
A Comparison of Logical-Formula
and Enumerated Authorization

Policy ABAC Models

Prosunjit Biswas(B), Ravi Sandhu, and Ram Krishnan

Institute for Cyber Security, University of Texas at San Antonio, San Antonio, USA
prosun.csedu@gmail.com, {ravi.sandhu,ram.krishnan}@utsa.edu

Abstract. Logical formulas and enumeration are the two major ways
for specifying authorization policies in Attribute Based Access Con-
trol (ABAC). While considerable research has been done for specifying
logical-formula authorization policy ABAC, there has been less attention
to enumerated authorization policy ABAC. This paper presents a finite
attribute, finite domain ABAC model for enumerated authorization poli-
cies and investigates its relationship with logical-formula authorization
policy ABAC models in the finite domain. We show that these models
are equivalent in their theoretical expressive power. We also show that
single and multi-attribute ABAC models are equally expressive.

1 Introduction

Attribute Based Access Control (ABAC) has gained considerable attention from
businesses, academia and standard bodies, such as NIST [6], in recent years.
ABAC uses attributes on users, objects and possibly other entities (e.g. context
or environment) and specifies rules using these attributes to assert who can
have which access permissions (e.g. read or write) on which objects. Although
ABAC concepts have been around for over two decades there remains a lack of
well-accepted ABAC models. Recently there has been a resurgence of interest in
ABAC due to continued dissatisfaction with the three traditional models (DAC
[14], MAC [12], RBAC [13]), and particularly with the limitations of RBAC.

To demonstrate expressive power and flexibility, several ABAC models
including [7,15,16,18] have been proposed in past few years. These models adopt
the conventional approach of designing attribute based authorization policies as
logical formulas. Logical-formula authorization policies (LAPs) are powerful and
convenient to specify even complicated business requirements in a concise way.

An alternate to specify authorization policies is by enumeration, called enu-
merated authorization policies (EAPs). Examples in this category include Policy
Machine (PM) [5] and LaBAC [2]. These models demonstrate expressiveness
by their ability to configure traditional models.

Thus, LAPs and EAPs are two viable approaches to express authorization
policies in an ABAC model. While ABAC models with LAPs (denoted LAP -
ABAC) have received considerable attention, design and development of ABAC

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 122–129, 2016.
DOI: 10.1007/978-3-319-41483-6 9

ravi.sandhu@utsa.edu

A Comparison of Logical-Formula 123

with EAPs (denoted EAP -ABAC) are relatively neglected. As a result, there
is scant literature on development of EAP -ABAC. Nonetheless, a comparison
between these two approaches is required to further fundamental understanding
of ABAC.

This paper presents a finite attribute, finite domain model for EAP -ABAC
and investigates its relationship with LAP -ABAC in the finite domain. We
show that LAP -ABAC and EAP -ABAC are equivalent in theoretical expres-
sive power. We also show that single and multi-attribute models are equally
expressive.

Rest of this paper is organized as follows. Section 2 discusses different styles
and scopes for ABAC. Section 3 presents multi-attribute EAP -ABAC and LAP -
ABAC models. We show that these models are equivalent in theoretical expres-
sive power in Sect. 4. Related work is presented in Sect. 5. Finally, Sect. 6 con-
cludes the paper.

2 Authorization Policy Representation

In this section, we discuss two types of authorization policies—logical-formula
and enumeration with respect to finite domain ABAC models.

Finite Domain ABAC Models. Most of the ABAC models (for example,
[7,15,16,18]) assume a finite set of user and object attributes and that values
of these attributes come from a finite set. This assumption is useful in many
practical cases. For example, values of roles, clearance or age are bounded and
mostly static. But attribute values can be unbounded as well. For example,
if values of an attribute include users or objects in a system (e.g. the attribute
owner for an object) and these values may grow indefinitely, they are unbounded.
This paper focuses on finite-domain ABAC models that have a finite set of
attributes with finite ranges for attribute values.

Logical-Formula Authorization Policy. A logical-formula authorization pol-
icy is defined as a boolean expression consisting of subexpressions connected with
logical operators (for example, ∧,∨,¬). These subexpressions compare attribute
values with other attribute or constant values. LAPs are usually expressed in
propositional logic and support a large set of logical and relational operators.
A LAP grants an authorization request if the applicable formula evaluate true
for attribute values of the requesting user and requested object. Authread ≡
clearance(u) � classification(o) is an example of LAP which allows a user to
read an object if the user’s clearance dominates classification of the object.

Enumerated Authorization Policy. An enumerated authorization policy
consists of a set of tuples. Each tuple, represented as (user-attr-values, obj-
attr-values), grants privileges to a set of users to exercise an action on a set
of objects identified by the user and object attribute values mentioned in the
tuple. In an EAP, each tuple is distinct and grants privileges independently. User
and object attribute values used in the tuple can be atomic or set valued. For
example, (mng, TS) and ({mng, dir}, {TS,H}) are atomic and set valued tuples
respectively.

ravi.sandhu@utsa.edu

124 P. Biswas et al.

Fig. 1. Components of (a) EAP -ABACm,n (b) LAP -ABACm,n

3 Finite Domain ABAC Models

In this section, we define a multi-attribute enumerated authorization policy
ABAC model named EAP -ABACm,n (shown in Fig. 1(a)). To the best of our
knowledge, EAP -ABACm,n is the first such model. PM [5] also defines a multi-
attribute EAP -ABAC model, but its interpretation of attributes is different
than the traditional interpretation of attributes as (attr. name, value) pairs.
We also define a multi-attribute LAP -ABAC model named LAP -ABACm,n

(shown in Fig. 1(b)) by abstracting its policy language and potentially accepting
any computational logic as policy language.

Multi-attribute EAP -ABAC (EAP -ABACm,n): EAP -ABACm,n has m user
attributes and n object attributes. Components of EAP -ABACm,n are shown
in Fig. 1(a). The unbounded set of users and objects, and finite set of actions
are represented by U , O and A respectively. The values denoted by UL1, UL2

through ULm (UL1 and ULm are shown in the figure) represent range of m
user attribute functions named uLabel1, uLabel2 through uLabelm respectively.
Similarly, OL1 OL2 through OLn specify values of n object attributes. For
simplicity, we do not consider subjects or sessions, distinct from users, here.
They do not materially affect the discussion.

The set of policies is represented by Policy. We define one policy per action.
A policy is defined a set of policy-tuples. A policy-tuple includes subset of values
for each user and object attribute.

The formal definition of the model and semantics of the authorization func-
tion are given in Table 1. Segment I of the table defines basic sets and relations
discussed above. In Segment II, shows notation of policy tuples and defines a pol-
icy as subset of tuples. Finally, the authorization function is authorized(s, a, o)
is presented in Segment III. It allows a user u to perform an action a on an

ravi.sandhu@utsa.edu

A Comparison of Logical-Formula 125

Table 1. EAP -ABACm,n model

I. Sets and relations

- U,O, and A (users, objects and actions respectively)

- UL1, UL2, ...ULm (values for uLabel1, uLabel2, ... , uLabelm)

- OL1, OL2, ...OLn (values for oLabel1, oLabel2, ... , oLabeln)

- uLabeli : U → 2ULi , for 1 ≤ i ≤ m;

- oLabeli : O → 2OLi , for 1 ≤ i ≤ n

II. Policy components

- Policy-tuples = (2UL1 × 2UL2 × ... × 2ULm) × (2OL1 × 2OL2 × ... × 2OLn)

- Policya ⊆ Policy-tuples and Policy = {Policya|a ∈ A}
III. Authorization function

- is authorized(u : U, a : A, o : O)=(∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ...OLSn)

∈ Policya)[ULSi ⊆ uLabeli(u), for 1 ≤ i ≤ m ∧ OLSi ⊆ oLabeli(o), for 1 ≤ i ≤ n]

Table 2. LAP -ABACm,n model

I. Sets and relations

- U,O and A (set of users, objects and actions respectively)

- UAV1,UAV2, ...,UAVm (range of user attribute functions)

- OAV1,OAV2, ...,OAVn (range of object attribute functions)

- UA = {ua1, ua2, ..., uam} (set of user attributes); uai : U → 2UAVi , for 1 ≤ i ≤ m

- OA = {oa1, oa2, ..., oan} (set of object attributes); oai : O → 2OAVi , for 1 ≤ i ≤ n

II. Policy components

- fa : (2UAV1 , ..., 2UAVm , 2OAV1 , ..., 2OAVn) → {true, false} (policy for a ∈ A).

- LFs = {fa|a ∈ A} (set of all policies)

III. Authorization function

- is authorized(u:U,a:A,o:O) = ∃fa ∈ LFs[fa(ua1(u), ua2(u), ..., uam(u), oa1(o),

oa2(o), ...oan(o)) = true]

object o if in the policy Policya for action a, there exists a tuple that satisfies
following conditions—(i) u possesses attribute values used in the tuple, and (ii) o
is assigned attribute values mentioned in the tuple.

Multi-attribute LAP -ABAC (LAP -ABACm,n): LAP -ABACm,n is specified
in Fig. 1(b). This model is based on LAPs. Other than authorization policies,
this model is similar to EAP -ABACm,n. It defines a LAP as a boolean function
fa that takes values of m user and n object attributes as arguments. An autho-
rization request for action a is granted if fa() is evaluated true for attribute
values of requesting user and requested object. The formal definition is given in
Table 2, similar to Table 1.

ravi.sandhu@utsa.edu

126 P. Biswas et al.

Table 3. Mappings

4 Theoretical Expressive Power of EAP and LAP Models

This section establishes equivalence between different EAP -ABAC and LAP -
ABAC models with respect to their theoretical expressive power. We consider
single and multi-attribute EAP -ABAC and LAP -ABAC models. The relation-
ship among the models we consider is schematically presented in Fig. 2. Sin-
gle attribute and multi-attribute models are presented on left and right side of

ravi.sandhu@utsa.edu

A Comparison of Logical-Formula 127

Fig. 2. Equivalence of EAP and LAP ABAC models

the Y-axis respectively. Enumerated and logical-formula policy models are pre-
sented above and below the X-axis respectively. These models all have set valued
attributes. Policy tuples are represented differently in EAP -ABAC1,1 and EAP -
ABACm,n models. The former uses atomic valued tuples (e.g. (manager, TS))
and the later uses set valued tuples (e.g. ({manager} {TS})).

Four different equivalences are discussed here labeled one to four in Fig. 2.
They are equivalence of (i) single and multi-attribute EAP models, (ii) multi-
attribute EAP and LAP models, (iii) single and multi-attribute LAP models,
and (iv) single attribute LAP and EAP models.

The equivalence of single and multi-attribute EAP models are demonstrated
in Segment I and II in Table 3. In Segment I, we show that multiple attributes
can be represented as a single attribute comprising of cross product of values of
multiple attributes. Segment II is trivial as EAP -ABAC1,1 is a special case of
EAP -ABACm,n. Segment III shows how to construct a LAP formula using m
user and n object attributes from a enumerated policy of same set of attributes.
Segment IV shows the converse. Similar to Segment I, Segment V shows how
a logical formula of multiple user and object attributes can be represented as
a logical formula of single user and object attributes. Segment VI is trivial as
LAP -ABAC1,1 is a special case of LAP -ABACm,n. The equivalence of single
attribute EAP and LAP models presented in Segment VII and VIII is a special
case of the equivalence of multi-attribute EAP and LAP models presented in
Segment III and IV.

5 Related Work

Several ABAC models have been proposed in the literature. Most of them are
based on LAPs. For example, ABACα [7] is among the first few models to for-
mally define a LAP -ABAC. HGABAC [15] is a more general purpose LAP -
ABAC model. Other works include [8,11,16–18].

Damiani et al. [4] describe an informal framework for attribute based access
control in open environments. Bonatti et al. [3] present a uniform structure

ravi.sandhu@utsa.edu

128 P. Biswas et al.

to logically formulate and reason about both service access and information
disclosure constraints according to related entity attributes. NIST ABAC guide
[6] is significant in defining concepts, required components, considerations and
architecture for designing an enterprise ABAC system. Other notable works
include XACML [9], UCON [10] and Armando et al. [1].

6 Conclusion

We have presented a finite attribute, finite domain ABAC model using enu-
merated authorization policies. We show that enumerated authorization policy
and logical-formula authorization policy ABAC models are equivalent in their
theoretical expressive power. We believe, analysis of these two models beyond
expressive power is required to better understand these models and ABAC in
general.

Acknowledgement. This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

References

1. Armando, A., et al.: SMT-based enforcement and analysis of NATO content-based
protection and release policies. In: ABAC 2016, pp. 35–46. ACM (2016)

2. Biswas, P., Sandhu, R., Krishnan, R.: Label-based access control: an ABAC model
with enumerated authorization policy. In: ABAC 2016. ACM (2016)

3. Bonatti, P., Samarati, P.: Regulating service access and information release on the
web. In: Proceedings of CCS, pp. 134–143. ACM (2000)

4. Damiani, E., di Vimercati, S.D.C., Samarati, P.: New paradigms for access control
in open environments. In: Signal Processing and Information Technology (2005)

5. Ferraiolo, D., et al.: The policy machine: a novel architecture and framework for
access control policy specification and enforcement. JSA 57(4), 412–424 (2011)

6. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. NIST Spec. Publ. 800, 162 (2014)

7. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control
model covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer,
Heidelberg (2012)

8. Lang, B., et al.: A flexible attribute based access control method for grid comput-
ing. J. Grid Comput. 7(2), 169–180 (2009)

9. Moses, T., et al.: Extensible access control markup language (XACML) version
2.0. Oasis Standard (2005)

10. Park, J., Sandhu, R.: The UCON ABC usage control model. TISSEC 7(1), 128–174
(2004)

11. Priebe, T., Dobmeier, W., Kamprath, N.: Supporting attribute-based access con-
trol with ontologies. In: ARES 2006, p. 8. IEEE (2006)

12. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. Computer 2, 38–47 (1996)

ravi.sandhu@utsa.edu

A Comparison of Logical-Formula 129

14. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

15. Servos, D., Osborn, S.L.: HGABAC: towards a formal model of hierarchi-
cal attribute-based access control. In: Cuppens, F., Garcia-Alfaro, J., Zincir
Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 187–204.
Springer, Heidelberg (2015)

16. Shen, H.-B., Hong, F.: An attribute-based access control model for web services.
In: PDCAT 2006, pp. 74–79. IEEE (2006)

17. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of FMSE 2004, pp. 45–55. ACM (2004)

18. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of the 2005 IEEE International Conference on Web Service. IEEE
(2005)

ravi.sandhu@utsa.edu

Addendum

December 9, 2016

We acknowledge following corrections for the paper. Corrections are high-
lighted.

• Changes in the definition of the authorization function in Table I, Page
125 is as follows.
is authorized(s : S, a : A, o : O) = (∃(ULS1, ULS2, ..., ULSm, OLS1,OLS2, ...OLSn)
∈ Policya)[uLabeli(u) = ULSi, for 1 ≤ i ≤ m∧oLabeli(o) = OLSi, for 1 ≤
i ≤ n]

• Changes in the mappings of Table 3, Page 126 are highlighted the follow-
ing table. The corrections in Item I and Item V of the table are made up
to clean up existing formalism. On the other hand, correction in Item III
(equivalence of EAP-ABACm, n to LAP-ABACm,n) follows the change
made in the definition of the authorization function (mentioned in the
earlier bullet).

1

Table 1: Mappings (corrected)

Equivalence of EAP -ABACm,n and EAP -ABAC1,1

I. From EAP -ABACm,n to EAP -ABAC1,1

- U = U,O = O,A = A
- UL = 2UL1 × 2UL2 × ...× 2ULm ; OL = 2OL1 × 2OL2 × ...× 2OLm

- uLabel(u) = (uLabel1(u), uLabel2(u), ..., uLabelm(u))

- oLabel(u) = (oLabel1(o), oLabel2(o), ..., oLabeln(o))

- Policya1,1
= {((ULS1, ULS2, ..., ULSm), (OLS1, OLS2, ..., OLSn))|

(∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn) ∈ Policyam,n)

II. From EAP -ABAC1,1 to EAP -ABACm,n

- EAP -ABAC1,1 is a special case of EAP -ABACm,n.

Equivalence of EAP -ABACm,n and LAP -ABACm,n

III. From EAP -ABACm,n to LAP -ABACm,n

- UAVi = ULi, for 1 ≤ i ≤ m; OAVi = OLi, for 1 ≤ i ≤ n
- uai(u) = uLabeli(u); oai(o) = oLabeli(o)
- fa = ∨
(ULS1,ULS2,..ULSm,OLS1,OLS2,..,OLSn)∈Policya

(∧
1≤i≤m

uai(u) = ULSi) ∧ (∧
1≤i≤n

oai(u) = OLSi)

IV. From LAP -ABACm,n to EAP -ABACm,n

- ULi = UAVi, for 1 ≤ i ≤ m ; OLi = OAVi, for 1 ≤ i ≤ n
- uLabeli(u) = uai(u), for 1 ≤ i ≤ m; oLabeli(o) = oai(o), for 1 ≤ i ≤ n
- Policya = {(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn)|

fa(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn) = true}

Equivalence of LAP -ABACm,n and LAP -ABAC1,1

V. From LAP -ABACm,n to LAP -ABAC1,1

- U = U ;O = O;A = A;UAV = 2UAV1 × 2UAV2 × ...× 2UAVm

- OAV = 2OAV1 × 2OAV2 × ...× 2OAVm ;ua(u) = (ua1(u), ua2(u), ..., uam(u))

-oa(u) = (oa1(u), ..., oam(u))

- fa =
∨

fam,n (ULS1,ULS2,...ULSm,OLS1,OLS2,...,OLSn)=true

ua(u) = (ULS1(u), ..., ULSm(u)) ∧

oa(o) = (OLS1(o), ..., OLSn(o))

VI. From LAP -ABAC1,1 to LAP -ABACm,n

- LAP -ABAC1,1 is a special case of LAP -ABACm,n.

Equivalence of EAP -ABAC1,1 and LAP -ABAC1,1

VII & VIII. From EAP -ABAC1,1 to LAP -ABAC1,1 and vice versa

- Special case of equivalence of EAP -ABACm,n and EAP -ABAC1,1

2

