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Abstract. We present an approach to protect mobile code and agents at runtime
using Trusted Computing (TC) technologies. For this purpose, a “mobile policy”
is defined by the mobile code originator, and is enforced by the runtime environ-
ment in a remote host to control which users can run the mobile code and what
kind of results a user can observe, depending on the security properties of the user.
The separation of policy specification and implementation mechanism in existing
mobile computing platform such as Java Runtime Environment (JRE) enables the
implementation of our approach by leveraging current security technologies. The
main difference between our approach and existing runtime security models is
that the policies enforced in our model are intended to protect the resources of
the mobile applications instead of the local system resources. This requires the
remote runtime environment to be trusted by the application originator to authen-
ticate the remote user and enforce the policy. Emerging TC technologies such
as specified by the Trusted Computing Group (TCG) provide assurance of the
runtime environment of a remote host.

1 Introduction

Mobile code refers to programs and processes that migrate and execute at remote hosts,
so that the execution environments are different for different instances. There is a wide
range of mobile applications encompassing autonomous mobile agents which actively
travel to remote hosts, Java applets, ActiveX, component software (e.g., COM/DCOM/
COM+ and Servlet/EJB), distributed ad hoc and sensor network applications,etcetera
[16].

Runtime environments provide mechanisms to protect the user’s and the system’s
sensitive information by enforcing security policies in a local host. The policies are
based on the attributes of the code and of the user who is running it. Possible attributes
include code sources, URLs, digital signatures, user groups, roles, and credentials. The
two mainstream runtime environments currently adopted in industry are Common Lan-
guage Runtime (CLR) in .Net and Java Runtime Environment (JRE) in Java. In Java,
the security in JDK1.0 and JDK1.1 uses a sandbox model to restrict the access of Java
Applets based on code source and digital signature, while in JDK1.2, a user-based ac-
cess control model is introduced [10,15]. Similar to Java, .Net enforces a code access
security model based on code source and location, as well as a role-based security
model [16].
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The protection of mobile applications against malicious hosts and users is a more
difficult problem. Current security models in runtime environments are used mainly to
enforce the local host’s security policy to protect the local system resources. However,
there are cases in mobile applications where the originator may have some security
requirements to protect the sensitive information brought or accessible by the mobile
code. For example, a shopping application may carry a user’s sensitive information
while running in a remote site. The code originator may require that the code can only
run in a specific protected domain, and the user who runs this code must have a specific
role in an organization, or some other credentials. In this kind of situation, existing
access control models for mobile code are not adequate.

In this paper we propose an approach to enforce the policy of the mobile applica-
tion originator in remote host runtime environments to control accesses from users,
by leveraging emerging client-platform-based Trusted Computing (TC) technologies.
We call this kind of policy a “mobile policy” in our model, as compared with the re-
mote host’s local policy. A mobile policy is the security requirement provided by the
originator to specify what kind of subject in a remote host can run this code, execute
particular methods/components, or access some sensitive information included with the
mobile application. We use the mechanisms in current runtime environments to enforce
a mobile policy.

Since the subject of a mobile policy is a user or program that executes or accesses
the mobile code in a remote site, the authentication of the subject is a key point to
enforce the policy. Java authentication and authorization Service (JAAS) provides a
general layer of user-based authentication and access control mechanism, beyond the
sandbox model, which can be applied in our approach. One important advantage of our
approach is that we try to reuse the runtime security technologies employed in current
systems. A prerequisite for it is the basic assumption that all machines on which the
code is intended to run guarantee a minimum of security regarding the correct behavior
of the runtime environment. For an enterprise-wide environment, this is viable with
on-site configuration of each host by the administrator. For multidomain distributed
systems, a trusted runtime environment (TRE) is essential for our model. A TRE can
be built on a Trusted Computing Base (TCB) and can be considered an extension of
TCB. Emerging Trusted Computing (TC) technologies such as TCG’s Trusted Platform
Module (TPM) which provide hardware-based root of trust and extended trust to upper
levels with verifiable platform characteristics, thus enabling remote policy enforcement
in our architecture.

Our approach does not exclude ways other than mobile policies to distribute and
enforce security requirements in different hosts within an organization. For example,
a network administrator could install in each host, at the operating system level, the
policy to be used to determine the specific users who can run a specific application.
The use of mobile policies with mobile code has many advantages over this approach:
(1) as the deployment and management of mobile code and agents is highly automated,
the security management should also be automated and flexible, while administrator-
involved configuration for individual platforms is burdensome for an organization; (2)
extensibility and scalability of access control policy for a mobile application originator
since a mobile policy can be updated/revoked easily with our approach; (3) specification
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of fine-grained access control for different users with different security properties in the
same remote host, by allowing different users in the remote host to obtain different
results from this application (beyond the simple “allowed/not allowed to execute); and
(4) simplification of the specification and enforcement of global security policies in an
organization.

The remainder of this paper is organized as follows: Section 2 shows some examples
which can benefit from our approach but are difficult to implement with current runtime
security technologies. Section 3 presents an overview of the security model in JRE. Sec-
tion 4 proposes our trusted platform architecture to support remote policy enforcement
in a distributed environment. Section 5 formulates our policy model specification and
enforcement in JRE. Section 6 mentions some related work in the mobile code security
area, and the differences between these and our approach. Section 7 summarizes this
paper and presents our future work.

2 Motivating Examples

Example 1. In a mobile application intended to perform E-shopping services, the mo-
bile code is transferred to a remote E-commerce server which collects related informa-
tion, such as price, location, shipping fee, etc., and then returns it to the customer. The
code carries the customer’s information, such as credit card number, address, telephone
number, etc., and some functions to perform specific work, such as data collecting and
transporting, order transaction, etc. If the customer makes the decision to order, the
mobile code places the order using the customer’s information. In this example, the
customer has access control requirements that his personal information can only be
read by a clerk in a specific organization without modification, and the functions can
only be executed in a particular domain. This objective cannot be achieved with current
runtime security models based on code attributes and local host’s policies to protect the
host’s resources. Also, the type safety and data encapsulation features of programming
languages such as Java cannot solve this problem. With type safe language, a protected
variable or class can be declared as a private element in object-oriented programming,
but, with this mechanism, the resulting access control is “black or white” to all users,
which is not suitable for fine-grained protection.

Example 2. Component-based software has been developed and applied in industry
so widely that it has become the mainstream for enterprise computing during the last
decade. A component is a software element that conforms to a component model and
can be independently deployed and composed without modification according to a com-
position standard. Regarded as building blocks, components can be reused in many
applications and deployed in different places. Consider a credit card company that has
implemented a credit service component. The component, with the customer’s informa-
tion as input, will check the database in the credit card server and return some billing
information. As a third party software, this component is deployed at an enterprise’s
application server and applied to build customized applications. As this component ac-
cesses the database, the owner of this component (e.g., the credit card company) has
to make sure that only an authenticated and properly authorized application developer,
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deployer, or user can instantiate it and call it. With current technology, a component de-
ployer or system administrator has some access control mechanisms to do this to some
extent. For example, in Enterprise Java Bean (EJB), the deployment descriptor along
with the component in the enterprise’s application server controls what kind of roles
can access the component and can activate its methods. But this XML-based descriptor
is not generated by the component owner and cannot reflect his/her fine-grained access
control policies, since the component owner normally is not aware of the security con-
text of local roles in the enterprise. In this case, a mobile policy is a better solution, so
that whenever the component is initialized and instantiated in the component container,
the access control policy from the component owner can be enforced.

3 Java Runtime Security

This section presents an overview of the security mechanism in Java Virtual Machine
(JVM) for Java mobile code, which is an example that we use to support runtime en-
forcement of mobile policy in our framework.

3.1 Overview

JVM uses the sandbox model to enforce security policies at runtime. The sandbox
model in JDK1.0 and JDK1.1 is based on code attributes such as the code’s source,
the URL, the signature, etc. While JDK1.0 simply prohibits any Java Applet from ac-
cessing any of the local system’s resources, JDK1.1 assigns to a Java Applet the same
permissions as those of a local program if the host can trust the digital signature associ-
ated with this applet (reverts to JDK1.0 otherwise). Starting with JDK1.2, the concept
of protection domain based on code attributes is introduced with a complex sandbox
model, and the Java Authentication and Authorization Service (JAAS) introduces user-
based access control, and allows the local system’s access control models and policies
to be enforced in the runtime environment. Furthermore, a Java policy is augmented by
the security policies of the local operating system, for example, to prevent mobile code
executed by a user from accessing a file on the hard disk if the same user cannot read
the file at the operating system level.

Fig. 1. JDK1.2 security model [10]
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Figure 1 shows the semantic sandbox model in JDK1.2 [10]. In this model, the code
is located in a protection domain which is defined by the code attributes and by the
local access control policies. The protection domain represents the permissions that the
code can hold during execution. The general process to run Java mobile code can be
described schematically as follows: a Java binary code is loaded by a class loader and
classes are defined with the defineClass method of the class loader. Each class is asso-
ciated with a protection domain according to policy information. The code is ready to
run or be called by other classes after being loaded; whenever it tries to access a local
system’s resource, it calls a Java API, which then calls the security manager (the access
controller since JDK1.2) to check if this operation is allowable. If the security man-
ager permits the operation, the Java API completes the call and returns to the original
code, otherwise, the security manger throws an exception to the Java API, which in turn
throws it to the user. Starting with JDK1.2, the operation permissions are determined
by the access controller, which supplements the security manager.

The access controller in JRE can enforce fine-grained policies based on the attributes
of the running code and of the user. Figure 2 illustrates an actual policy file in Java. The
permission definition in Java includes two parts: the object and the access right. The ob-
jects are the local system’s resources, such as the files and directories, sockets, registry
keys and values, and so on. Access rights are defined based on object properties, such
as “read” to file and directory (“*” means any operation). In Figure 2, the policy allows
any code downloaded from “http://www.myuniversity.edu” to “read” files in “/tmp”,
and to accept connections on, to connect to, or to listen on any port between 1024 and
65535 on any host within “myuniversity.edu”. The user has to be authenticated before
being defined as “principal” in a policy file and the JAAS provides a mechanism to ob-
tain the authentication context from the local platform. For example, the third item in
Figure 2 specifies that “Alice”, who is authenticated by Solaris, can access all files and
directories within “/usr/home/Alice”; the last item states that an authenticated subject
with Kerberos principal name “bob” with realm foo.org can call the System.getProperty
method to access the user environment information. A customized permission class

grant codeBase "http://www.myuniversity.edu/"{
permission java.io.FilePermission "/tmp", "read";

};
grant signedBy "myuniversity" {

permission java.net.socketPermission
"*.myuniversity.edu:1024-",‘‘accept,connect,listen";

};
grant Principal com.sun.security.auth.SolarisPrincipal

"Alice" {
permission java.io.FilePermission

"/usr/home/Alice", "*";
}

grant Principal
javax.security.auth.kerberos.KerberosPrincipal
"bob@foo.org" {
permission java.util.PropertyPermission

"user.home", "read";
permission java.io.FilePermission "bar.txt", "read";

};

Fig. 2. Java policy example
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can be defined for an application, thus greatly increasing the flexibility and expressive
power of Java security policies.

Example 3. Consider the method shown below.

Public void sensitiveCall() {
Permission permission = new
java.net.SocketPermission("localhost:8080", "connect");
AccessController.checkPermission(permission);
// sensitive call
Socket s = new Socket("localhost", 8080); }

In this example, a permission object (permission) is defined as a socket connection to
local host port 8080. The single-instance class AccessController first checks the appli-
cation’s policy file. If this permission is granted in the policy or implied by any per-
mission granted in the policy, the AccessController’s checkPermission1 method keeps
silent; otherwise, an access control exception is thrown to the caller method. Whether
a permission is implied by another permission is defined in the implies method of the
latter’s Permission or PermissionCollection class. The details of defining a customized
permission and implied permissions can be found in [9,21]. By default, the Access-
Controller’s checkPermission method implements the checkPermission method imple-
mented in SecurityManager.

3.2 JAAS

JAAS has been integrated into Java Standard Edition since J2SDK v 1.4. The two pur-
poses of JAAS are to provide user-based authentication and authorization in Java. The
original sandbox model in Java is code source-based, so that, a permission is deter-
mined by the location where the code comes from and a digital signature generated by
the owner. In JAAS, security attributes of the user running the code are considered in
access control.

Authentication. JAAS implements the Pluggable Authentication Module (PAM) stan-
dard with Java. Whenever a mobile application is loaded, the Configuration class stores
all available LoginModules for this application, a LoginContext class is instantiated, and
its login method invokes all LoginModules and attempts to authenticate the user. If suc-
cessful, the user is authenticated as a Subject object with a set of Principals objects and
credentials which represent the user’s security attributes. Principals are names of iden-
tities with particular types, such as a SSN number, a group or domain name, a role, or a
tickets. Credentials can be general security related attributes, such as password, public
key certificates (X.509 or PGP), Kerberos tickets, etc. For example a successful authen-
tication with com.sun.security.auth.module.NTLoginModule imports principals userID,
domainID, and several groupIDs for a user.

Authorization. Starting with Java 2, the SecurityManager delegates security checks to
AccesssController. After a user is authenticated, the method Subject.doAs dynamically
associates this user with the AccessControlContext, which is retrieved by the Access-
Controller to check if it has sufficient permissions for a sensitive operation based on the

1 Actually this explicit permission check is redundant since any call to open a socket connection
is checked by the SecurityManager by default.
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principals and credentials associated with the subject. A Subject class interface has the
form

Public final class Subject {
...
public static Object doAs (Subject s,
java.security.PrivilegedAction action) {}

}

4 Trusted Runtime Environment

As mentioned in Section 1, to correctly enforce a mobile policy, the application orig-
inator needs to trust the runtime environment of the remote host. A trusted runtime
environment (TRE) should not only detect any malicious modification of the policy,
but also detect any change of the security components in the virtual machine, such as
authentication and authorization modules. Specifically, a trusted runtime environment
(TRE) should provide:

– Integrity of mobile policy and code. Before being loaded, a mobile policy’s in-
tegrity should be attested and verified by the originator (the user who deploys the
code) to ensure that the correct policy is used. This requires that the JVM correctly
measures the integrity (e.g., with a hash function) and reports to the originator, upon
a request to run the code. On the other side, a remote host may also need to verify
the integrity and signature of the mobile policy, according to its local policies. For
example, the digital signature of a mobile policy/code enables it to be launched in a
JVM as a third party policy provider by means of code source-based authorization.

– Trusted authentication of remote subjects. The authentication modules in the re-
mote site must authenticate the user in the expected manner. While a uniform ap-
proach to authentication may be viable in an organization-wide system, more gen-
erally a trust mechanism is needed for multi-domain distributed systems.

– Trusted authorization enforcement. After a mobile policy is loaded, the enforce-
ment depends on the expected behavior of the remote JVM’s authorization module,
which is the policy enforcement point of the security system.

Therefore, a TRE is a prerequisite for our security model. It has been recognized
for some time that software alone does not provide an adequate foundation for building
a high-assurance trusted platform. The emergence of industry-standard Trusted Com-
puting (TC) technologies promises a revolution in this respect by providing roots of
trust upon which secure applications can be developed. These technologies offer a
particularly attractive platform for security policy enforcement in general distributed
systems. Many current efforts, especially the industry-led Trusted Computing Group
(TCG), have focused on building trust rooted in hardware [5].

TCG has defined a set of specifications aimed at providing a hardware-based root of
trust and a set of primitive functions that allow trust to propagate to application soft-
ware, in addition to crossing over platforms. The root of trust in TCG is a hardware
component on the platform called the Trusted Platform Module (TPM). Application-
level trust requires strong integrity checks of binary code for running processes and a
mechanism that allows other entities (applications or platforms) to verify that integrity
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as well. A TPM has the capabilities to measure and report runtime configurations of
the platform, from BIOS to OS. TPM and TC-enhanced hardware technologies, such as
Intel’s LaGrande Technology (LT) [2] and AMD’s Secure Execution Mode (SEM) [1],
generally allocate isolated memory partitions to different application processes to pre-
vent software-based attacks at runtime.

In our work, we abstract the underlying trusted computing technology, and focus on a
high-level trusted runtime environment built beyond that. Since a runtime environment
such as Java Virtual Machine is normally loaded after the OS is loaded, we consider the
TRE as an application or service level trusted domain, which is built beyond the trusted
hardware and OS of the remote host with the attestation mechanism of trusted comput-
ing technology, as shown in Figure 3. In this platform, the hardware layer (comprising a
TCG compliant TPM and some other necessary hardware such as LT-enabled CPU and
chipset) provides the root of trust for TC. The secure kernel (SK) provides the protected
runtime environment for the JVM. This can be done through controlling DMA-enabled
device drivers and memory management unit (MMU).

TPM Device Device Hardware

Secure Kernel

Operating System

Class Loader

Code

Java Virtual Machine

JAAS

AccessController
SecurityManager

XACML PDP

Mobile
Policy

Fig. 3. Platform architecture to support trusted runtime environment for mobile code

4.1 The Trust Model

The integrity of SK is measured by the TPM when the system boots. Also, SK is pro-
tected in memory space by hardware so that its integrity is guaranteed at runtime. Before
the JVM is started, SK measures the integrity of JVM and stores its hash value locally.
In turn, when mobile code is loaded, the JVM measures the integrity of the program
(Java bytecode) and the mobile policy, e.g., implemented by the class loader of JVM.
Note that SK enhances the language-based security of the JVM by means of trusted
hardware.

The measured integrity can be verified by the code originator with remote attesta-
tions, which is enabled by the TC hardware. A hash chain is constructed corresponding
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to an attestation challenge to establish the trust of JVM, the mobile code, and the mobile
policy based on the root of trust provided by the hardware. Specifically, SK has a public-
private key pair generated by the TPM when the platform is initialized, where the public
key is certified by the attestation identity key (AIK) of TPM. SK also generates a public-
private key pair for the JVM, where the public key is certified by the SK (by signing with
its private key) and the private key is protected by JVM, e.g., with the sealed storage
function of TPM. The key pair for JVM is generated for the first time when it is installed
in the platform. When the platform receives an attestation challenge from a remote side
to check a running code’s environment state, TPM signs a set of platform configuration
register (PCR) values with its AIK key2, and SK signs the integrity value of JVM with
its private key, while JVM signs the integrity value of the code. These three signatures
are then sent to the attestation challenger. The challenger verifies all the signatures and
the public key certificates of AIK, SK, and JVM, respectively. If all are valid and the
integrity values match, the JVM is trusted, and the code and mobile policy’s authenticity
is verified. Thus, the code originator can trust the security enforcement of the remote
JVM and the result generated by the code.

5 Mobile Policy Specification and Enforcement

The primary goal of our framework is to enforce the code originator’s mobile policy
in remote runtime environments. Policy management in our framework includes three
phases: (1) policy specification by a mobile code originator, (2) policy distribution by
the originator or a trusted third party (such as a central server), and (3) policy enforce-
ment in the remote host. We mainly describe phases (1) and (3) in this paper. For phase
(2), a mobile policy could be attached to the code and distributed along the network,
in which the policy can be bound to the code itself, or the policy could be downloaded
from a central repository only to sites where the code is actually run. In both cases the
integrity of the mobile policy is critically important, as mentioned earlier.

5.1 Mobile Policy Specification

We have two levels of policy specification. The high-level phase is a logic specification
with an authorization specification language (ASL) [14]. This provides a clear defini-
tion and analysis, as well as confliction resolution, which is needed when the policies
are derived or composed from different resources. For example, a policy can be de-
rived from a policy in a group and another policy of an individual user, or a policy
can be combined from several policies from different departments in an organization.
The low-level phase is a concrete specification of the mobile policy with the extensible
access control markup language (XACML) [3] format, enforced in a runtime environ-
ment as an input. The separation of these two levels provides flexible deployment and
decentralized policy specification and composition. Because of space limitations we
only explain the XACML policy specification in this paper.

2 We do not explicitly specify what PCR values are included in an attestation, since the re-
quired properties of a platform (including hardware, BIOS, and OS configurations) are very
application-specific.
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XACML is an open-standard format to specify access control policies, and expected
to be widely used thanks to the properties of interoperability and extensibility. A mobile
policy can be described in XACML format as the following shows:

<Policy PolicyId="(policy-name)"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>(predicates over subject attributes)</Subjects>
<Resources>(predicates over object attributes)</Resources>
<Actions>(predicates over access rights such as read and write)</Actions>

</Target>
<Rule effect="permit"/> (Specification that this policy is positive)
<Obligations>(Specification of attribute-update actions)</Obligations>

</Policy>

where the <Subjects> and <Resources> elements specify the attributes of the
subjects and the objects, the rights are in <Actions> element, and the update actions
are defined in <Obligations> element. Update of attributes result from granting the
access thereby possibly changing the state of the subject or the object.

Subjects. A subject is a process running on behalf of a user or role that actually exe-
cutes the code. In a mobile policy, subject attributes can be a username, or a role name,
group name, certificate signed by a particular certificate authority, etc. Each subject or
user attribute has to be authenticated by the runtime platform before running the code.
JAAS, entrusted with enforcing the user-based access control, can be used within an
enterprise or organization. For general distributed environment, a trusted third party
subject attribute service may be needed for authentication.

Permissions. A pair (object, right) is regarded as a permission. The objects3 in a mo-
bile policy may be classes or methods of a mobile code, or information accessed or
stored by a mobile code. Specifically, since a mobile policy is to protect a mobile ap-
plication, possible objects include information on the state of the mobile code, results
accumulated at other hosts by a mobile agent, sensitive information of the code orig-
inator, and functions to access other sensitive information, implemented as variables,
classes, methods or components of a mobile application. Normally, the right associated
with a function or component is to “execute”, the right for any sensitive information,
partial result, and individual variables may include “read” and “write”, and the right
to a class may be “instantiate” and “inherit”. We assume that all the sensitive accesses
of (object, right) are encapsulated in a method implemented in the classes, while the
sensitive variables are private members of the classes. For example, to “read” a credit
card number, a call to getCredit method is invoked, while “write” a credit number with
setCredit. Thus, a permission must be granted to call a method to obtain sensitive infor-
mation. So generally a permission is checked when a sensitive method is invoked and
executed, or a protected object is instantiated or constructed.

5.2 Mobile Policy Enforcement

In a typical access control system, a policy decision point (PDP) evaluates access re-
quests with subject and object attributes and sends results to a policy enforcement point

3 Note that an object in a mobile policy is a different concept from the object (an instance of a
class) in Java language.
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(PEP). Using Sun’s XACML library [4], the PDP module interprets XACML policies
in the mobile policy file and makes access decisions, while the PEP can be just a simple
interface of the enforcement mechanisms implemented in current JVM (refer to Fig-
ure 3). To re-use these functions, each mobile code needs to implement the permission
classes for the protected access rights, which are application-specific.

Define Permission Classes. Although Java API provides some basic permission
classes, most of them are used in local policy enforcement. Normally a mobile code
originator has to define his/her own permissions according to the particular applica-
tions. For instance, in Example 1, a creditPermission class is needed with rights such as
“read”. Figure 4 is the skeleton to define a CreditPermission class for the E-Shopping
example. In Java, an application-defined permission class inherits from the system class
Permission and implements the Serializable interface. Each permission object has a
type, name and action (access type). For CreditPermission, we only define “read” ac-
cess type. Note that a permission instance does not imply that this permission is granted,
but states that accessing this instance is checked by the access controller.

public final class CreditPermission extends Permission
implements Serializable {
public CreditPermission(string name, string actions){
//Creates new CreditPermission object with the
//specified actions. name is the method name that
//represents the method to read credit card number,
//such as "getCreditNo". actions is a list of the
//desired actions granted to the object. In this example,
//only "read" action to credit information.

...
}
public boolean implies(Permission permission){...}
...

}

Fig. 4. Sample permission class

The implies method specifies complex permission semantics, such as a prerequisite
permission. For example, an “update” permission of an online account requires a “read”
permission to that account object. Permission constraints such as separation of duty can
also be specified in this method.

Import XACML Mobile Policy. From the XACML policy file, each subject in the
mobile policy is mapped to principals defined in JAAS, such as role, group-name, etc,
while the subject attributes and security related credentials such as password, ticket,
public key certificate, etc., are associated with these principals after authentication. One
of the advantages of using XACML for mobile policy is that XML provides flexible
data specifications and semantics, and it is easy to extend it in future work if other
information is needed to specify policies. Also, graph tools can be easily developed for
policy composition and analysis.

Since the default policy implementation in Java is in a text file, we need to replace
this with our alternative implementation. For this, an XMLPolicy class is defined which
is a subclass of the abstract class Policy in Java, and is part of the PDP module to retrieve
policy information from the XML file.
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A mobile policy is defined by the code originator who is, in general, not the
rightholder of the local host system. Therefore the JVM needs the permission from
the local host system to load the mobile policy. In implementation, a mobile policy is
loaded into a JVM dynamically as the code is loaded. Specifically, a third-party policy
implementation can be inserted into a runtime environment by invoking the setPolicy
method of the Policy class. A mobile policy file can be attached with a mobile code in
a single Java Archive (JAR) file and captured by JVM, or it can be stored in a central
server and a URL argument as the location is provided to load the application code in
JVM. If a mobile policy is outside the remote side’s domain, dynamically loading the
policy requires runtimePermission checked by the AccessController. This requires that
the remote host’s default policy be configured to support a third-party policy provider.
Code signature for authentication and integrity of the mobile policy is needed according
to the host’s local policy.

5.3 Policy Enforcement

After the permission and policy classes are loaded, and the user is authenticated with
JAAS, a sensitive operation can be authorized to a particular subject at runtime. With
JAAS, after a user is authenticated with a set of principals, the method Subject.doAs
dynamically associates all the principals with the local AccessController (actually, it is
AccessControlContext by calling AccessController.getContext()). Then, when a sensi-
tive call is requested, the AccessController can make a decision based on the pre-defined
policy. As shown in Section 3, a Subject.doAs method combines an authenticated sub-
ject and a PriviledgedAction object. Therefore to enforce a mobile policy, all sensitive
operations should be encapsulated in PriviledgedAction classes. The following example
shows a simple implementation.

Example 4. Consider an eshop mobile application where creditPermission is defined
by the code originator and policy is specified as the following XACML format.

<Policy PolicyId="makeorder-policy"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>

<Subject>
<!-- The subject identity must include "OU=Org1". -->
<SubjectMatch MatchId="function:x500Name-match">

<AttributeValue DataType="string">OU=Org1</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-id" DataType="x500Name"/>

</SubjectMatch>
<!-- The subject’s rolename is PurchaseManager -->
<SubjectMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">PurchaseManager</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-rolename" DataType="string"/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">creditPermission</AttributeValue>
<ResourceAttributeDesignator AttributeId="permission-name" DataType="string"/>

</ResourceMatch>
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<Resource>
</Resources>
<Actions>

<!-- "GET" represents the read privilege. -->
<Action>GET</Action>

</Actions>
</Target>
<Rule effect="permit"/>

</Policy>

A subject is authenticated as a Org1.PurchaseManager role and trying to call the
sensitive method getCredit. The following code shows the outline of the class.

public class EShop {
public static void main(String[] args) {
...
Subject.doAs(aPurchaseManager, new MakeOrder());
// where aPurchaseManager is an authenticated Subject
// with a principal of Org1.role named PurchaseManager.
...

}
}
public class MakeOrder implements PrivilegedAction {

public Object run() {
...
//sensitive call
String creditCardNo=CreditInfo.getCreditNo();
...

}
}

In this example the sensitive code is encapsulated in the MakeOrder class, which im-
plements PriviledgedAction class. The CreditInfo is a static class that stores a credit card
information, which can be obtained by some methods. The getCredit method is a sen-
sitive operation since as defined in the XML policy file. The MakeOrder will trigger an
access control check when getCredit is called. According to the policy, the permission
is granted. The general authorization in a mobile policy is similar to that in enforcing a
local policy.

5.4 Access Control Algorithm

Java uses a stack-inspection mechanism to enforce the security policy in the runtime
environment. In our model, the same stack-inspection mechanism is used, but the ac-
cess controller checks the permissions based on the mobile policy file. Specifically, for
each call in the stack frame, when there is a call to access protected objects in a mobile
code, the call is forwarded to the access controller. The access controller determines
if the operation is permitted according to the XML mobile policy: if the operation is
not permitted, the access controller throws an exception back to the call, which in turn
throws it back to the user running the code, otherwise the call completes the operation.
Figure 5 shows the access control algorithm. For each call in the stack, the access con-
trol algorithm first checks its protection domain. If the target permission is not in the
domain, an AccessControlException is thrown; otherwise, the algorithm in turn checks
if this calling method is declared as a privileged action. If so, and an AccessControlCon-
text is provided in the doPrivileged method, then the permission is checked with this
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AccessControlContext, if not, this permission is granted. If a thread is created by a par-
ent thread, the AccessControlContext of the parent is associated with the created thread.
The permission is checked with the local thread’s inherited context if it has not been
granted or denied after the first two steps. More details on stack-inspection mechanism
can be found in [9,27].

Access Control Algorithm:
checkPermission (permission) {

//loop, from newest to oldest stack frame
foreach (stackFrame in the stack of current thread) {

if (stackFrame caller’s protection domain does not
have permission defined in the mobile policy)

throw AccessControlException;
else if (stackFrame calling method has been marked

as privileged action with permission){
if (an AccessControllerContext context is

specified in the call to doPrivildged)
context.checkPermission(permission);

return; // allow access
}
else if(an AccessControlContext inheritedContext

is inherited when this thread is created)
inheritedContext.checkPermission(permission);

return;
}

}

Fig. 5. Access control with mobile policy

6 Related Work

Security is a basic problem in mobile computing. Generally, there are two distinct areas
in mobile code security: (1) protection of the host from malicious mobile code and (2)
protection of the mobile code from malicious hosts or users. Researchers have presented
several models and mechanisms to deal with malicious code [20,29], such as Sand-
box [19,10,15], code signing/code access [16], proof carrying code [17], etc. Protection
of mobile code, however, is still an open problem. Vigna [26] proposes an execution
tracing technology for mobile agents using cryptographic hash. Yee [28] presents mech-
anisms to detect tempering by malicious hosts with partial result authentication codes
(PARCs) and forward-integrity security policy. Sander and Tschudin [22] formalize a
theoretical result aimed at allowing an agent to preserve some secrecy from a malicious
host by using encrypted forms of functions in mobile code. Algesheimer et al [6] intro-
duce an approach for securely executing mobile code that relies on a minimally trusted
third party. This third party cannot learn anything about the computing with guaran-
tee of privacy and integrity to the code originator. The main difference between our
approach and previous work is that we enforce the security policy in the runtime envi-
ronment of the mobile code. Compatible with existing mechanism, fine-grained access



Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 193

control policies can be easily implemented in our approach, at the cost of a minimum
of trust in the remote runtime environment.

Another line of work is reported in [12], where a Java Secure Execution Framework
(JSEF) is proposed to support local user specific security policies and a global security
policy defined by the administrator. The objective in JSEF is still to protect users from
erroneous or malicious mobile code, and not to prevent malicious users from improperly
accessing or using mobile code. An isolated program execution approach is presented
in [18]. The isolation is achieved by delaying a sensitive operation such as file access to
a “modification cache” that is invisible to others in the system. While this is practical
in isolated applications to protect local system resources, it is not applicable in our
approach since we aim at protecting resources brought in by mobile code, which can
be not only an object in the virtual machine, but also a remote resource which can be
accessed by the mobile code.

Venkatakrishnan et al [25] present a permission “empowering” mechanism to mobile
code in the runtime environment instead of restricting the behavior. The scope of this
work is still in the range of protecting resources in the local host from mobile code.
Cubaleska et al [8] propose a method to build a trusted policy for a mobile agent owner.
The policy indicates which host is malicious or not trusted anymore, so that the owner
does not deploy mobile agents to these hosts. Since the trusted policy is a posteriori, the
solution is useful only for some mobile applications which re-visit previous hosts. In
our approach, the mobile policy is enforced in a trusted runtime environment, with no
such limitation. Hohl [13] introduces a blackbox model to protect mobile agents from
malicious hosts. In this idea, a parallel executable blackbox agent is generated from the
original agent, which has a different structure. As declared by the author, this idea only
partially solves the malicious host problem. However, our solution can be applied to
any mobile code.

A trusted Java Virtual Macine (TrustedVM) is proposed in [11] to capture the behav-
iors of a remote computing entity. Similar to our approach, the virtual machine itself is
attested by signed-hash mechanism. The main difference between this and our approach
is that in TrustedVM, policies are used to confine the behavior of the Java program ac-
cording pre-defined protocols in distributed environments, while the mobile policy in
our framework is to protect the execution of mobile code at runtime, that is, the ob-
jects in mobile policy are the components of the code itself. Also, our architecture uses
hardware-based TC technologies to enhance the security of the language-based JVM in
a platform.

7 Conclusions

This paper presents a mobile policy framework to protect the information and resources
imported by mobile code and agents in runtime environments with trusted computing
technologies. This framework includes policy specification and definition, as well as
a high-level implementation architecture in Java environment. For the implementation,
the access control mechanism in the Java Runtime Environment is used with the ex-
isting stack-inspection mechanism. The benefit of this enforcement architecture is that
we can define and implement the permission class in a mobile policy, maintaining the
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flexibility and compatibility with current runtime technologies. The extensibility of the
Java authorization model, as well as the separation of policy specification and enforce-
ment mechanism, makes our approach practical. A trusted computing architecture is
proposed in our framework, to provide verifiable trusted behaviors of a remote host’s
runtime environment.

In future work we can consider development of a runtime policy analysis engine to
dynamically answer permission checks. With this, permission derivation and inference,
as well as policy analysis can be achieved in runtime. This benefits from scalability
and development efficiency beyond the static policy specification and definition. For
example, a policy for a code may be combined from several sources, and a real time
check and analysis of these sources will improve the system performance by avoiding
the redefinition of the static policy files and the restarting of the program.
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