
Integrated Provenance Data for Access Control in
Group-centric Collaboration

Dang Nguyen, Jaehong Park and Ravi Sandhu

Institute for Cyber Security

University of Texas at San Antonio

dnguyen@cs.utsa.edu, jae.park@utsa.edu, ravi.sandhu@utsa.edu

Abstract—In a provenance-aware environment, as data objects
are created and used, the transaction information is captured
as provenance data. Provenance-based access control utilizes
the captured provenance information to control access to the
underlying data. In a group-centric collaboration environment,
data objects are shared and modified by multiple organiza-
tions/systems while the relevant provenance data are captured
and stored in the local systems. While captured provenance data
are readily available for access control within the local system,
provenance-based access control in a group-centric collaboration
environment requires integrated use of provenance data from
other collaborating systems for effective access control. However,
some provenance information maintained by a system may be
too sensitive to be directly viewed or used by other systems.
In this paper, we demonstrate and discuss the issue relating the
incorporation of an access control model in the context of group-
centric secure collaboration environment. We also discuss two
potential solution approaches and their significance in building
the foundation for further research.

I. INTRODUCTION

Provenance is a term that originates in the art world to

refer to the origin and history of ownership of a valued object

or work of art or literature [2]. The concept, when adopted

digitally, can be informally defined as the documentation of the

origin of a data object and the processes that influence and lead

to any particular state of that object. Digital or data provenance

first found its use in the database community. Over time,

data provenance found utility in many computer science areas

such as semantic webs, workflows, etc. As evident from the

community’s increasing efforts in studying different aspects of

data provenance, the significance of data provenance should be

expected to arise in any application that involves data, which

almost means any application these days.

Today, information sharing plays a significant role in gov-

erning daily functions, from trivial to critical in scope, in

both the public and private sectors. It is at the heart of the

notion of collaboration, which comes in various shapes, forms

and sizes. In order to achieve effective collaboration, secure

information sharing is essential. Group-centric collaboration

[12] is a promising approach for addressing this issue. In

this approach, authorization of users and controlled flow of

data objects are vital. Thanks to data provenance utilities, the

incorporation of provenance-awareness into the group-centric

secure collaboration environment can effectively assist such

tasks. For example, pedigree and usage tracking can ensure

that a data object would not be accessed by any party that can

potentially cause a conflict of interests violation.

The collected provenance data can further enhance the

security of the environment when employed as a basis for

access control decisions. The Provenance-based Access Con-

trol (PBAC) framework, introduced in [19], is a current effort

toward that goal. Fundamentally, the framework utilizes the

causality dependencies of objects that can be extracted from

the provenance data collected in the system. Based on these,

the framework creates new constructs, which are termed ab-

stracted names of dependency path patterns, as control units to

regulate access to the underlying data. PBAC is fully capable

of providing security capabilities such as origin-based control,

dynamic separation of duties, workflow control, and object

versioning. We believe the framework elevates security by

facilitating additional capabilities beyond those available in

traditional access control models.

In this paper we attempt to incorporate the base model for

PBAC into the Group-centric collaboration environment. As

initially conceived, PBAC only deals with a single provenance-

aware system. In group collaboration, there are multiple par-

ticipating systems that collect, store, and maintain their own

provenance data. In many cases, such provenance data are

stored in the local systems. Consequently, this presents chal-

lenges to the integrated use of provenance data for seamless

access control. In this paper, we explore these issues with the

use of a simplified, generic collaboration scenario. We also

discuss our insights and propose several potential approaches

to address these issues.

II. BACKGROUND

In this section, we discuss three preliminary topics that

are essential for understanding the subsequent sections. In

particular, we first describe the Open Provenance Model for

representation of provenance data. Next, we describe the base

model for Provenance-based access control (PBACB) that

can be incorporated into the aforementioned collaboration

environment. Finally, we review the concept of Group-centric

collaboration.

A. Open Provenance Model

The Open Provenance Model (OPM) [14] is the result of

the community’s efforts in creating a standard, technology-

agnostic definition of provenance for data capture and repre-

255IEEE IRI 2012, August 8-10, 2012, Las Vegas, Nevada, USA
978-1-4673-2284-3/12/$31.00 ©2012 IEEE

Fig. 1. OPM Causality Dependencies

sentation purposes. We utilize several core OPM notions for

such purposes in the group collaboration environment and in

the design of PBACB .

The OPM model aims to represent provenance data in

the form of a directed-acyclic graph (DAG). In essence, the

model captures the main components of transactions and

associating relations with the node and edge entities in such

a graph. In general, the node entities are distinguished with

different graphical representations: artifacts are represented

by ellipses, processes by rectangles, and agents by octagons.

The edges are divided into two categories: direct and indi-

rect dependency edges. Direct edges, including used(Role),
wasGeneratedBy(Role), and wasControlledBy(Role), are

system-captured and represented by solid lines. The other edge

types are indirect and represented by dash-lines. These indirect

edges are either system-computed or user-declared.

In Figure 1, we demonstrate how the entities relate graphi-

cally in a simplified generic use case. The agent Ag controlled

the process p1 which used the artifact a1 to generate the new

artifact a2. The readers should note that the direction of the

arrows specifies a causality relationship instead of a data flow.

The source of the arc represents the effect while the destination

represents the cause.

As it is designed to be technology-agnostic, the OPM

model does not dictate specific semantics for its constructs.

Rather, semantics assignments are left to application-specific

specifications. The OPM model enables this through the use

of a Role parameter associated with each direct dependency

edge. For example, an object may have a dependency ‘was-

GeneratedBy(add)’ with an add process, meaning that the

object was generated by the add action (as opposed to the

merge action).

B. Base Model for Provenance-based Access Control
(PBACB)

Various works from different fields in the literature affirm

the benefits of incorporating provenance into a system. The

produced utilities include, but are not limited to, pedigree,

usage tracking, and object versioning. While protection of

provenance data is essential, many enhanced capabilities to

protect the underlying data can also be found from applications

of provenance data, e.g, origin-based access control, separation

of duties, etc.

Fig. 2. PBACB Components

Previously, we proposed a general foundation for access

control based upon provenance data via semantical constructs

called abstracted names for dependency path patterns [16].

Essentially, these constructs provide abstractions over se-

mantical relationships between multiple data objects. These

relationships arise naturally from the causality dependency

provenance data capture in different application domains.

For the remainder of this subsection, we will provide

descriptions of the aforementioned semantical constructs and

elaborate their usage in the context of PBACB . Figure 2

exhibits the core components of the model.

1) Model Components: We provide brief definitions of the

model components in Figure 2 as follows:

A Request for access consists of an acting user, the user’s

requested action instance, and a set of action-target objects.

For more specific semantics, each object is assigned a role

specific to the type of the action instance. Acting Users (AU)
represent the users of a system and the corresponding subjects

they use to interact with the system. Action instances (A)
represent the set of system supported operations, which are

initiated and performed by users in AU . Objects (O) represent

the set of data objects upon which users in AU can perform

operations in A.

Provenance data (PD) consist of base provenance data

and user-declared provenance data. Essentially, base prove-
nance data (PDB) are transactions of performed actions that

are captured in OPM format. Storing the provenance data

in sets of triples also allows tracing mechanisms that can

traverse the DAG provenance graph bi-directionally in time

(i.e., forward or backward). Such capability is essential to

policy specification in our access control model. In contrast

to PDB , user-declared dependency data (PDU) represents

provenance data that is beyond the capability of the system to

capture or compute from transactions. Such provenance data

can only be manually declared or specified by the acting users.

These are typically specified via indirect dependency edges.

The semantical relationship between provenance data en-

tities serve as the control units for access control. Built

256

on the stored provenance data triples, the system is also

required to maintain Dependency Lists (DLIST) as pairs of

abstracted dependency names (DNAME) and corresponding

dependency path expressions (DPATH). DPATH are used

to express the semantical relationship between a starting node

and all nodes to which the connected paths match such path

expressions.

Policies (P) contain rules that are built on DNAME
and DPATH to specify access control authorization of the

system’s data objects.

There are other components and concepts in PBACB that

we do not discuss here as they are not essential to the

discussion of this paper.

2) Model Interaction: With the essential components of

the PBACB model defined above, we proceed to describe

how they interact. When a request is initiated by an acting
user, the system parses the action type of the action instance
found in the request to choose the appropriate policy. From

the rules contained in the policy, all dependency name and

dependency path expressions are extracted and then reduced

to basic path expressions of direct dependency edges. Queries

embedding these path expressions are then executed against

the provenance data store of triples. Query results are then

used to make authorization decision.

C. Group-centric Collaboration

The concept of secure information sharing utilizing “group”

constructs is introduced and discussed by Krishnan et al in

[13]. In such an environment, information is shared and data

created in well-defined structures labeled as groups. Under

a collaboration context [12], such groups are created and

controlled by the involved collaborating organizations.

Krishnan et al focus on authorization issues, particularly the

formalization and semantics specification of administrative and

usage operations of users and data objects. In particular, they

separate the two types of operational tasks into two sub-models

with corresponding operations as follows.

• Administrative operations: Establish/Disband for man-

aging the group, Join/Leave/Substitute for managing

users/admins, and Add/Remove/Export/Import/Merge for

managing objects that are shared or natively created

within the groups.

• Usage operations: CreateRO/CreateRW/Kill for data

flow control, Read/Update/Create for usage of ob-

jects/versions, and Suspend/Resume for controlling usage

of objects/versions.

In our previous work [18], we discussed our methodology in

capturing the provenance of the above operations in OPM. We

recognized there exist many ways of performing such capture

depending on the application-specific semantics. In this paper,

we proceed to discuss only the usage operational model and

its associating operations as they are more relevant to data

provenance and more significant in the context of PBACB .

Fig. 3. A Collaboration Scenario Captured in OPM

III. A SIMPLIFIED GROUP-CENTRIC COLLABORATION

SCENARIO CAPTURED IN OPM

We describe a simplified scenario of a group-centric col-

laboration environment that is depicted in Figure 3. Note that

the figure only depicts two separate entities, namely Org1 and

CG1, for simplicity. Theoretically, there must exist at least two

organizations and one group for a collaboration to take place.

Here, we omit the presence of another organization (Org2)

as its inclusion is not essential for purpose of this paper. We

include a user from organization 2, Au2.1, within the scenario

to indicate a second organization’s involvement.

A. Overview

In Figure 3, there are four usage operations that are sup-

ported by the provenance systems in both Org1 and CG1,

namely Create, Add, Update and Merge. A user Au1
creates an object Org1.o1v1 in the organization. The object is

then updated separately to generate two new versions (of the

same object), which are Org1.o1v2 and Org1.o1v3. These

objects are updated by Au1.1 and Au1.2, respectively. The

object version Org1.o1v2 is then added to the collaboration

group so that users from any other organization can access

it. A new copy of Org1.o1v2 is created and labeled as

CG1.o2v1. Further updates are performed on this version to

generate CG1.o2v2 and CG1.o2v3 by a group user Au2.1.

The object version CG1.o2v3 is then merged back into Org1
and becomes a new version Org1.o1v4 of Org1.o1v2, the

version that was added to the collaboration group earlier. The

Add and Merge processes are performed by an administrator

user delegated from Org1.Ad1. All the transactions involving

the objects and versions, processes, and “actors” are captured

in OPM format.

Note that some action type may require more than one

input object to be specified. Each input object has a different

role in regard to the requested action. Such semantics can be

addressed by attaching a role specification/label to a used de-

pendency edge. For example, the Merge action type requires

two input objects, a source organization object version that

was added to the collaboration group and a new group object

257

version with modifications that is requested to be merged back

to the source version. In Figure 3, we specify these different

input objects/types through the dependency edges with roles

u(toMergeTo) and u(toMergeFrom) respectively.

Based on the OPM graph, we can introduce PBACB

constructs and mechanisms and discuss how the deployment

takes place in the next section. Before that, we identify the

two possible types of provenance systems deployment within

the scenario setting.

B. Uni-Provenance vs Multi-Provenance Systems

In Figure 3, we depict a uni-provenance system setting with

the dashed rounded rectangle and multi-provenance systems

setting with the dotted rounded rectangles.

A uni-provenance system is assumed to capture all transac-

tions occurring within all entities (groups and organizations)

within the environment. As such, any system within the

environment is allowed to access any captured provenance

data. We acknowledge that in distributed environments such a

uni-provenance system is typically infeasible. However, it is

suitable for our demonstration of PBACB mechanisms.

In multi-provenance systems, each entity maintains its own

methods of capturing and storing the provenance data of trans-

actions occurring within its domain/boundary. It is simple for a

system to access and utilize its own provenance data. However,

complications arise when a system accesses provenance data

owned by a different system. Solving such issues is essential

in the context of PBACB integration in Group-collaboration

environment.

Note that in multi-provenance systems, the action types

which carry information flow across entities (such as Add and

Merge) can be captured in different ways. For our scenario,

we assume such processes are captured by both participating

parties and some forms of identification links are established

by both participants.

IV. INTEGRATION OF PBACB IN GROUP-CENTRIC

COLLABORATION

In this section, we discuss the notion of integrating PBACB

in a Group-centric collaboration environment. In particular,

we first demonstrate how basic PBACB mechanisms can

be applied in a uni-provenance system. Next, we explore

the mechanisms under a multi-provenance systems setting

and identify an essential related issue. We will describe the

potential approaches to address this issue in the next section.

A. PBACB in Uni-Provenance system

In this subsection, we discuss the deployment of PBACB ,

under a uni-provenance system setting, into a group-centric

collaboration scenario, namely the one depicted in Figure 3.

Typically, a system with PBACB will maintain a separate

access control policy for each of the user action types that the

application system supports. For example, an informal policy

for the Merge action type can state:

“An admin user is allowed to merge a group object version

to an organization object version if the group object version

is either an added copy of the organization object version, or

is derived from that copy.”

Formally, we can express the above policy in a policy

language provided in [18], [19] as:

allow(au,merge, ofrom, oto) ⇒
oto ∈ (ofrom, wasDerivedV ersionOfCopyOf)

The first part of the policy (before the right arrow) specifies

the request form. The form specifies the requesting user (au),

the requesting action type (merge), and the input objects

(ofrom,oto). The second part of the policy provides the deci-

sion rule. The roles from and to provides a mapping between

the input objects in the request to their respective part in the

decision rule. The decision rule specifies whether the input

object oto is in the set of nodes reachable from the input

object ofrom through the path expressed by the dependency

name wasDerivedV ersionOfCopyOf .

A dependency name is essentially a meaningful abstrac-

tion of path patterns in a provenance graph. A dependency

name comprises of either direct dependency edges (such as

used, wasGeneratedBy, or wasControlledBy) or other

dependency names or a combination of both. Regardless, any

dependency name can be reduced to a path comprising solely

direct dependency edges.

If a Merge request is to be granted, there

must exist a path, as exhibited and reducible by

wasDerivedV ersionOfCopyOf , that starts from ofrom
and ends at oto. In practice, the provenance system generates

a query, which takes the starting node and a dependency path

pattern, and execute it against the provenance graph. The

results of the query can then be used in evaluation with the

policy rules to arrive at the final decision regarding the access

request.

In PBACB , we term such patterns DPATH . We also use

DNAME to further abstract these regular path patterns and

facilitate their usages as control units in access control. Such

a pair of (DNAME::DPATH) is contained in a DLIST ,

which is also a main component in the PBACB model.

In the example scenario, in order to capture/specify the

rule expressed in the provided policy, we can create a pair

of (DNAME::DPATH) instance as

(wasDerivedV ersionOfCopyOf ::

[g(Update).u] ∗ .g(Add).u)

Note that typically a resulting query path that matches the

path pattern includes information of the intermediate nodes.

Here, we do not show those nodes, such as CG1.o2v1 and

CG1.o2v2, for simplicity. In addition, for PBACB purposes,

a query, which is evaluated against a provenance graph, only

requires the edges to traverse the graph. For better expressive-

ness, we utilize regular expression based (or regular for short)

dependency path patterns of arbitrary lengths. Regular path

patterns can enable simple and effective policy specifications.1

1In our example, “[]” denotes grouping of edges, “*” denotes zero or more
occurences of a preceding edge or group, “.” denotes concatenation between
any two edges/groups. Precedence is high-to-low respectively.

258

Now, let us consider a sample request

Req(au,merge, CG1.o2v3, Org1.o1v1)

After parsing the request and obtaining the starting

node (in this case, CG1.o2v3) and a regular path pat-

tern ([g(Update).u] ∗ .g(Add).u) (as obtained from looking

up wasDerivedV ersionOfCopyOf in DLIST), a query,

which embeds these two components, is generated and evalu-

ated against the provenance graph. Such a query will obtain a

result set which contains Org1.o1v2 because there exists the

following path in the graph

< CG1.o2v3 > [g(Update).u.g(Update).u.g(Add).u]

< Org1.o1v2 >

which is matched by ([g(Update).u] ∗ .g(Add).u).

Evaluating the result set against the policy rule shows

that Org1.o1v1 /∈ {Org1.o1v2}. Therefore, the request is

disallowed.

On the other hand, a request to merge CG1.o2v3 and

Org1.o1v2 is allowed. Such a Merge transaction is executed

and then captured in the provenance graph. Here, a copy

object version of CG1.o2v3 is created in the organization

as Org1.o1v4. There exists an indirect dependency between

this object version and the source object version Org1.o1v2.

This is depicted with an indirect edge between the two

corresponding nodes in the provenance graph.

B. PBACB in Multi-Provenance Systems

In a multi-provenance systems setting, since each entity

maintains its own provenance system, provenance data of one

system may not be readily available for a seamless PBACB

usage in another system. In this subsection, we demonstrate

this problem through another example within the scenario

depicted in Figure 3. The proposed solution approaches for

this issue are discussed in the following section.

To demonstrate the limitation of multi-provenance systems

in enabling PBACB , let us introduce a new policy that

regulates Update of object versions within CG1 to avoid

potential conflict of interests:

“A group user is allowed to update an object version if he

is not the creator of the original organization version of that

group object version.”

We also introduce the formal policy statement as:

allow(au, update, o) ⇒
au /∈ (o, creatorOfOriginalV ersionOf)

where the following mapping can be found in DLIST

(creatorOfOriginalV ersionOf ::
[g(Update).u] ∗ .g(Add).u.[g(Update).u] ∗ .g(Create).c)

Under this policy, any request to Update a group object

version will generate a query embedding the object version as

the starting node and the above regular path pattern. Executing

the query against the provenance graph in Figure 3 with any

of the nodes (CG1.o2v1, CG1.o2v2, CG1.o2v3) will return a

result set of {Au1.1}. Obtaining such result set from traversing

Fig. 4. A Taxonomy of Provenance Data Integration in Multi-Provenance
Systems

the provenance graph with the regular path pattern may not be

possible if Org1 does not readily release access to its portion

of the provenance graph.

More specifically, a query generated in CG1 can only

traverse the portion that is reachable from the group portion

of the provenance graph. That is, only the first subpart of the

regular path pattern, in quotation,

“[g(Update).u] ∗ .g(Add)”.u.[g(Update).u] ∗ .g(Create).c)

can be traversed up to Org1.o1v2. The remaining path pattern

cannot be traversed as such information belong to the organi-

zation, which opts to not share its provenance data for various

reasons. Without resolving such issue, any request to Update
an object version in CG1 would be falsely disallowed.

V. INTEGRATED USES OF PROVENANCE DATA IN

MULTI-PROVENANCE SYSTEMS

For seamless use of provenance data in multiple provenance

systems, we believe there are at least two approaches. As

shown in Figure 4, one approach is by utilizing cascading

subqueries. The other approach is by utilizing sticky prove-

nance data which are transmitted together with an associated

data when the associated data is added/moved to another

collaborating entity (organization or collaboration group).

A. Using Cascading Subquery

When an access request is parsed and a corresponding

query is generated, the query is executed and evaluated against

the local provenance system. Certain path patterns, however,

would lead to objects that are added copies from different

system entities. The local provenance system then does not

contain sufficient information to make an access decision.

It becomes necessary to ask for provenance information in

another provenance system entity. In other words, subqueries

need to be generated and evaluated against the provenance

graphs maintained by other systems. These queries are gen-

erated from the original query with modifications of the path

patterns to remove those already traversed. As a provenance

trace can potentially span across many system entities, differ-

ent subqueries may become necessary every time such a cross-

system transition occurs. We call such a query as a cascading
subquery.

259

In a uni-provenance setting, evaluating a query returns a

set of resulting nodes upon which access control decisions

are made. In a multi-provenance setting, once a provenance

system receives a cascading subquery, there are at least three

different ways such a subquery can be handled. For each case,

different granularity of additional information is required from

the requesting entity. Specifically, the receiving system can

utilize its provenance data to return

• Y or N: (startingNodenew,dPathnew,rulenew) must be

transmitted.

• Resulting Nodes: (startingNodenew,dPathnew) must

be transmitted.

• Provenance Data Set: (startingNodenew) must be trans-

mitted.

In the first case, the receiving provenance system is asked

to make the access control decision. This could be the case

when either the requesting entity does not possess enough

computation resources to perform the evaluation itself or the

receiving entity does not allow direct access to its provenance

data. One such an example could be found in a group col-

laboration between a government agency and a contracting

company where the agency is not allowed to reveal the details

of its provenance data. For evaluating such a subquery, the

receiving provenance system requires additional information.

In particular, it requires the recomputed startingNodenew,

dPathnew, and rulenew. Here, the rulenew is necessary for

the receiving provenance system to be able to make a decision

for the requesting entity.

In the second case, the receiving provenance system requires

the recomputed startingNodenew and dPathnew to evaluate

the subquery but does not need make any access control

decision for the requesting entity. This could be the case of

a collaboration between a government agency and a contract

company where the agency (requesting system) requires the

contract company (receiving system) to reveal its provenance

data as the agency may not want to reveal (part of) its access

control policy.

In the third case, the receiving provenance system receives

only the recomputed startingNodenew. Here, the system

returns all provenance entities reachable by a recomputed

startingNodenew. Similar to the second case, access control

decisions are made by the requesting system.

Below, we show the first approach using the example

scenario we discussed above. More specifically, we identify

the recomputed startingNodenew as Org1.o1v2. This node

is computed from traversing the first part of the regular

path pattern (in quotation). The recomputed dPathnew is the

remaining part of the regular path pattern. The recomputed

rulenew can then be expressed as

au /∈ (Org1.o1v2, u.[g(Update).u] ∗ .g(Create).c)

Depend on the type of interaction, combination of these re-

computed components are assembled in a cascading subquery.

Fig. 5. Sticky Provenance Data in Simplified Scenario

B. Using Sticky Provenance Data

Another approach for resolving the stated issue is through

the use of sticky provenance data. In this subsection, we

discuss the concept of sticky provenance data in the context

of a modified version of the scenario discussed earlier in the

paper.

1) Modified Scenario with Sticky Provenance Data: As

depicted in Figure 5, the example scenario introduces some

temporal aspects of sticky provenance data in group-centric

collaboration environment. In particular, there are essentially

three phases where the transactions occur and related prove-

nance data are captured. These phases, along with the related

transactions, are:

• Prior to t1: In this phase, the artifact Org1.o1v1 is

created and then updated into Org1.o1v2 by the acting

user Au1.1. The artifact Org1.o1v2 is then added to

the collaboration group CG1 to generate a new copied

object CG1.o2v1. This transaction is controlled by the

administrator Ad1.

• Between t1 and t2: In this phase, transactions occur

simultaneously and independently in Org1 and CG1.

In Org1, the artifact Org1.o1v1 is updated by another

acting user Au1.2 to generate a new version Org1.o1v3.

In CG1, CG1.o2v1 is updated by Au2.1 to generate

CG1.o2v2.

• After t2: In this phase, a request to update CG1.o2v2 is

initiated. At this point in time, no access control decision

had been made.

In phase 1, when CG1.o2v1 is added to CG1, all the

provenance data of Org1.o1v2 (including the add transaction

information) are collected and transmitted to CG1 together

with the Org1.o1v2 then stored with CG1.o2v1. We call the

transmitted provenance data sticky provenance data (SPD).
With sticky provenance data available in the local system,

a cascading query may not be necessary to obtain provenance

information necessary in making access control decisions.

Rather, a locally generated query can be evaluated and com-

pletely executed against the local provenance graph similar

260

to how a query under a uni-provenance system is treated.

However this may not always be the case. The sticky prove-

nance data of an object/version contains all the provenance

information of that object/version up to the point in time when

the information flow takes place. This means the transactions

on the source data (Org1.o1v2 in our example) that occur after

the information flow (phase 2 in the example) are not captured

in the sticky provenance data unless the sticky provenance is

constantly modified to reflect all the transactions that occur on

all the previous versions (Org1.o1v1 in the example) of the

added object (Org1.o1v2) and the added object itself.

2) Benefits of Sticky Provenance Data: There are multiple

advantages associated with using sticky provenance data. One

main advantage is the elimination of repeating computational

efforts required from the source system. More specifically,

once an organization data object is added to a group, policy

rules for subsequent access request may base the decision

evaluation on the provenance information of the organization

data object. As discussed above, if no SPD is used, some forms

of cascading subqueries may be passed to the organization

asking for results. The organization then would have to spend

its computation resources in satisfying such requests. By

sending sticky provenance data along with the data object

copy, the requests and queries can be evaluated and answered

locally.

3) Issues of Sticky Provenance Data: There are also mul-

tiple issues related to the static nature of sticky provenance

data. Essentially, once sticky provenance data is moved to a

new system entity along with the copy of an associating data

object, the sticky provenance data only contains provenance

information of the copied data object up to the point in time

when such information flow occurs. Any processes occurring

upon that object version thereafter are not captured by the sent

sticky provenance data.

While this should be fine for the queries that need only

backward tracings of provenance data, if a query requires to

check all the transactions occurred against all of the related

objects, forward tracings of provenance data may be necessary

and the available sticky provenance data are not likely to be

enough for access control decision. For example, suppose a

policy rule which dictates that no Update actions can be

performed on a group version if the original organization

object version had been updated in some ways (application-

specific context). In the context of the scenario depicted in

Figure 5, granting access to a request to update CG1.o2v2
requires no modifications had been done on Org1.o1v2. If

the query only checks provenance data obtained in the SPD of

(CG1.o2v1) stored in CG1, then the access request is granted.

However, as shown in Org1, some modifications had been

done on Org1.o1v2 during phase 2 and generated Org1.o1v3
at the current point in time. Such provenance information is

not captured in the SPD of (Org1.o1v2) because at the point

in time when SPD of (Org1.o1v2) was sent to CG1, such

process had not occurred.

For sticky provenance data to be useful and reliable in

such use cases, we require some mechanisms to keep the

Fig. 6. A “Sticky” Multi-Provenance Scenario

SPD up-to-date at all points in time or require additional

tracings of provenance data that are not reflected in SPDs.

In practice, keeping up-to-date SPD could be quite costly or

even unrealistic. This is further complicated as the complexity

of the group-centric collaboration environment becomes larger.

Consider the scenario in Figure 6 which depicts information

flow across three provenance systems where real-time updates

of SPD are not available. Here, an object o1v2 is added to the

collaboration group. Within the group, the added copy o2v1 is

further updated and eventually generates o2v2, which is then

added to a different organization Org2. In this information

flow scenario, when o1v2 is added to CG1, all provenance

data of o1v2 and the add transaction information are trans-

mitted to cg1 together with o1v2 and stored in SPD of o2v1.

When o2v2 is added to Org2, it seems logical to combine SPD

of o2v1 to SPD of o3v1. However, this is largely dependent

on the application-specific context and may not be the case.

In other words, SPD of o3v1 may or may not contain SPD

of o2v1. For example, while a government agency Org1 may

trust CG1 and shares its provenance data with CG1 using

SPD, it may not allow further dissemination of the shared

SPD to a contract company Org2. Furthermore, as the number

of local provenance systems increases, the configuration and

efforts required for updating SPD can grow exponentially in

complexity.

Regardless, we believe that sticky provenance data can

prove to be useful in some cases where forward tracing is

not necessary.

VI. DISCUSSION AND RELATED WORK

We discussed the concept of sticky provenance data that

accompanies any related data objects being moved across

systems. Although this approach helps solve some of the

problems in integrated provenance usage, it also raises many

issues of its own. We identify several issues below.

• Sanitization of sticky provenance data: Depending on

the organization policies, some information in the related

provenance graph may be too sensitive for passing along

with the data itself. It is up to the organizations to imple-

ment their own procedure of protecting such information.

The papers [5], [8] focus on these issues.

• Usage control of sticky provenance data: The organiza-

tion that owns and allows some of its provenance infor-

mation to be shared in a different organization is obliged

to establish mutual trust. However, that organization is

261

entitled to specify the manners in which such provenance

information can be used in a different system.

In this paper, we also assume that in each local prove-

nance system, the capture granularity of provenance data are

essentially similar and therefore the communication is easily

established. However, it has been shown in the literature that

different provenance system designs can capture provenance

data at many different levels of granularity. For example,

the PLUS system [9] captures provenance information at the

application layer while the PASS system [15] opts for capture

at the file system layer. This presents challenges in integrating

these collected provenance data for a common application or

usage purpose such as PBAC. Angelino et al [4] identifies and

proposes a solution to address these challenges.

Integrated use of provenance data for PBAC requires

complex query mechanisms. In particular, the queries need

to support regular path patterns of arbitrary lengths. The

query language needs to also support complex forms of

constructs for additional results transformation purposes. Cur-

rently, SPARQL [11] with GLEEN [10] is one such a language

for implementing PBAC. PQL [1] is another language in its

early development stage that can potentially address the stated

requirements.

The PBACB model we discussed in this paper is a core

model upon which extended models of the PBAC framework

[19] can be built. The PBAC framework emphasizes on

utilizing provenance data to achieve access control protec-

tion to the underlying data. In contrast, various aspects of

protection of provenance data have been studied extensively

in the literature [3], [6], [7], [17]. Protection of provenance

data in the group-centric collaboration environment is also

essential. We strongly believe the incorporation of PBACB ,

and eventually the PBAC framework, in such environment

complements the pursuit of that objective.

VII. CONCLUSION

In this paper, we explored integrated use of data prove-

nance for access control, specifically Provenance-based Access

Control, in a group-centric secure collaboration environment.

In particular, first, we provided an overview of the PBACB

model, the group-centric collaboration environment, and the

provenance data model. Under the context of group-centric

collaboration, we then demonstrated how PBACB mecha-

nisms can be deployed in a uni-provenance setting and the

issue that arises when the deployment is carried out in a

multi-provenance system. We identified and discussed two

approaches of using cascading subqueries and using sticky

provenance data. We believe the discussions presented in this

paper are essential for understanding the issue in integrated use

of provenance data for access control in group collaboration

and will provide a foundation for further research on this line

of work.

Acknowledgement

This work is partially supported by NSF CNS-1111925.

REFERENCES

[1] Pql-path query language. http://www.eecs.harvard.edu/syrah/pql/. Ac-
cessed: 03/31/2012.

[2] Provenance definition. http://www.merriam-webster.com/dictionary/
provenance/. Accessed: 07/15/2012.

[3] M. Allen, A. Chapman, L. Seligman, and B. Blaustein. Provenance
for collaboration: Detecting suspicious behaviors and assessing trust in
information. In Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2011 7th International Conference on,
pages 342 –351, oct. 2011.

[4] E. Angelino, U. Braun, D. Holland, P. Macko, D. Margo, and M. Seltzer.
Provenance integration requires reconciliation. In 4rd USENIX Workshop
on Theory and Practice of Provenance, TaPP’11. USENIX Association,
June 2011.

[5] B. Blaustein, A. Chapman, L. Seligman, M. D. Allen, and A. Rosenthal.
Surrogate parenthood: protected and informative graphs. Proc. VLDB
Endow., 4(8):518–525, May 2011.

[6] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In The 3rd
USENIX Workshop on Hot Topics in Security, USENIX HotSec, pages
1–5, Berkeley, CA, USA, July 2008. USENIX Association.

[7] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham.
A language for provenance access control. In Proceedings of the first
ACM conference on Data and application security and privacy, pages
133–144. ACM, 2011.

[8] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham.
Transforming provenance using redaction. In Proceedings of the 16th
ACM symposium on Access control models and technologies, pages 93–
102. ACM, 2011.

[9] A. Chapman, B. Blaustein, L. Seligman, and M. Allen. Plus: A
provenance manager for integrated information. In Information Reuse
and Integration (IRI), 2011 IEEE International Conference on, pages
269 –275, aug. 2011.

[10] L. Detwiler, D. Suciu, and J. Brinkley. Regular paths in sparql: querying
the nci thesaurus. In AMIA Annual Symposium Proceedings. American
Medical Informatics Association, 2008.

[11] S. Harris and A. Seaborne. Sparql 1.1 query language w3c working
draft, jan 2012. http://www.w3.org/TR/sparql11-query/. Accessed:
03/31/2012.

[12] R. Krishnan, R. Sandhu, J. Niu, and W. Winsborough. Towards a
framework for group-centric secure collaboration. In Collaborative
Computing: Networking, Applications and Worksharing, 2009. Collabo-
rateCom 2009. 5th International Conference on, pages 1 –10, nov. 2009.

[13] R. Krishnan, R. Sandhu, J. Niu, and W. H. Winsborough. Foundations
for group-centric secure information sharing models. In Proceedings of
the 14th ACM symposium on Access control models and technologies,
SACMAT ’09, pages 115–124, New York, NY, USA, 2009. ACM.

[14] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. V. den Bussche. The open provenance model core
specification (v1.1). Future Generation Computer Systems, 27(6):743 –
756, 2011.

[15] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware storage systems. In Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, ATEC ’06,
pages 4–4, Berkeley, CA, USA, 2006. USENIX Association.

[16] D. Nguyen, J. Park, and R. Sandhu. Dependency path patterns as
the foundation of access control in provenance-aware systems. In 4th
USENIX Workshop on the Theory and Practice of Provenance, TaPP’12.
USENIX Association, Jun. 2012.

[17] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An access control
language for a general provenance model. In Proceedings of the 6th
VLDB Workshop on Secure Data Management, SDM ’09, pages 68–88,
Berlin, Heidelberg, 2009. Springer-Verlag.

[18] J. Park, D. Nguyen, and R. Sandhu. On data provenance in group-centric
secure collaboration. In Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom), 7th International Conference
on, pages 221 –230, oct. 2011.

[19] J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control
model. In 10th Annual Conference on Privacy, Security and Trust, PST
2012. IEEE, Jul. 2012.

262

