i)) i 3 e P

-THE SSR MODEL FOR SPECIFICATION OF AUTHORIZATION POLICIES:
A CASE STUDY IN PROJECT CONTROL

Ravinderpal S. Sandhu

Department of Computer and Information Science
Ohio State University
Columbus, OH 43210

ABSTRACT

The distribution of privileges in the domains of
subjects (e.g. users, processes) defines the
protection state of a system. Subjects can
change this state as authorized by the current
state. An authorization policy specifies which
states are safe and also how they should be
derived. The SSR model (Schematic Send-Receive
model) is motivated by two conflicting goals:
generality in specifying practical policies, and
analyzability in characterizing derivable states.
The key notion is protection types. SSR regards
the domain of each subject as consisting of a
static part determined by the subject’s type and
specified by an authorization scheme, and a
dynamic part consisting of tickets
(capabilities). The authorization scheme em-
bodies major policy decisions while details are
reflected in the initial distribution of tickets.
We demonstrate the expressive power of ‘this
model, and the role of authorization policies, in
the context of a project documentation system,

1. INTRODUCTION

The authorization or protection problem arises
in any computer system which permits sharing of
data objects and other resources. Such systems
are viewed as consisting of subjects and objects.
Subjects model active entities such as users and
processes. Objects model passive entities such
as text files. Protection is enforced by ensur-
ing that only those operations for which the. in-
voking subject possesses privileges in its domain
actually get executed. Operations may be per-
formed on objects, e.g.» reading a text file, and
on subjects, e.g., blocking a process.

We regard subjects and objects as disjoint
sets and use the term emtity to denote either a
subject or object. We assume that objects do not
possess privileges. 'Passive entities which pos—
sess privileges are regarded as subjects. Pas~
sive subjects camnot initiate operations but
serve an important function as repositories of
privileges which can be obtained and used by ac-
tive subjects, e.g.» a directory which contains
privileges for accessing files but itself cannot
initiate the use of these privileges. In this

0730-3157/84/0000/0482801.00 © 1984 IEEE

482

respect, our viewpoint differs from that prevail-
ing in the literature wllerez s%bjects are regarded
as a subset of objects.'® <» The rationale for
the prevalent viewpoint is that any entity on
which operations can be performed is an object,
and since operations can be performed on subjects
they too are objects. We prefer to take it for
granted that operations may be performed on both
subjects and objects, while making explicit the
distinction between entities that do and do not.
possess privileges.

The distribution of privileges in the domains, |
of subjects defines the protectiomn state of a|
system. Inert privileges authorize operations]|
which do not modify the protection state, €8y
reading a file. Control privileges authorize |
operations which modify the protection state,
e.g., user X authorizes user Y to read file
Z. The paradigm is that an iniftial protection
state is established and thereafter the state
evolves as constrained by control privileges.
The challenge is to construct an initial state
such that all derivable states are consistent
with the underlying policy.

Now what do we mean by policy in this context?
At the simplest level an authorization policy
defines a set of safe protection states where the
distribution of privileges is consistent with the
underlying objectives, e.g., the policy that
states where user X cannot read file Y are safe.
At all times the system must be in a safe state.
Safety considerations are typically value-based
and concerned with classes of entities rather
than individuals, e.g., the policy that only
users in department D can access files internal
to department D. Such a policy is also said to be :
selective since users and files in different
departments are treated differently. i

At a more sophisticated level, an authoriza-
tion policy must consider the sequence of state
transitions which derive a safe state. It is not
enough that the system be in a safe state, we
must additionally ensure the system arrived at
the safe state in a proper mammer. For instance,
the policy that users outside department D may
access internal files of department D provided |
the chairperson of D approves. Besides being |
value-based and selective this policy is also |
cooperative in that the chairperson”s cooperation ||

BY T o " e e o

i

is required, and discretiomary in that the chair-
person decides which non-departmental users may
access which internal files.

A protection model provides a framework and
formalism for policy specification and must be
general enough to conveniently state the kinds of
concerns discussed above. But generality by it-
self is not enough. To understand the formal
statement of a policy and to assure it captures
our intent, we need analysis techniques to
characterize the states that a system with a
given initial protection state may arrive at.
Since subjects are usually authorized to create
new subjects and objects, we are confronted with
unbounded systems and it is mot certain that
analysis can be decidable let alone tractable

without sacrificing generality.

The central issue in formulating a protection
model is to balance these conflicting goals of
convenient generality and tractable analysis.
Analysis issues were first formalized inzcogtext
of the well-known access-matrix model.”? 7 Not
surprisinglys analysis is undecidable in this
general setting. A further drawback of the
access-matrix is the lack of any structure to
conveniently address %ra%tical policy concerns,
The take-grant model,”? and its variatioms,
while efficiently analyzable accommodate only a
very specific class of simple policieg. The
send-receive transport model of Minsky~ incor-
porated powerful facilities for specifying the
kinds of policy concerns discussed above. It
also introduced the notion of .local analysis,
i.e., analysis based on examination of a subset
of a larger system and thereby independent of the
rest of the system, a property crucial to modular
design.

In section 2 we present the Schematic Send-
Receive or SSR model. In large part, SSR is
based on Minsky’s send-receive transport model.
SSR adopts some simplifying assumptions and has a
set-theoretic formulation in contrast to Minsky’s
formulation which has a production-rule flavor.
Though not named as such, the SSR mode91 is
developed in greater detail in Sandhu. In
sections 3 and 4 we illustrate the expressive
power of SSR by specifying a variety of policies
for a project documentation system. Our discus-
sion is relevant to any project where the
preparation and use of documentation by a team is
computerized, €8s,y software development
projects. Section 5 concludes the paper.

2. THE SSR MODEL

The key concept in SSR is protection types.
Intuitively, instances of the same protection
type are treated usniformly by control privileges.
Henceforth, we use type as synonymous with
protection type. A critical assumption in SSR is
strong typing, i.e:, every entity is created to
be of exactly one type which cannot change there-
after. OSSR treats a subject’s domain as consist~

483

ing of two parts: a static part determined by the
subject’s type; and. a dynamic part which varies
with the protection state.

Dynamic privileges are represented as tickets
(capabilities) of the form Y/x, where Y iden-
tifies some unique entity and the right symbol x
authorizes the possessor of this ticket to per-
form some operation on Y. We do not intend that
tickets necessarily be represented at run—-time as
capabilities buﬂjt li.lntolzt:he 3addressing mechanism
of a computer. ° ’ > The correspondence
between SSR tickets and the run-time represen—
tation of dynamic privileges in a given implemen-—
tation, is a separate issue. In particular, the
assumption that a ticket carries only ome right
symbol, and identifies exactly one entity,
simplifies the formal framework. A capability
with multiple right symbols is modeled as a set
of tickets each with one right symbol. Indeed,
we sometimes abbreviate a set of tickets in this
manner so that A/xy denotes Alx and Aly.

We assume every right symbol x comes in two
variations x and xc where ¢ is the copy flag. A
ticket Y/x cannot be copied from one domain to
another, whereas Y/xc possibly may be as deter—
mined by additional conditions. “In all other
respects these two tickets are identical. By
definition, whenever A/xc belongs to a set of
tickets A/x also belongs to the set but not vice
versa. We use x:c to denmote either x or XcC.
Multiple occurrences of x:c in the same context
are either all read as x or all as xc. Afxy:c is
an abbreviation for A/x:ic and Aly:c.

Static type—dependent privileges are deter~
mined by the authorization scheme. The scheme is
defined when a system is first set-up and cannot
thereafter be changed. The person responsible
for defining the scheme is called the security
administrator. Major policy decisions are built
into the scheme, while details are reflected in
the initial distributiom of tickets also
specified by the security administrator. We
recognize the need for modifying the scheme over
the 1ife of a system. However, such modification
must be carried out by the security administrator
acting outside the system rather than by subjects
within the system, and as such fall outside the
scope of the SSR model. For the purposes of SSR
any change in the scheme amounts to specification
of a new system. We find it useful to view an
authorization scheme as analogous to a database
schema, and the distribution of tickets as
analogous to an extensional database.

The first step in defining a scheme is to
specify the set of object types TO, and the set
of subject types TS. These sets must be dis-
joint. Their union T is the entire set of
protection types. By convention, types are named
in lower case boldface and entities in upper case
normal script.

The next step is to defime the right symbols
which can be carried by tickets. The set of

|
[
\

right symbols R is partitioned into two disjoint
subsets: RI the set of inert rights and RC the
set of control rights. RC is fixed to consist of
the send and receive rights denoted s and r
respectively, and their copiable variants, i.e.,

RC = {s, r, sc, rec}

These control rights authorize transport of tick-
ets via the link relation defined by

Link(A,B) iff [B/s € dom(A) and A/r ¢ dom(B)]

where dom denotes the set of tickets possessed by
the indicated subject. The existence of
link(A,B) is necessary, but not sufficient, for
transport of tickets from A to B. In short RC is
fixed and interpreted in terms of the link rela~-
tion, while RI is specified by the security ad-
ministrator and regarded by SSR as a set of unin-
terpreted symbols.

We define the type of a ticket Y/x:c to be
t(Y)/x:c, where the type function t returns the
type of its argument entity. Conventions for
representing tickets, especially regarding the
copy flag, extend in an obvious way to ticket

types. In particular, t(Y)/x and t(Y)/xc . are
different ticket - types. This is ‘an important
distinction because of the role of the copy flag.
The entire set of ticket types is TXR.

The remaining components of an authorization
scheme are defined entirely in terms of subject,
object, and ticket types, i.e., in terms of the
sets TS, TO, and TXR. SSR recognizes three
operations by which a subject can obtain tickets:
transport, demand, and creatiom. A subject in
the initial state may be given an arbitrary set
of tickets to begin with as specified by the
security administrator. ‘We now discuss in turn
each of the three operations which change the
protection state.

The transport operation moves a copy of a
ticket from the domain of one subject to the
domain of another. The original ticket is left
intact in the formet domain. The scheme con-
strains the transport operation by means of the
filter fumction f which maps every pair of sub~
ject types to a subset of ticket types; i.e.,

£: TS X TS -> 2TXR

The interpretation is that a ticket Y/x:c can be
copied from dom(A) to dom(B) if and only if

1. Y/xe € dom(4),

2. 1ink(A,B) exists,

3. e(¥)/x:c € £(e(A),e(B)).
The first two conditions were stated earlier as
necessary but not sufficient. The filter func~

tion completes this list and defines the selec-
tivity in the transport operation in terms of the

484

types of source and destination subjects and type
of ticket being transported. SSR makes no as-
sumptions about the role of A and B in this
operation. It is equally acceptable that trans-
port take place at the initiative of A or B alone
or require both to cooperate. We often speak of
the transport operation as copying a ticket from
one. subject to another, although it is tech-
nically more correct to say that a ticket is

copied from one subject’s domain to another”s
domain,

The demand operation allows a subject to ob-
tain tickets simply by demanding them. A scheme
authorizes this operation by the demand. function
d which maps every subject type to a subset of
ticket types, i.e.,

d: Ts —> 2TXR

The interpretation of a/x:c € d(b) is that every
subject of type b can demand the ticket Alx:c for
every entity A of type a. In particular, control
tickets can be demanded allowing us to incor-
porate special cases conveniently, e.g.

1. 1f b/s € d(a) then every subject A of type
a can demand B/s for every subject B of
type b. The definition of 1link(A,B) for
such subjects effectively reduces to
A/r ¢ dom(B).

2. Correspondingly, if afr ¢ d(b) then for
subjects A, B of types a, b respectively
the definition of 1ink(A,B) effectively
reduces to B/s € dom(A).

3. If both b/s ¢ d(a) and a/r ¢ d(b) then for
subjects A, B of types a, b respectively
link(A,B) is effectively true.

The create operation introduces new sub jects
and objects in the system. There are two issues
here: what types of entities can be created, and
what happens after a create operation occurs.
The first issue is specified in a scheme by means
of the cam—create relation cc which relates sub-
ject types to types, i.e.,

ccCTSXT
The interpretation is that subjects of ‘type a are

authorized to create entities of type b if and
only if <a,b> ¢ ecc. The second issue is

specified by a create rule for every pair in cc.’

Assume, subject A of type a creates entity B of
type b. If B is an object, the <a,b> create rule
tells us which tickets for B are placed in A’s
domain as a result of this operation. If B is a
subject, the create rule must also tell us which
tickets for A are placed in B's domain. S8R re~-
quires every create rule be local in that the
only tickets introduced are for the creating and
created entities in the domains of the creating
and created entities. The idea is that fre-
quently occurring incremental events such. as
creation of an entity should immediately have

rest
tick
it
oper
in t
ets
be 1
prin
ets

only a local incremental impact on the state. We
emphasize the create rule may be different for
each pair in cc. We omit the symbolic formalism
for specifying create rules.

In summary, the @SSR model requires the
security administrator to specify an authoriza-
tion scheme by defining the following components.

! 1. TS the set of subject types, and TO the set
| of object types. T, the set of types, is
b ‘ the union of these two disjoint sets.
| - i
me || MM | 2. BRI the set of imert rights. RC =
on - {s, r, sc, rc}, the set of control rights
of 3 is fixed. R, the set of rights, is the
union of these two disjoint sets.
| 3. £: TS X TS -> 2TXR the filter function to
i . - E]
‘ - specify selectivity in the transport opera-
4 » tion.
T ||
Sl | 4.d: 18 -> 2TXR (he demand function to
= = specify the types of tickets that can be
B obtained on demand by subjects of a given
- type.
:; 5. ¢cc Q TS X T, the can-create relatiom to
- v; specify the types of entities that can b
°] ‘ created by subjects of a given type. ’
6. A local create rule for each pair in cc to
" : specify the immediate result of a create
y operation authorized by this pair.-
y A protected system .is specified by defining an
authorization scheme, the initial set of en~
r tities, and the tickets in the initial domain of
y every subject.
In our discussion so far we have ignored the
important aspect of revocation of privileges.
s Our cavalier treatment of revocation is justified
S by adopting the restoratiom principle that
d whatever can be revoked can be restored. What is
: the interpretation of this principle in the con-
s u text of SSR? The assumption that the scheme can-
) ‘?i not be changed is fundamental to SSR and implies
; that revocation is limited to tickets. Any
i policy for revocation of tickets comsistent with
2 the restoration principle is then acceptable.
1 4 Now consider the ways in which a subject ob-

; . tains tickets. If a ticket obtained by a trans-
port operation is revoked it can be restored by
copying it again. Similarly, if a ticket ob-
tained by a demand operation is revoked it can be
restored by demanding it again. However, if a
ticket introduced by the create rules get revoked
it cannot be restored by repeating the create
operation since each create operation is unique
in that it introduces a unique new entity. Tick-
ets distributed in the initial state also may not
be restorable if revoked. Thus the restoration
principle appears to have an impact only on tick-
ets distributed in the initial state and tickets

485

introduced as the result of a create operation.
If we assume such tickets are irrevocable the
restoration principle does not entail any loss of
generality.

The restoration principle merely states that a
variety of revocation policies are consistent
with a S8SR scheme. The problem of specifying
revocation policies still remains. For now we
have chosen to set aside this problem and focus
on policies for distribution of tickets rather
than on policies for revocation. A crucial con-
sequence of the restoration principle is that in
a worst-case scenario, where we assume all sub-
jects will cooperate with one another, we can as~—
sume no revocation occurs since tickets which get
revoked can be restored.

3. PROJECT CONTROL: SINGLE TEAM

Ve now develop a case study to demonstrate the
expressive power of the SSR model, as well 'as the
role of authorization policies, in the context of
a project requiring preparation and use of docu-
ments by members of a team. We begin by con-
sidering a single team working in isolation. We
classify team members into two types: sup for su-
pervisors. and wor for workers. We distinguish
three types of documents:

1. Permanent documents, of type pdoc,
represent products which have satisfac-
torily undergone quality assurance
procedures. Only supervisors can create
these and are responsible for the quality.
Permanent documents can be consulted by all
members. They should be modified infre-
quently if at all and we rely on the judg-
ment of supervisors in this respect. Su-
pervisors may modify permanent documents
themselves or designate a worker to do so.

2. Working documents, of type wdoc, are used
for communication among team members. Mem-
‘bers with the need to work together on some
aspect of the project should be able to
share working documents. Here again we
trust the judgment of supervisors. Workers
need not, and should not, be able to share
working documents at random with other
workers.

3. Supervisory documents, of type sdoc, are
used to communicate among supervisors for
project control and review purposes. These
documents cannot be accessed by workers.

We now formulate these requirements in the SSR
framework, filling in missing details as we
proceed. The protection types have already been
identified as follows.

TS
TO

]

{sup, wor}
{pdoc, wdoc, sdoc}

The policy concerning pdoe”s is selective regard-
ing the ability to modify such documents. This
suggests we need to distinguish two kinds of
right symbols: v~-rights authorizing operations
that return some value without modifying the
document, and o-rights authorizing operations
that modify the document. Since the policy does
not distinguish among v-rights, or among o-—
rights, we need introduce only these two symbols
and their copiable variants, i.e.,

RI = {v, o, vc, oc}

Turning to the demand function, we authorize
supervisors and workers to demand tickets of type
pdoc/v so they may consult every permanent docu-
ment . Further since supervisors may modify
pdoc”s and also designate workers to do so, we
authorize supervisors to demand tickets of type
pdoc/oc. For inert rights the demand function is
then specified as follows.

1. pdoc/v, pdog/oc £ d(sup)
2. pdoc/v & d(wor)

In regard to control rights the policy makes no
explicit statement. The security administrator
would need to clarify the exact intent. One pos-
sibility is that supervisor-supervisor,
supervisor~worker, worker-supervisor links be es-
tablished on demand whereas worker-worker links
cannot exist. This is achieved as follows, as-—
suming no worker-worker links exist in the in-
itial state.

1. sup/sr, wor/sr & d(sup)

2. sup/sr € d(wor)

Next consider the filter function. Since con-
trol tickets are obtained on demand we need only
consider inert tickets. Supervisors may share
all types of documents. Access of pdoc”s by su-
pervisors has already been specified by means of
the demand function. To facilitate sharing of
wdoc’s and sdoc”s among supervisors as needed, we
define

1. f(sup,sup) = {wdoc/voc, sdoc/voc}

That sharing of wdoc”s between workers and super—
visors is unrestricted but requires approval of a
supervisor between workers and workers, and that
the right to modify a pdoc may be passed from su-
pervisors to workers is specified as follows.

2. £(sup,wor) = {wdoc/voc, pdoc/o}
3. f(wor,sup) = {wdoc/voc}
4, f(wor,wor) = 0

A ticket of type wdoc/ve or wdoc/oc can then be
copied from a worker to a supervisor, along with

486

the copy flag. Such a ticket can be further
copied from the supervisor to another worker.
This enables the sharing of wdoc”s among workers
at the discretion of supervisors.

Regarding creation of objects we interpret the
policy to be that supervisors cam create wdoc’s,
pdoc”s and sdoc’s, whereas workers may only
create wdoc”s. This is consistent with the role
of these document types. Regarding creation of
subjects, workers should not create supervisors
otherwise the control imposed by supervisors is
subverted. Also, it is clearly useful for super-
visors to create new workers. Not so evident is
the utility of allowing supervisors to create new
supervisors. Firstly, this provides a means of
introducing new supervisors in the project. More
significantly it is an wuseful organizational
device, e.g., a supervisor responsible for
several activities may want to create a separate
supervisory subject for each activity. For the
latter organizational reason it is also useful to
allow workers to create workers. This 1is
reminiscent of TOPS-20, UNIX, and other operating
systems where users can create sub-directories.

It remains to define the create rules. Both
sdoc’s and wdoc’s are shared by copying tickets
from one domain to another. When one of these
documents, say X, is created the creator gets the
X/oc and X/vc tickets so these tickets can be
copied. For uniformity we apply the same rule to
creation of pdoc”s although the demand function
already provides much the same effect. For crea-
tion of subjects the create rule need not intro-
duce any tickets, since links between subjects
are established on demand.

To summarize we have defined an authorization
scheme for project documentation control as fol-
lows.

1. IS =
TO

{sup, wor}
{wdoc, pdoc, sdoc}

2. RI = {v, o, vc, oc}

3. d(sup) = {sup/sr, wor/sr, pdoc/v, pdoc/oc}
d(wor) = {sup/sr, pdoc/v}

{wdoc/voc, sdoc/voc}

4. f(sup,sup)

f(sup,wor) = {wdoc/voc, pdoc/o}
f(wor,sup) = {wdoc/voc}
f(wor,wor) = 9

5. cc = {<sup,wdoc>, <sup,pdoc>,
<sup,sdoc>, <sup,sup’>,
<sup,wor>, <wor,wdoc>,
<wor ,wor?}

6. The create rule for creation of objects is
that when an object X is created the
creator gets X/vc and X/oc.

troduce any tickets.

The . create:
rule for creation of subjects does not in-

Th
PO’
sol
WOl
po!

way
the
tic
mak
lin
fil
con
tic
the
lea

Thi
con
nit
on

if
£(w
In
the

the
res
ets

sin
all

34

]
o
v
:
4
g
o

This is a simple and practical authorization
policy for project documentation conmtrol. It is
sobering’ to realize that most operating systems
would be hard put to support even this simple
policy.

So far we have not considered relationships
‘among documents. Specifically that a document
‘hay reference other documents. Consider the
lpolicy that access to a document implies access
EFo referenced documents, e.g., access to a
%%oftware module implies access to referenced
\modules. To an extent our scheme provides this
‘fac111ty for pdoc’s referenced within other
”pdoc s, since both supervisors and workers are
\Puthorlzed to demand all tickets of type pdoc/v.
But even with respect to pdoc”s this facility
does not go far enough, e.g., pdoc P references
wdoc W with the understandlng that W will even-
nmlly be replaced by a pdoc. For a subject S
with access to P to automatically obtain access
to W in this situation, a ticket for W must be
embedded in P and S must have some means of ob-
talnlng this ticket from P. SSR is capable of ex-
pressing such policies. However, this facility

i'is not feasible if documents are modeled as ob-

jects. So for this paper, tickets to access
documents referenced within a document must be

' independently obtained.

VARTATIONS

It is possible to modify our scheme in several
wvays without altering the policy. For instance
the filter function does not allow copying of any
tickets from one worker to another. Thereby it
makes no difference if we authorize worker-worker
links to be established on demand. Moreover the
filter function does not allow any copying of
control tickets, so the copy flag on control
tickets has no significance in this scheme. But
then, the following modifications to our scheme
leave the policy unchanged.

1. sup/src, wor/src & d(sup)
2. sup/src, wor/src € d{wor)

This modification makes explicit the fact that
control tickets essentially play no role. Recog-
nition of this fact can have a significant impact
on the implementation of the policy-

A second variation arises by recognizing that
if worker-worker links cannot exist we may define
f(wor,wor) to whatever value we find convenient.
In particular if we set f(wor,wor) to {wdoc/voc},
the modified scheme has the property that
wdoc/voc is present in all values of f£. Then
there is no need to perform any checking with
respect to the filter function when copying tick-
ets of type wdoc/voc from one subject to another-

As a third and final variation, observe that
since tickets of type pdoc/v can be demanded by
all subjects there is no need to copy a ticket of

487

type pdoc/v from one subject to another. But
then, it does not matter if allow supervisors to
demand tickets of type pdoc/ve rather than
pdoc/v. Combining this with our earlier obser-
vation that the copy flag on control tickets has
no significance we can modify d(sup) to be
{sup/src,wor/src,pdoc/voc}. Now all ticket types
not in f(sup,sup) can actually be demanded by su-
pervisors. Hence it does not matter if we allow

tickets of these types to be copied from one su-
pervisor to another. But then we can define
f(sup,sup) to be TXR, so there is no need to do
any checking with respect to the filter function
when tickets are copied from one supervisor to
another.

The trade-offs between these equivalent varia-
tions will depend on the run-time mechanism used
for implementing the policy. We emphasize, this
ability to specify the same policy in alternate
ways in SSR is a 51gn1f1cant asset of the model
and allows for investigation of implementation
trade-offs.

Next consider some variations which change the
policy in a significant way. The requirement
that workers share wdoc’s only as approved by su-
pervisors, is enforced in our scheme by interven-
tion of a supervisor on every occasion a ticket

is copied from one worker to another. A less
restrictive policy 1is to allow worker-worker
links to be established by supervisors. A super-

visor still intervenes to establish the link but
need not intervene thereafter. We achieve this
by allowing supervisors to demand copiable con-
trol tickets for workers and transfer these to
the domains of workers. The following additioms
to our scheme account for this change.

1. wor/src & d(sup)

2. wor/sr € f(sup,wor)

3. f(wor,wor) = {wdoc/vo}
Let S bé a supervisor and X, Y be workers. S can
demand the tickets X/sc, X/rc and Y/sc. X, Y can

demand the ticket S/r. This results in 1ink(8,X)
and 1ink(8,¥). Now, Y/s can be copied from § to
X and X/r from § to Y thereby establishing
1ink(X,Y). Tickets of types wdoc/vo can then be
copied from X to Y. However, Y canmot obtain
copiable tickets from X. The net effect is that,
without further supervisor interventiom, only
those workers with direct links between them can
share wdoc’s. A more liberal policy is obtained
by setting f{wor,wor) to {wdoc/voc}, so that
tickets for wdoc’s can be copied along a sequence
of links between workers. We might also modify
the <wor,wor> create rule so that when a worker W
creates a new worker W7, 1link(W,W") and

1ink(W”,W) are immediately established.

The former set of variations, which left the
earlier policy unchanged, may or may not preserve
these modified policies. Indeed the first varia-

tion does not preserve the modified policies
since mnow worker-worker 1links have some sig-
nificance. The second variation is subsumed by
the more liberal modification where f(wor,wor) is
{wdoc/voc} but is inconsistent with the less
liberal modification where f(wor ,wor) is
{wdoc/vo}. Finally, the third variation does
preserve the modified policies.

Having seen how such variationms, both policy-
preserving and policy-modifying, are readily ac-
cormodated we will continue with the scheme
defined and summarized earlier-

REVOCATION

Consider the consequences of the restoration
principle on revocation polices in the context of
our scheme. Since tickets of type pdoc/v can be
demanded by all subjects, any policy regarding
revocation of such tickets 1is acceptable. Even
the absurd policy that every subject can revoke
tickets of type pdoc/v from every domain. The
situation with regard to tickets of type pdoc/o:c
is similar. Again it is acceptable, albeit ab~-
surd, that a worker may revoke such a ticket in
another worker”s domain. Realistically, only a
supervisor should be allowed to revoke a ticket
of type pdoc/o in a worker’s domain. Indeed per-
haps only the supervisor who gave the ticket to
the worker should be allowed to revoke it.

Next consider tickets of type wdoc/vo:c. The
creator X of a wdoc W gets the W/voc tickets im-
mediately on creation. Tickets W/vo:c in the
domain of any subject Y other than the creator X
are obtained by copying. Any policy for revoca-
tion of the tickets W/vo:c in the domain of Y#X
is then acceptable. Again this allows for an ab-
surd policy that any subject can revoke a ticket
for a wdoc from the domain of any subject other
than the creator of the wdoc. Realistically,
perhaps only the creator of wdoe W should be al-
lowed to revoke tickets for W. Or perhaps, only
the subject from whose domain the ticket was
copied should be allowed to revoke the copy. At
the same time, the restoration principle rules
out any policy which allows revocation of the
original ticket in the creator’s domain since
there is no means for restoring this ticket once
destroyed.

To summarize, the only significant constraint
imposed by the restoration principle on revoca-
tion policies for the single project scheme is
that tickets obtained as a result of creating
wdoc”s and sdoc’s are irrevocable. Any policy
regarding the revocation of all other tickets is
acceptable.

4. PROJECT CONTROL: MULTIPLE TEAMS

Next we generalize the context to several
projects, say N projects identified as 1 through
N. If there is no sharing of documents across
different projects we can simply extend the
single project case by defining different super-
visor, worker, and document types for each
project, and follow our earlier policy within
each project. This is expressed by the scheme
below, which amounts to a collection of N inde-
pendent schemes corresponding to N isolated
project teams.

1. TS = {sup.i, wor.il i=1..N}
TO = {wdoc.i, pdoc.i, sdoc.il i=1..N}

i

2. RI = {v, o, vec, oc}

3. For i=l..N,
d(sup.i) = {sup.i/sr, wor.if/sr, pdoc.i/v,
pdoc.ifoc}
d(wor.i) = {sup.i/sr, pdoc.i/v}
4. For i=1..N,
f(sup.i,sup.i) = {wdoc.i/voc, sdoc.i/voc}
f(sup.i,wor.i) = {wdoc.i/voc, pdoc.ifo}

f(wor.i,sup.i) = {wdoc.i/voc}
f(wor.i,wor.i) = ¢
For i,j=1..N, i#j
f(sup.i,sup.j) = ¢
f(sup.i,wor.j) = ¢
f(wor.i,sup.j) = ¢
f(wor.i,wor.j) = ¢
5. cc = {<sup.i,wdoc.i>, <sup.i,pdoc.i>,
<sup.i,sdoc.i>, <sup.i,sup.i>,

<sup.i,wor.i>, <wor.i,wdoc.i>,
<wor.i,wor.i>] i=1,.N}

6. The create rule for creation of objects is
that when an object X is created the
creator gets the X/vc and X/oc tickets.
The create rule for creation of subjects
does not introduce any tickets.

Now consider interaction between project teams
by sharing of documents across projects.
Specifically the policy that only permanent docu-
ments of a project may be shared with other
projects. In its most liberal interpretation,
this policy is specified by authorizing all types
of subjects to demand tickets for all types of
permanent documents, as follows.

1. pdoc.i/v € d(sup.j), i,j=1..N

2. pdoc.i/v € d(wor.j), i,j=1..N !

|
Tpe policy regarding the creation and modifica-
tion of pdoc.i’s remains unchanged and under con-
trol of corresponding sup.i’s.

act
ger
be

per
sit
We

ing

whe
{kl
acr
ing

W J

Bama L L o

But what if the sharing of permanent documents
across projects is to be selective? For complete
generality, the supervisors of project i should
be able to select any arbitrary subset of the
permanent documents of project i as being acces-
sible by any arbitrary subset of project teams.
We consider two distinct approaches for specify-
ing this policy in SSR.

DEMAND BASED SOLUTION

Our first solution is based on the demand
function. For each i, we refine pdoc.i into 2%
types designated pdoc.i.M where M is a subset of
{klk=1..N,k#i}. The idea is that documents of
type pdoc.i.M are accessible by members of
project j#i if and only if j€M. Within project i
there 1s no distinction between the types
pdoc.i.M for different M“s. The policy in the
latter regard is easily restated as follows: for
i=l..N replace every occurrence of

1. pdoc.i by pdoc.i.M, ¥

2. pdoc.i/x:c by pdoc.i.M/x:c, WM

3. <sup.i,pdoc.i> by <sup.i,pdoc.i.M>, ¥M
where the quantifier ¥M signifies all subsets of
{klk=1..N,k#i}. The policy regarding access

across projects is then stated by further enhanc-
ing the demand function as follows, for i,j=l..N.

1. pdoc.i.M/v & d(sup.j) iff j € M
2. pdoc.i.M/v € d(wor.j) iff j € M
For each project this solution introduces 2Nl

new object types, thereby incrfasing the total
number of object types by wx(2N-1oy,

LIBRARY BASED SOLUTION

The second solution is based on the notion of
a library which is a repository of privileges for
sharing documents across projects. We introduce
PL . subject types designated 1lib.M where M
is, a non-empty subset of <{klk=l1..N}. In this
context we will understand the quantifier WM to
signify all non-empty subsets of {klk=1..N}. The
idea here 1is that only supervisors can imsert
tickets into instances of all 1ib.M"s, and that
members of project j can obtain tickets from in-
stances of 1lib.M if and only if j¢M. We assume
the security administrator sets up the initial
state to include one subject LIB.M of each type
1ib.M and that each LIB.M will cooperate in ac~
tions required to imsert and distribute tickets.
To facilitate insertion of ticKets into libraries
we authorize supervisor-library links to be es-
tablished on demand, i.e., for all i=l..N and WM,

1. lib.M/s & d(sup.i)

2. sup.i/r € d(1lib.M)

489

We authorizé subjects of type sup.i to demand
tickets of type pdoc.i/ve rather than just
pdoc.i/v. For all i=1..N and ¥ we define

f(sup.i,1ib.M) to be {pdoc.i/vc}. It is then en-
tirely up to the discretion of each subject of
type sup.i to place a ticket of type pdoc.i/vc in
the domain of any LIB.M.

For distribution of tickets from libraries we
present two variations. In the first variation
selectivity in distribution is enforced entirely
by the fiiter function defined as follows, for
all i=1..N and WM,

1. If i € M then
f(1ib.M,sup.i) =
£(1ib.M,wor.i)

{pdoc.j/vij=1..N}
{pdoc.j/vlj=1..N}

#

2. If i £ M then
£(1ib.M,sup.i) = ¢
f(lib.M,wor.i) = ¢

Here we authorize all possible library-supervisor
and library-worker links to be established on
demand, i.e., for all i=1..N and ¥M,

1, sup.i/s, wor.i/s € d(1lib.M)

2. lib.M/r ¢ d(sup.i)

3. 1lib.M/r ¢ d(wor.i)
Observe that many of the links which can be thus
established are quite useless in that the filter

function does not permit any copying of tickets
across them.

In the second variation selectivity in dis-
tribution 1is enforced entirely by the demand
function. Here we authorize only those library-
supervisor and library-worker links where iéM to
be established on demand, i.e., for all i=l,.N
and ¥M,

1. sup.i/s, wor.i/s € d(1ib.M) iff i € M
2. 1ib.M/r € d(sup.i) iff i &€ M
3, 1ib.M/r € d{wor.i) iff i € M

Now we can define the filter function uniformly
as follows, for all i=l,.N and ¥M,

1. £(1ib.M,sup.i) = {pdoc.j/vl|j=1..N}

2. £(1lib.M,wor.i) = {pdoc.j/vlj=1..N}

In both variations, the net effect is that
subjects of type sup.i or wor.i can obtain tick-
ets of all types pdoc.j/v, j=1..N from only those
instances of 1ib.M”s for which i€M. There is an
obvious third variation obtained by taking the
filter function from the former and the demand
function from the latter.

COMPARISON

The demand based solution increases the number
of object types by N*(ZN‘I—I), while the library
based solutjon increases the number of subject
types by 27-1. The exponential factor in the
number of new types in either solution is a
direct consequence of the extremely detailed
selectivity. In practise we would rarely need to
distinguish all possible subsets of project
teams. Any desired degree of selectivity can be
specified by constraining the values of M. For
instance, our specifications reduce to an all-or-
none policy by constraining M to be either # or
{klk=1..N,k#i} for the demand based solution, and
M to be exactly {klk=1..N} for the library based
solution. This amounts to distinguishing two
kinds of permanent documents for each project,
those internal to the project and those acces-
sible by all project teams. Note that the demand
based solution introduces N new object types for
this policys while the library-based solution in-
troduce only one new subject type. In general,
for every admissible value of M the demand based
solution requires N object types pdoc.i.M,
i=1..N, while the library based solution requires
one subject type 1lib.M. Hence, whatever the de-
gree of selectivity provided there will be ap-
proximately a factor of N difference in the num—
ber of new types required for the demand based
solution as compared to the library based solu-
tion.

The library based solution is more convenient
regarding incremental <changes in the access
status of permanent documents. Let P be a per-
manent document of project i. To begin with the
supervisors of project i may decide not to place
the ticket P/vc in any library. At some later
point they may decide to place P/vc in say LIB.M
so P is accessible to members of all projects j
in M. Thereafter, they may decide to enlarge the
access by placing P/vc in LIB.N. Now P is acces-
sible to members of projects j for j in M uniom
N. In the demand based solution we would need to
change the type of P at every step in this in-
cremental process. Thus we would begin by creat-
ing P to be of type pdoc.i.$, then change the
type of P to pdoc.i.M, and finally change the
type of P to pdoc.i.(M+N) where + denotes umion.

This is fine, except our assumption of strong
typing does mnot allow the type of P to be
changed. The type change can be approximated by

creating a new document with content identical to
P, whenever the type of P needs to be changed.
That is we begin by creating P to be of type
pdoc.i.®, then create Pl of type pdoc.i.M, and
finally create P2 of type pdoc.i.(M+N)}. This fix
has the drawback that tickets for P will not
refer to Pl or P2 thereby presenmting the poten-
tial for consistency problems. In essence the
demand based solution requires a new version of a
permanent document to accomplish an incremental
change in its access status.

Finally, the library based solution has a pos-
sible advantage in that any number of subjects of

490

each type 1lib.M can exist, so, documents shared
across projects can be grouped by some criteria,
e.g., specifications, code, test data etc. Also
the library based solution is easily modified to
allow creation of new subjects of each type
1ib.M, by placing <sup.i,lib.M> in cc for i=l..N,
so that new groupings can be created as needed.
The demand based solution must rely entirely on
naming conventions for these effects.

5. CORCLUSION

Consider how SSR meets our twin goals of
generality and analyzability. SSR provides a
convenient formalism and framework for stating
value-based, selective, cooperative, and discre-
tionary policies both in the authorization scheme
and in the initial state of a system. Moreover,
the ability to specify the same policy in alter-
nate ways in SSR is a significant asset when in-
vestigating implementation trade-offs. Strong
typing is a major assumption but can be circum-
vented by treating type changes as the creation
of a new entity, i.e., a change in entity A’s
type from a to b is viewed as creation of a new
entity B of type b. The problem is that tickets
for A no longer refer to B. If a change in an
entity’s type is accompanied by revocation of ex-
isting tickets, strong typing is adequate.
Indeed, in our case study when a working document
is made permanent this is exactly what happens.

The policies discussed in this paper are
simple enough so their specification can be un-
derstood without the need for formal analysis as
discussed in Sandhu.” But analysis is an impor-
tant objective of the model. A typical analysis
question is phrased as follows: assuming complete
cooperation from all subjects, can subject X ac-
quire the ticket Y/z:c? In a variety of special
cases of SSR an exact answer of "yes" or "no" to
such questions can be obtained. 1In general, our
analysis techniques will answer the question as

"yes", "no", or "maybe" and are approximations
because of the "maybe". A good approximation
should answer "maybe" only occasionally. ~ Ap-

proximations are useful when exact analysis is
expensive or infeasible. Whether exact answers
can be obtained in general is ag open question.
Moreover, local approximations are possible

since the authorization scheme is independent of |

a specific state and does not change.

As stated above, the analysis question assumes
complete cooperation among all subjects.

is that the analysis remains unchanged in, the
presence of any revocation policy consistent with
the restoration principle. If tickets which can
be revoked can always be restored, in the worst-
case we may assume no revocation occurs.
Moreover in SSR the worst-case assumption can ac-
tually be relaxed without restating the question,
by modifying the authorization scheme. It is im~
material whether the constraints imposed by the
authorization scheme are actually enforced at run
time or assumed as trusted or verified behavior

A sig-
nificant consequence of this worst-case viewpoint |

ot 9 N (Y . Y

U0 O £ 022 =0 N0 0Ot B8 th OO0 S 6=

N O =t Mot =R

ed
a,
so
to

pe

d.
on

L

i

SF W T W W

. 5. Jones, A.K.,

on behalf of subjects of a specific type. This
is a significant property of the model. Not only
does this allow a given system to be studied un-
der different assumptions concerning the behavior
of subjects, but also allows a variety of im-
plementations involving different degrees of
trust for a given scheme.

/| The analysis question stated above is for-
mulated in terms of specific entities. It is
‘certainly an important goal for a protection
model that such questions be efficiently
nswered. However, much as in the specification
Bf a policy, in analysis the more significant
koncern is with classes of entities rather than
ispecific individuals, e.g., c¢an a subject of type
‘a obtain a ticket of type y/x:c without coopera-
‘Fion of a subject of type b? An example in the
context of our case study is: can a subject of
‘type wor.i obtain a ticket of type pdoc.ifo with-
out cooperation of a subject of type sup.i?
Since our schemes were carefully constructed to
avoid this possibility, obviously the answer is
"o". Herein lies a crucial contribution of our
work. By forcing the security administrator to
confront the more significant policy aspects
while specifying the scheme, we have reduced the
more significant analysis questions to analysis
of the scheme. Since the scheme is static its
analysis is easier than the analysis of specific
initial protection states.

Our final comment concerns the use of send and
receive rights for defining the 1link relation.
While there are good reasons for using these
specific rights,®? the concept of an authoriza-
tion scheme 1is applicable to other sets og
rights, e.g., to the the take and grant rights
to obtain the Schematic Take-Grant model.
Indeed, the policy specifications of this paper
could be rewritten for such a model with minor
alterations.

REFERENCES

1, Denning, D.E., and Denning, P.J., “‘Data

Security,”” Comp. Surv., Vol. 11, No. 3,
1979, pp. 227-249,.

2. Graham, G.S., and Denning, P.J.,
““Protection - Principles and Practice,””

AFIPS, Vol. 40, 1972, pp. 417-429,

3. Linden, T.A., ““Operating System Structures
to Support Security and Reliable
Software,”” Comp. Surv., Vol. 8, No. 4,

1976, pp. 409-445,

4, Harrison, M.H., Russo, W.L., and Ullman,
J.D., ““Protection in Operating Systems,””
Comm. ACM, Vol. 19, No. 8, 1976, pp.
461-471,

Lipton, R.J., and Snyder, L.,

““A Linear Time Algorithm for Deciding

Security,”” Proc. 17th Symp. Foundations of
Comp. Sci., 1976, . :

491

10.

11.

12,

13.

Snyder, L., ~“Formal Models of Capability-
Based Protection Systems,”” IEEE Trans.

Comp., Vol. C-30, No. 3, March 1981, pp.
172-181.
Lockman, A, and Minsky, N.,

““Unidirectional Transport of Rights, and
Take—-Grant Control,”” IEEE Trans. Software
Eng., Vol. SE-8, No. 6, November 1982, pp.
597-604.

*“Selective and Locally Con-
Privileges,”” ACM

Minsky, N.,
trolled Transport ~of
TOPLAS, To Appear, .

Sandhu, R.S., Design and Analysis of
Protection Schemes Based on the Send-
Receive Transport Mechanism, PhD Thesis.

Rutgers University Technical Report DCS-
TR-130., 1983.

Cohen, E., and Jefferson, D., “‘Protection
in the Hydra Operating System,”” Proc. 5th
Symp, 0.S. Princ., 1975, pp. 141-160.

Dennis, J.B., and Van Horn, F.C.,
*“Programming Semantics for Multiprogratmed
Computations,”” Comm. ACM; Vol. 9, No. 3,
1966, pp. 143-155.

Fabry R., ““Capability~Based Addressing,””
Comm. ACM, Vol. 17, No. 7, 1974, pp.
403-412.,

Wilkes, M.V., and Needham, R.M., The

Cambridge CAP Computer and its Operating
System, Elsevier North Holland, 1979.

Ay T e ey —

