets of user, subject and object attributes respectively.
oaType is a function mapping each object attribute to the types
of objects it applies. For each t in OT, OAt represents the
attributes defined for objects of type t. These could be atomic
or set valued as determined by the type of the attribute function
(attType). For each attribute, SCOPE represents the finite set
of atomic values it can take. SubCreator is a distinguished
attribute which maps each subject to the user who creates it.
Finally, PER represents finite set of operations.

There are three policy configuration points in the IaaSop
model. Authz, SubConstr and ObjConstr represent finite
sets of authorization, subject and object attribute constraints
policies. We need a language to express these policies which
we adopt from [17]. The subject attribute constraint policy is
specified by comparing the proposed value of subject attributes
with the attribute values of the creating user. The object
attribute constraint policy is given as a comparison between
the proposed object attribute value and subject attribute value.
Authorization policy is specified by comparison between
attributes of the involved subject and object. In all cases
these comparisons can be combined by logical conjunction,
disjunction and negation operators. Examples are provided in
the next section.

3) Operations for tenant regular users: Operations can be
submitted by tenant regular users to the cloud. The cloud
system updates state according to the operation if it is autho-
rized. The precondition of each operation is defined as in [17].
We call the user who submits the operation the “requester”.
The following operations are authorized to regular users if the
evaluation result from authorization policy is true. We briefly
introduce the format of each operation in table II. Operation
1.1 creates a subject, operation 1.2 creates an object and oper-
ation 1.3 represents any of the regular operations on resources
such as starting a virtual machine, creating a volume, etc.
In these operations, NAME is an abstract data type denoting
identifiers of various entities. SASET represents the data type
in which each element represents an attribute assignment for
all subject attributes. Similarly, OASETt represent the data
type in which each element represents an attribute assignment
for all object attributes for object type t. In next section,

we will give examples on how to evaluate these operations
and also discuss how to configure and administer the IaaSop
model.

B. The Administrative Model IaaSad

1) Components: Recall that cloud root user (CRU) and
tenant root user (TRU) have been defined in section II-A. The
structure of IaaSad model is shown in the left part of figure 5.
This model is configured by tenant root user and administered
by tenant root users. Here “administer” signifies operations
such as creating users and modifying user role assignment.
The major components are tenant administrative users (TAU),
administrative roles (AR) and user role assignment (UAR).
Administrative roles are associated with administrative per-
missions such as add, delete and assign user attributes. Ad-
ministrative users are associated with administrative roles and
thus obtain the associated permissions.

2) Formal Definition: The formal administrative model
IaaSad is summarized in part I in table III. The basic sets
and functions are CRU, TRU, TAU, AR and UAR. CRU
and TRU represent the cloud root user and tenant root user
respectively. TAU represents the set of administrative users,
AR represents a finite set of administrative roles, and UAR
represents user administrative role assignment.

There is one configuration point for IaaSad model which
is administrative policies. They specify the condition under
which certain administrative roles can modify user attributes.
The precondition is specified based on the attribute value of
the user whose attributes are to be modified. AdminPolicy
represents finite set of administrative policies. Again, we need
a language for specifying these policies which we adopt from
[16]. For each attribute att in UA, can addatt is a set
containing tuples in the format of (ar, condition, values) where
ar is one of the administrative roles, condition is a boolean
expression specified using the current values of attributes of
the regular IT users, and values represents a set of value that
can be added. It means that administrative role ar can add
(more operations will be introduced in section IV-B3) any
value from values to the attribute att of user whose attributes
satisfy the precondition condition. can add is defined for
set-valued attributes. Similarly, can delete is defined for set-
valued attributes representing policies for delete permission.
Finally, can assign is defined for atomic-valued attributes. The
above policy comes from GURA model. In IaaSad, another
policy is needed to control the adding and deletion of tenant
regular users. Certain administrative roles are allowed to add
and delete tenant regular users. Thus, a can adduser and
a can deleteuser relations are defined in AdminPolicy to
control operations of adding and deleting tenant regular users,



TABLE III: Formal Definition For IaaSad Model

Part I. Basic Sets and Functions
CRU, TRU represent the cloud root user and tenant root user respectively.
TAU represents finite set of tenant administrative users.
AR represents a set of administrative roles and UAR represent user-role assignment, i.e., UAR ⊆ TAU× AR.

Part II. Operations
Operations Updates

1. Operations for Cloud Root User
1.1 createTenant(req:CRU, tenant:NAME) T′ = T ∪ {tenant}
1.2 createRootUser(req:CRU, u:NAME, tenant:T) TRU = ∅, TRU = {u}

2. Operations for Tenant Root User
2.1 createUserAttr(req:TRU, ua:NAME, type: {set, atomic}) UA′ = UA ∪ {ua}, attType(ua) = type
2.2 createSubAttr(req:TRU, sa:NAME, type: {set, atomic}) SA′ = SA ∪ {sa}, attType(sa) = type
2.3 addSubConstr (req:TRU, policy:POLICY) SubConstr′ = SubConstr ∪ {policy}
2.4 createObjAttr (req:TRU, oa:NAME, type: {set, atomic}, oat:OT) OA′ = OA ∪ {oa}, attType(oa) = type, oaType(oa) = oat
2.5 addObjConstr (req:TRU, policy:POLICY) ObjConstr′ = ObjConstr ∪ {policy}
2.6 addAuthz (req:TRU, policy:POLICY) Authz′ = Authz ∪ {policy}
2.7 createAdminRole(req:TRU, adminrole:NAME) AR′ = AR ∪ {adminrole}
2.8 createAdminPolicy(req:TRU, policy:POLICY) AdminPolicy′ = AdminPolicy ∪ {policy}
2.9 addAminUserRole(req:TRU, u:TReU, r:AR) UAR′ = UAR ∪ {(u, r)}

3. Operations for Tenant Administrative Users [16]
3.1 addUser(req:TAU, u:NAME) TReU′ = TReU ∪ {u}
3.2 add(req:TAU, u:TReU, att:UA, value:SCOPEatt) att(u)′ = att(u) ∪ {value}
3.3 delete(req:TAU, u:TReU, att:UA, value:SCOPEatt) att(u)′ = att(u) \ {value}
3.4 assign(req:TAU, u:TReU, att:UA, value:SCOPEatt) att(u)′ = value

where can adduser ⊆ AR and can deleteuser ⊆ AR. They are
both subsets of AR representing the roles which can perform
the corresponding operation.

3) Operations: We define a set of operations to maintain
the sets and relations defined above and in IaaSop model. We
provide a selected list of the operations in part II in table
III (we provide a complete list in appendix A). We briefly
introduce them here.

Category I. Operations For Cloud Root User. Firstly, we
define operations for cloud root user. These operations will
only be authorized if the requester (req) is the cloud root
user. That is, req = CRU, where req is the formal parameter
and represents the actual requester in each operation. For
simplicity, we assume that a tenant can only have one tenant
root user. Operation 1.1 creates a new tenant in the system
and operation 1.2 assigns a tenant root user.

Category II. Operations For Tenant Root User. Secondly,
we define operations for tenant root user. They are authorized
if and only if the requester is the tenant root user, i.e., req ∈
TRU. Operation 2.1 adds a set-valued or atomic-valued user
attribute. Operation 2.2 adds a set-valued or atomic-valued
subject attribute. Operation 2.3 creates a subject attribute
constraints policy. POLICY is an abstract data type whose
elements represent identifiers of policies (authorization policy,
subject attribute constraints policy, etc.) that may appear in
IaaSop system. Operation 2.4 adds a set-valued or atomic-
valued object attribute. Operation 2.5 adds an object attribute
constraints policy at object creation and modification time.
Operation 2.6 creates the authorization policy for regular users.
Operation 2.7 creates an administrative role and operation 2.8
creates policies for administrative roles (we adopt the structure
and specification language from [16]). Operation 2.9 adds a
user-role assignment.

Category III. Operations For Tenant Administrative Users.

The following operations are allowed by tenant root user
or administrative users if they are assigned with appropriate
administrative roles. We briefly introduce the format and evalu-
ation of each operation. Operation 3.1 adds a regular user. The
precondition of this operation (and also operation for deleting
a tenant regular user) is authorized by can adduser and
can deleteuser relations. The precondition for addUser(req, u)
request is (similar precondition can be defined for deleteUser
operation):

(∃(req, r) ∈ UAR.r ∈ can adduser) ∨ req = TRU

For example, if can adduser = {manager, director}, then any
tenant administrative users with manager or director role or
tenant root user can add tenant regular users to the tenant.
Operation 3.2 add(req, target user, att, value), where req
is the requester, target user is the user whose attribute is to
be added to, att represents the attribute to be modified, and
value represents the value to be added. Similarly, operation
3.3 delete(req, target user, att, value) and operation 3.4
assign(req, target user, att, value) are defined. The pre-
conditions for these operations are defined in corresponding
administrative policies. We provide a case study of these
operations (including operations introduced for IaaSop) in
appendix A.

V. PROOF OF CONCEPT

We demonstrate practicality of the models of the previous
section by a proof-of-concept OpenStack implementation. We
briefly introduce the authorization and authentication compo-
nents in OpenStack and propose three different enforcement
models. OpenStack contains the following components: Nova,
Swift, Glance, Cinder, Keystone, Quantum and Horizon. Each
component acts as a service which communicate with each
other via message queues and hence are loosely-coupled. Nova



provides virtual servers upon demand. Swift provides object
storage. Glance provides a catalog and repository for virtual
disk images. Horizon provides a modular web-based user in-
terface for all OpenStack services. Quantum provides network
connectivity as a service between interface devices managed
by other OpenStack services. Cinder provides persistent block
storage to VMs. Keystone provides authentication and autho-
rization for all the OpenStack services. In our discussion, we
focus on Keystone and Nova.

A. Access Control in OpenStack

Authorization in OpenStack is enforced by a Policy En-
forcement Point in each component. Keystone is the compo-
nent that stores user information including tenant and role
assignments. Keystone provides the user information in the
format of a token signed by Keystone’s private key. All other
components obtain the public key of Keystone when added as
a service. Thus, the public key of Keystone is only distributed
to trusted components. They verify the user information by
decoding the user’s token. Other components then authorize
the user based on the user information provided by the token.
Generally, Keystone is the policy information point (PIP)
where user information is stored and each component has its
own policy enforcement point (PEP), policy decision point
(PDP), policy administration point (PAP), and a PIP where
respective object attributes are stored.

A general authorization process for Nova component is
illustrated in figure 6. A user sends the user name and pass-
word to Keystone for authentication and obtains service end
point addresses for various OpenStack services. Keystone then
verifies the provided user name and password and generates
a token with signed user data. Keystone sends the token
back to the user together with the service endpoints (e.g.,
address for Nova service). The user then sends a request to
the Nova service using the token and request details (e.g.,
operation, arguments). The Nova service’s PEP component
verifies and validates that the provided token is not revoked
by communicating with Keystone. The PEP component then
retrieves object data from local PIP and decodes the token with
Keystone’s public key. User and object data together with the
request are sent to the PDP component. The PDP retrieves
policy from local files and evaluate the request. A result of
true or false is returned meaning that the request is either
authorized or denied.

B. Enforcement Models

We consider three different enforcement models. The struc-
ture of the first enforcement model is shown in figure 7.
This method maintains the original architecture of Open-
Stack. Keystone stores user attributes definitions, user attribute
assignments, subject attributes definitions, subject attribute
assignment and subject attribute constraints policy. When
a user authenticates through Keystone and tries to create
a subject with suggested values for each subject attribute,
Keystone verifies the suggested attributes against subject at-
tributes constraints policy and the creating user attributes. Then

Fig. 6: OpenStack Authorization Using Asymmetric Keys

Fig. 7: Proposed ABAC Enforcement Model I

Keystone generates a token by signing the suggested subject
attributes. The administration policy is stored, enforced and
decided in Keystone. Components excluding Keystone store
object attributes, object attribute assignments and policies for
authorization and object attribute constraints policy.

Enforcement Model II defines a centralized policy engine.
The structure is different from that of enforcement model I
only in the part shown in figure 8(a). We design a separate
component called PolicyEngine. It is the central point for
policy storage and authorization evaluation. All other com-
ponents, instead of calling local policy evaluation engine,
forward their authorization request (containing details about
the request and user token) to this component. Included items
in the forwarded request are: subject attributes, object at-
tributes and operation. With the centralized design, all policies
for all tenants are stored centrally in a single component.
Thereby policy administration is decoupled from the policy
enforcement. Object attribute constraints is expressed using
authorization policy. However, this enforcement model sacri-
fices performance for convenience. There is a network latency
because each request is sent to the PolicyEngine as a REST
call.

We propose a third enforcement model III shown in figure
8(b). It is different from Enforcement model II only in that a
centralized object attribute store is provided, where all object
attributes are stored. When each component enforces their



Fig. 8: Proposed ABAC Enforcement Model II and III

policies, there are two ways to interact with object attribute
store: (1) Each component retrieves object attributes from
the object attribute store and forwards the request to the
PolicyEngine. (2) The PolicyEngine receives request from
other components and retrieves the object attributes from the
centralized object attribute store.

VI. PERFORMANCE EVALUATION

A. Experiment Content

We have completed a first stage implementation of ABAC
for the Nova and Keystone service components of OpenStack.
We understand that the efficiency of enforcing an access
control model depends on many factors, such as PolicyEngine,
number of requests, number of attributes and so on. However,
we found that the time increase for token generation in
Keystone and network latency introduced by the centralized
PolicyEngine in enforcement model II are crucial in evalu-
ating the overall performance of enforcing ABAC. Thus, the
experiments in this paper fall in two parts.

Part I. Time increase for token generation in Keystone
with or without additional user attributes (If there are no user
attribute, it represents the original RBAC implementation in
OpenStack). As user attributes are included in the token, it
requires longer time for token generation (remember that a
token is a signed user credential). For simplicity, we ignore
subject attribute constraint policy in this experiment. We
test the response time of token generation for cases with
0, 5, 10, 15 and 20 user attributes where “0” means the
RBAC implementation in OpenStack. User attributes in the
database are stored as (attname, value, tenant) tuples. We
send concurrent requests to keystone using Keystone client
command and measure the average response time on client
side.

Part II. We evaluate the network latency introduced by the
centralized PolicyEngine in enforcement model II. The latency
is introduced by forwarding the package which contains user
token, object attributes and operation. Thus, we measure the
average time for the Nova server to send the request to
PolicyEngine and receive a result. We change the number of
user attributes and concurrent requests.

B. Experiment Environment and Results

Our experiments are based on a private cloud shown in
figure 9. It is installed on four physical machines. We install

Fig. 9: OpenStack Installation On Physical Machines

Fig. 10: Average time for token generation in Keystone

two compute nodes, one networking node and one controller
node. The configuration of controller node and network node
is: 24 cores CPU, 24 GB RAM and 1 TB Disk and the
configuration of the two Nova compute nodes is: 16 cores
CPU, 98 GB RAM and 1TB Disk. There are three networks
in this installation: (1) the green line on network interface eth1
shows the administration network which connects different
components of OpenStack; (2) the red lines on network
interface eth1 : 1 shows the data network which connects
virtual machines with the Internet and (3) the black line on the
eth0 network interface shows the access to the Internet which
is only accessible by Controller node and Networking node.
In experiment part II, we install the centralized PolicyEngine
on another machine which has dual core CPU, 4GB RAM and
10 GB disk.

The result for Part I is shown in figure 10. A first
observation is that given the same concurrent request, the
average time for token generation increases with the number
of user attributes. This is caused by the increase in the length
of user data to be signed by Keystone. As each token contains
all user attributes, the signing process and transmission takes
longer to finish. However, we can see that the increase is not
significant. The time is increased by 20% when the number
of user attribute increases from 0 to 20.

The result for Part II is shown in figure 11. It can be
seen that the networking latency increases with the number of
user attributes as data to be forwarded to the PolicyEngine
component becomes larger. The latency increases with the
number of concurrent request even with the same number of
user attributes. This is due to the reason that the PolicyEngine
is installed on a machine with limited computing power than



Fig. 11: Average time for Nova Communicating with Poli-
cyEngine

the machines we installed OpenStack. The waiting time for
getting a policy decision becomes larger when there are too
many requests to be evaluated. The average time for request
with 20 attributes in 500 concurrent requests is almost twice
the time of that with no attributes. We can also observe
that the time increase becomes faster with the number of
concurrent request when the user attribute increases. However,
our implementation of PolicyEngine is not highly optimized.
Furthermore, 20 attributes for access control decisions is a big
stretch in practice.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an ABAC framework for ac-
cess control in cloud IaaS. We studied existing models from
industry and academic literature and motivated the need for
ABAC by showing practical examples and limitations of the
existing models. ABAC is suitable for cloud IaaS because of
its flexibility and potential in unifying RBAC-related and role-
driven models. We provided formal models for the operational
and administrative aspects of our ABAC framework for cloud
IaaS. Based on the proposed ABAC framework, we designed
enforcement models based on the open source cloud platform
OpenStack. We then partially evaluated the performance of
our proposed enforcement models. In the future, we plan to
work on policy analysis of ABAC and administration models.
In addition, we plan to study the structure of the policy and
improve the throughput of the PolicyEngine component.

ACKNOWLEDGMENT

This work is partially supported by the NSF (CNS-1111925)
and AFOSR MURI grants (FA9550-08-1-0265).

REFERENCES

[1] Amazon web services. http://aws.amazon.com.
[2] Attributes are now ”how we role”. http://www.avatier.com/products/

identity-management/resources/gartner-iam-2020-predictions/.
[3] OASIS, Extensible access control markup language (XACML), v2.0.
[4] Openstack. http://www.openstack.org/.
[5] Rackspace customers. http://stories.rackspace.com/customers. 2013.
[6] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor.

A distributed access control architecture for cloud computing. IEEE
Software, 2012.

[7] S. et al Berger. Security for the cloud infrastructure: Trusted virtual data
center implementation.

[8] J. Cha, B.and Seo and J. Kim. Design of attribute-based access control
in cloud computing environment. In Int. Conf. on IT Conv. and Sec.,
pages 41–50. Springer, 2012.

[9] D. W. Chadwick, M. Casenove, and K. Siu. My private cloud–granting
federated access to cloud resources. Journal of Cloud Computing, 2013.

[10] S. Crago, K. Dunn, and P. et al Eads. Heterogeneous cloud computing.
In 2011 IEEE CLUSTER, pages 378–385.

[11] Chen Danwei, Huang Xiuli, and Ren Xunyi. Access control of cloud
service based on UCON. In Cloud Computing. Springer, 2009.

[12] L. Fuchs, G. Pernul, and R. Sandhu. Roles in information security: A
survey and classification of the research area. Comp. and Secur., 2011.

[13] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In
ACM CCS, pages 89–98, 2006.

[14] V. C. Hu and D. Ferraiolo et al. Guide to Attribute Based Access Control
(ABAC) Definition and Considerations. In NIST SP 800-162, 2013.

[15] Z. Iqbal and J. Noll. Towards semantic-enhanced attribute-based access
control for cloud services. In IEEE TrustCom, 2012.

[16] X. Jin, R. Krishnan, and R. Sandhu. A role-based administration model
for attributes. In ACM WSRAS, 2012.

[17] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access
control model covering DAC, MAC and RBAC. In DBSEC. 2012.

[18] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust-management framework. In IEEE Symp S&P, 2002.

[19] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of
a role-based trust management framework. In 2002 IEEE S&P.

[20] Daniel Nurmi and Richard et al Wolski. The eucalyptus open-source
cloud-computing system. In CCGRID, pages 124–131. IEEE, 2009.

[21] J. Park and R. Sandhu. The UCONABC usage control model. ACM
TISSEC, pages 128–174, 2004.

[22] David Power, Mark Slaymaker, and Andrew Simpson. On the modelling
and analysis of amazon web services access policies. Technical Report
RR-09-15, Oxford University Computing Laboratory, November 2009.

[23] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for
role-based administration of roles. ACM TISSEC, pages 105–135, 1999.

[24] D. Shin, H. Akkan, W. Claycomb, and K. Kim. Toward role-based
provisioning and access control for infrastructure as a service (IaaS). J.
Internet Services and App, 2011.

[25] Dongwan Shin and Hakan Akkan. Domain-based virtualized resource
management in cloud computing. In IEEE CollaborateCom, 2010.

[26] S Subashini and V Kavitha. A survey on security issues in service
delivery models of cloud computing. J. of Net. and Com. App., 2011.

[27] Hassan T., James BD J., and Gail-Joon A. Security and privacy
challenges in cloud computing environments. IEEE S & P, 2010.

[28] H. Takabi, J. BD Joshi, and G. J. Ahn. Securecloud: Towards a
comprehensive security framework for cloud computing environments.
In IEEE COMPSACW, 2010.

[29] Bo Tang and Ravi Sandhu. Extending openstack access control with
domain trust. In 2014 NSS.

[30] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for
attribute based access control. In ACM workshop FMSE, 2004.

[31] Ruoyu Wu, Xinwen Zhang, Gail-Joon Ahn, Hadi Sharifi, and Haiyong
Xie. Design and implementation of access control as a service for iaas
cloud. SCIENCE, 2(3):pp–115, 2013.

[32] E. Yuan and J. Tong. Attributed based access control (ABAC) for web
services. In IEEE ICWS, 2005.

[33] Yan Zhu, Di Ma, Chang-Jun Hu, and Dijiang Huang. How to use
attribute-based encryption to implement role-based access control in the
cloud. In Int Workshop on Security in Cloud Computing, 2013.

APPENDIX

We show the sequence of operations to configure policies
in tenant TechU.

createTenant(Alice, T echEdu)

createRootUser(Alice,Bob, T echEdu)

createUserAttr(Bob, org service, set)

createSubAttr(Bob, sorg service, set)

addSubConstr(Bob, policy)



where policy is:

ConstrSub(u, s, {(sorg service, val)}) ≡ val ⊂ org service(u)

createObjAttr(Bob, oorg, atomic, vm)

createObjAttr(Bob, oservice, atomic, vm)

addObjConstr(Bob, policy)

where policy is:

ConstrObj(s, o, {(oorg, porg), (oservice, pservice)}) ≡
∃(org, service) ∈ sorg service(s).porg = org∧
service = pservice

addAuthz(Bob, policy)

where policy is:

Authzrestart instance(s, o) ≡ ∃(org, service) ∈ org service(s).

org = oorg(o) ∧ service = oservice(o)

createAdminRole(Bob, ITManager)

createAdminPolicy(Bob, policy1)

createAdminPolicy(Bob, policy2)

createAdminPolicy(Bob, policy3)

where policy1 is:

can addorg service = {(ITManager, ITArchitect ∈ role(u),

{(cs, web), (cs, email), (cs, app)})}

policy2 is:

can addrole = {(ITManager, True, {ITArchitect})}

and policy3 is:

can adduser = {ITManager}

addAminUserRole(Bob, F rank, ITManager)

createUser(Frank,Gary)

add(Frank,Gary, role, ITArchitect)

add(Frank,Gary, org service, (cs, web))

add(Frank,Gary, org service, (ece, web))

The complete list of operations is given in table IV.



TABLE IV: Complete List of Functional Specifications

Operations Updates
1. Operations for Cloud Root User

1.1 createTenant(req:CRU, tenant:NAME) T′ = T ∪ {tenant}
1.2 createRootUser(req:CRU, u:NAME, tenant:T) TRU = ∅, TRU = {u}
1.3 removeTenant(req:CRU, tenant:NAME) T′ = T \ {tenant}

2. Operations for Tenant Root User
2.1 createUserAttr(req:TRU, ua:NAME, type: {set, atomic}) UA′ = UA ∪ {ua}, attType(ua) = type
2.2 createUserAttrScope(req:TRU, ua:UA, value:NAME) SCOPE′

ua = SCOPEua ∪ {value}
2.3 removeUserAttrScope(req:TRU, ua:UA, value:SCOPEua) SCOPE′

ua = SCOPEua \ {value}
2.4 createSubAttr(req:TRU, sa:NAME, type: {set, atomic}) SA′ = SA ∪ {sa}, attType(sa) = type
2.5 createSubAttrScope(req:TRU, sa:SA, value:NAME) SCOPE′

sa = SCOPEsa ∪ {value}
2.6 removeSubAttrScope(req:TRU, sa:NAME, value:SCOPEsa) SCOPE′

sa = SCOPEsa \ {value}
2.7 addSubConstr (req:TRU, policy:POLICY) SubConstr′ = SubConstr ∪ {policy}
2.8 removeSubConstr (req:TRU, policy:POLICY) SubConstr′ = SubConstr \ {policy}
2.9 createObjAttr (req:TRU, oa:NAME, type:{set, atomic}, oat: OT) OA′ = OA ∪ {oa}, attType(oa) = type, oaType(oa) = oat
2.10 createObjAttrScope(req:TRU, oa:OA, value:NAME) SCOPE′

oa = SCOPEoa ∪ {value}
2.11 removeObjAttrScope(req:TRU, oa:OA, value:NAME) SCOPE′

sa = SCOPEsa \ {value}
2.12 addObjConstr (req:TRU, policy:POLICY) ObjConstr′ = ObjConstr ∪ {policy}
2.13 removeObjConstr (req:TRU, policy:POLICY) ObjConstr′ = ObjConstr \ {policy}
2.14 addAuthz (req:TRU, policy:POLICY) Authz′ = Authz ∪ {policy}
2.15 removeAuthz (req:TRU, policy:POLICY) Authz′ = Authz \ {policy}
2.16 createAdminRole(req:TRU, role:NAME) AR′ = AR ∪ {role}
2.17 createAdminPolicy(req:TRU, policy:POLICY) AdminPolicy′ = AdminPolicy ∪ {policy}
2.18 removeAdminPolicy(req:TRU, policy:POLICY) AdminPolicy′ = AdminPolicy \ {policy}
2.19 addAminUser(req:TRU, u:NAME) TAU′ = TAU ∪ { u}
2.20 removeAminUser(req:TRU, u:TAU) TAU′ = TAU \ {u}
2.21 addAminUserRole(req:TRU, u:TAU, r:AR) UAR′ = UAR ∪ {(u, r)}
2.22 removeAminUserRole(req:TRU, u:TAU, r:AR) UAR′ = UAR \ {(u, r)}

3. Operations for Tenant Administrative Users [16]
3.1 addUser(req:TAU, user:NAME) TReU′ = TReU ∪ {user}
3.2 removeUser(req:TAU, user:TReU) TReU′ = TReU \ {user}
3.3 add(req:TAU, tuser:TReU, att:UA, value:SCOPEatt) att(tuser)′ = att(tuser) ∪ {value}
3.4 delete(req:TAU, tuser:TReU, att:UA, value:SCOPEatt) att(tuser)′ = att(tuser) \ {value}
3.5 assign(req:TAU, tuser:TReU, att:UA, value:SCOPEatt) att(tuser)′ = value

4. Operations for Tenant Regular Users [17]
4.1 createSubject(req:TReU, sub:NAME, saset:SASET) S′ = S ∪ {sub}, for each (sa, val) ∈ SASET, sa(sub) = val,

SubCreator(s) = req

4.2 createObject(sub:S, obj:NAME, oaset:OASETt, t:OT) O′ = O ∪ {obj}, objType(obj) = t, for each (oa, val) ∈ OASET,
oa(obj) = val

4.3 modifyObjAttr(sub:S, obj:NAME, oaset:OASET) For each (oa, val) ∈ OASET, oa(obj) = val
4.4 Operation(sub:S, obj:O) None


