
Extending OpenStack Access Control

with Domain Trust

Bo Tang and Ravi Sandhu

Institute for Cyber Security and Department of Computer Science
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, US

xyp368@my.utsa.edu, ravi.sandhu@utsa.edu

Abstract. OpenStack has been rapidly established as the most popu-
lar open-source platform for cloud Infrastrusture-as-a-Service in this fast
moving industry. In response to increasing access control requirements
from its users, the OpenStack identity service Keystone has introduced
several entities, such as domains and projects in addition to roles, re-
sulting in a rather complex and somewhat obscure authorization model.
In this paper, we present a formalized description of the core OpenStack
access control (OSAC). We further propose a domain trust extension
for OSAC to facilitate secure cross-domain authorization. We have im-
plemented a proof-of-concept prototype of this trust extension based on
Keystone. The authorization delay introduced by the domain trusts is
0.7 percent on average in our experiments.

Keywords: Distributed Access Control, Identity Management, Security
in Cloud and Grid Systems, Trust Management.

1 Introduction

Cloud computing is widely anticipated as the next generation computing in-
frastructure although it is still in its infancy. The concept of cloud comput-
ing is attracting attention from both business and technology perspectives. Its
pay-on-the-go business model tremendously minimizes on-premise investment on
IT infrastructures for organizations and individuals. The multi-layered service-
oriented architecture (SOA) design enables cloud service providers (CSPs) to
serve their consumers with centralized software and data centers in a multi-
tenant fashion. However, concerns of security with respect to data location and
control, as well as availability create resistance to cloud adoption. One of the
key issues in this regard is access control.

Multi-tenancy is one of the crucial characteristics of cloud services. We define
a tenant from the perspective of a CSP, as an independent customer of the CSP
responsible for paying for services used by that tenant.1 A principal responsibility

1 Payment is the norm in a public cloud while in a community cloud there often will
be other methods for a tenant to obtain services. From the perspective of the tenant,
a tenant could be a private individual, an organization big or small, a department
within a larger organization, an ad hoc collaboration, and so on. This aspect of a
tenant is typically not visible to the CSP in a public cloud.

M.H. Au et al. (Eds.): NSS 2014, LNCS 8792, pp. 54–69, 2014.
c© Springer International Publishing Switzerland 2014



Extending OpenStack Access Control with Domain Trust 55

of the CSP is to maintain isolation across tenants, so that the tenant’s users can
only access resources within that tenant’s scope. Over time it has been recognized
that controlled cross-tenant access is desirable and some models for that purpose
have been proposed [10,20,21,22]. These models establish cross-tenant trust on a
bilateral basis so as to enable appropriate cross-tenant access. Some notion of a
trust relationship of this nature has been prevalent in prior work on distributed
systems when crossing administrative boundaries. This is exemplified by the well-
known mechanisms in Windows Active Directory (AD) [3] and the Grid [6,11].

Our central goal in this paper is to investigate the addition of cross-tenant ac-
cess in the popular open-source OpenStack [4] platform for cloud infrastructure-
as-a-service (IaaS). Specifically, with respect to the Havana release. The general
concept of a tenant in a cloud maps to the concept of domain in the Havana re-
lease of OpenStack.2 The identity service in OpenStack, called Keystone, is used
to manage users as globally available resources. More specifically, the adminis-
trator of a domain can view all the user information and assign any user to roles
controlled by that domain. Each user, as created, belongs to a single domain
and the domain owner or administrator can only see and manage users within
the domain. So far, the use cases of cross-domain access has not been carefully
addressed in OpenStack. This lack is the main motivation for this paper.

In this paper, we propose a domain trust model addressing cross-domain ac-
cess control in OpenStack and provide a proof-of-concept implementation by
extending KeyStone. In response to increasing access control requirements from
its users, Keystone has introduced several entities, such as domains, projects and
groups in addition to roles, resulting in a rather complex and somewhat obscure
authorization model. Before we can add cross-domain trust to this model it is
necessary to cast the core OpenStack access control (OSAC) model in a formal
way which is consistent with familiar terminology from the access control re-
search literature. Development of this formal rigorous statement of OSAC is in
itself an important contribution of this paper.

The rest of this paper is organized as follows. Section 2 gives the motivating
use case of cross-domain authorization and some of the existing approaches. The
formalized OpenStack Access Control (OSAC) model is presented in Section 3,
followed by the extended domain trust model in Section 4. To demonstrate the
feasibility of the novel domain trust model in OpenStack, we develop a proof-of-
concept prototype based on Keystone. This is described in Section 5, along with
evaluation results. Related work in the cross-domain trust arena is discussed in
Section 6. Finally, we conclude the paper in Section 7.

2 Background and Motivation

In this section, we use a DevOps [1] example to explain why we need cross-
domain accesses in the cloud and what potential problems we have in the latest

2 Previous releases of OpenStack employed the term tenant for what has now come
to be called project in OpenStack. The term tenant is no longer used in OpenStack.
In this paper we use the term tenant as a generic concept in cloud computing, while
domain is specific to OpenStack as its realization of a tenant.



56 B. Tang and R. Sandhu

OpenStack solution. Also, we discuss the pros and cons of existing cross-domain
authorization solutions. The scope and assumptions of our work are given.

Motivation. DevOps is a newly emerged software development methodology
that stresses collaboration among software development, quality assurance (QA)
and operations. Numerous companies are actively practicing DevOps since it
aims to help organizations rapidly produce software products and services [1].
When DevOps for an organization comes into play in an OpenStack cloud, cross-
domain accesses become inevitable and requires suitable control. Figure 1 shows
the authorization related components in OpenStack giving cross-domain accesses
for a DevOps use case. The token information is managed by the centralized
identity service. The policy rules are administered and checked against access
requests along with user tokens in each distributed cloud service.

User / Group Role OperationDomain Scope
user-role-project 
assignment

ROLES

COMPUTE
SERVICE

IMAGE
SERVICE

NETWORK
SERVICE

SALES
PROJECT

HR
PROJECT

DEVELOPMENT DOMAIN PRODUCTION DOMAIN

SALES
PROJECT

HR
PROJECT

USERS / 
GROUPS

admin

Create VM Delete VMCreate VM

operator

Owen

PROJECTS

Dan

Add Image Add Image

Add IP

DOMAINS

TOKEN
INFO

POLICY
RULES

tester

Tom

developer

STORAGE
SERVICE List Files Edit File

Create VM

Add Image

List Files

Add Router

Fig. 1. An DevOps use case of cross-domain accesses

Suppose the organization has two domains in the cloud: Production and De-
velopment. Production hosts live applications supporting the organization’s daily
business requiring strict controls on changes. Meanwhile, Development consists
of development and testing environments, basically a sandbox, where developers
and testers can freely conduct experiments with the cloud resources. The isola-
tion of the two domains is mandatory for best practice and compliance reasons.
Each domain contains its own set of users, groups, projects and controlled ac-
cess to the full-spectrum of cloud services, such as compute, image and network.
As shown in Figure 1, Owen is an operator in Production. Dan and Tom are a
developer and a tester respectively in Development. Each domain has two inde-
pendent projects: Sales and HR. The users are assigned necessary permissions
to access projects in their owning domains to accomplish their daily jobs (each



Extending OpenStack Access Control with Domain Trust 57

user in OpenStack has a single domain which “owns” the user). In order to pro-
cess a DevOps case in which a live application in Sales.Production3 needs to be
updated by a developer, Dan needs authorization to access the application. The
Production administrator may prefer not to create another user account for Dan
in Production but to assign Dan as a developer to Sales.Production instead for
the following reasons.

– Dan does not have to switch between user accounts in different domains.
– Intra-domain and cross-domain assignments can be distinguished.
– After the DevOps case is completed, Production administrator can avoid

removing the temporary user and correlated assignments by simply revoking
the cross-domain user assignments.

This example is a typical use case for organizations using either public or
community clouds. By design, OpenStack supports cross-domain assignments
however they are treated much the same as intra-domain assignments. For ex-
ample, Production’s administrator can assign any user from other domains to
roles in Production’s projects. This approach may cause a series of problems.

a) Production administrator should be able to see Development users and their
assigned roles in all Development projects, at least during authorization time,
to issue proper cross-domain assignments.

b) Development administrator cannot control the cross-domain authorization.
c) Since DevOps jobs are usually temporary, the management of cross-domain

authorization should be flexible, convenient and rapid.
d) No option to specify additional controls upon cross-domain accesses.

On the one hand, the visibility of a user’s roles inside its owning domain
provides crucial information for other domain administrators to authorize access
of the user since the users in OpenStack are not global but identifiable inside
each domain. On the other hand, the user owner needs to monitor or constrain
the roles assigned to its users in other domains in order to prevent violations of
security in multi-domain interoperation [7,18]. In this setting, the collaborating
domains should both have control over the cross-domain access instead of only
one of them.

Letting the cloud administrator take charge of all cross-domain assignments
can solve the visibility issue in Problem a) but the administrative overhead may
become overwhelming. Moreover, it is inappropriate for the cloud administrator
to be so closely involved in the management within individual domains. To ad-
dress Problem b), mechanisms that involve both domain administrators should
be introduced. For Problem c) we need a rapid means to enable or disable cross-
domain assignments for better efficiency. As Problem d) refers, collaborative
cross-domain accesses rather than intra-domain accesses need more control re-
lated to the authorization.

3 We use “.” to represent the ownership relation between projects and domains. For
example, Sales.Production refers to the Sales project in Production domain.



58 B. Tang and R. Sandhu

Existing Approaches. We have found similar problems in Microsoft Windows
Active Directory (AD). An AD, comparable with the identity service in Open-
Stack, maintains various types of trust relations to allow users in one domain
to access resources in another [3]. But they are not directly applicable in the
cloud environment since AD is designed to manage identities for a centralized
authority but not decentralized ones like in the cloud.

Currently, OpenStack Keystone supports delegation for users. In particular,
a user can delegate a part of his or her permissions to another user through a
trust relation. The trustee can impersonate the trustor to perform a subset of
the permissions that the trustor has been authorized. Issuing a trust relation
does not need involvement of the domain administrators so that Problem b) still
exists. In addition, it requires a single user to have all the permissions that the
requesting user needs in the target project and limits the capability of cross-
domain collaborations.

Amazon Web Service (AWS) allows delegating access across accounts (ac-
counts are comparable to OpenStack domains). By creating a trust relation and
associating an assumed role with it, the trustor account authorizes the users
from the trustee account to access permissions associated with the assumed role
in the trustor account. In this way, cross-account accesses are enabled. However,
the trust relation cannot support customized control other than the assumed
role or be constrained.

Scope and Assumptions. In this paper we assume that cross-domain au-
thorization only happens in a single cloud. Nevertheless, the model we propose
may be extended to federated cloud scenarios. We assume the users in our mod-
els are properly authenticated as supported by Keystone. Our discussion and
implementation are based on the Havana release of OpenStack [4].

3 OpenStack Access Control Model

In this section, we present the core OpenStack Access Control (OSAC) model
based on the OpenStack Identity API v3 [5] which is relatively the latest stable
version. Since OpenStack is a rapidly changing system solving practical prob-
lems, we feel it impossible and unnecessary to model every feature in OpenStack
identity service. Instead, we keep only the core components in the model and
formally present how they interplay with each other in the authorization and ad-
ministration processes. Hence, the term core OpenStack Access Control model.
For simplicity we will often omit the core prefix.

Core OSAC. Core OSAC extends the traditional RBAC model [12] to support
multi-tenancy. The model elements and relations are defined in Figure 2. OSAC
contains eight core entity components: Users (U), Groups (G), Projects (P ),
Domains (D), Roles (R), Services (S), Operations (O) and Tokens (T ). Other
entities in the OpenStack Identity API are regarded implementation specific such
as credentials, regions and endpoints. Each of the entities has a globally unique



Extending OpenStack Access Control with Domain Trust 59

Users
(U)

Domains
(D)

Roles
(R)

User 
Assignment 

(UA)

Permission 
Assignment 

(PA)

Project 
Ownership 

(PO)

Project-Role Pair
(PRP)

Projects
(P)

Tokens
(T)

User 
Ownership 

(UO)

Services
(S)

user_token 

token_project

Groups
(G)

Group 
Ownership 

(GO)

User 
Group 
(UG)

Group 
Assignment 

(GA)

token_roles

PRMS

Operations 
(OP)

Object
Types 
(OT)

ot_service

Domain Trust 
(DT)

Fig. 2. Core OpenStack Access Control (OSAC) model with domain trust

resource identifier provided by the identity service. The Domain Trust (DT)
relationship is shown in dashed lines since it is not currently part of OpenStack
but is proposed as an extension in this paper.

Users and Groups. A user represents an individual who can authenticate
and access cloud resources. In OpenStack, users are the only consumers of cloud
resources. A group is simply a collection of users. Each user or group is owned by
one and only one domain. Each group contains only users in its owning domain.
Since groups share the nature of users, for convenience reason we understand
“users” to mean “users or groups” in the rest of this paper.

Projects. A project is a scope and/or a container of cloud resources. A project
manages multiple services and a service segregates its resources into multiple
projects. Using a project and a service, we can locate a specific set of resources.
For example, the compute service of Sales.Production project manages the vir-
tual machine (VM) instances of production applications for the sales department.
Each project is owned by one and only one domain.

Domains.A domain is an administrative boundary of users, groups and projects.
Domains are mutually exclusive. Each user, group and project belongs to one
and only one domain.

Roles. Roles are global names which are used to associate users with any of
the projects. A user is assigned a role with respect to a project, in other words
to a project-role pair.4 Users can be authorized permissions only through roles.

4 Users can also be assigned a domain-role pair. This is for administrative usage only
and will be discussed in Section 3.



60 B. Tang and R. Sandhu

The functions of roles may vary drastically in different services depending on
the nature of the service.

Services. A service represents a distributed cloud service. Since OpenStack and
most of other cloud systems are designed following service-oriented architecture
(SOA) model, cloud applications and resources are delivered to the customers as
services. The core service types in OpenStack include compute, image, identity,
volume and network.

Object Types and Operations5. An object type represents a kind of cloud
resources such as VM or image. Each service may provide multiple object types.
For example, within the network service, IP and port are different object types.
An operation is an access method to the object types. General operations are
create, read, update and delete (CRUD) interacting with object types.For exam-
ple, a typical permission “Delete VM” is a combination of delete operation and
VM object type. Note that in cloud environments we cannot specify a partic-
ular object in the policy since the objects are created “on-demand”. Thus, the
finest-grained access control unit is a collection of objects identified by a specific
object type and a specific project.

As a role-based authorization model, the central part of OSAC is the as-
signments related to roles: user assignment (UA), group assignment (GA) and
permission assignment (PA) as illustrated in Figure 2. Both groups and users
are assigned to project-role pairs but permissions are assigned to roles. As a
result, the permissions assigned to a role populates across all the projects. For
example, if Dan is assigned a developer role in both Sales.Development and
HR.Development, the permissions available to Dan through the developer role
in both projects are identical. This arrangement embodies the multi-tenant na-
ture of cloud resources and provides great flexibility for the assignments as long
as the definition of roles is consistent within each service. It is worth noting that
user assignments and group assignments are managed centrally in the identity
service which permission assignments are distributed into each service.

Tokens. A token represents a subject acting on behalf of a user. A token is
issued by the identity service for an authenticated user and then validated by
other services whenever the user requests cloud resource accesses. A token may
be expired or revoked during its lifetime. The content of a token is encrypted
with public key infrastructure (PKI) so that it cannot be altered during trans-
portation. It reveals all the information needed to authorize the access including
the accessing user, the target project6, all the assigned roles in the project7 and
service catalogs. The function user tokens returns the set of tokens that are

5 For clarity, we introduce object types and operations as components of permissions
to the OSAC model. There is no specification of these two concepts in the identity
service API.

6 The accessing scope may be project, domain, or even unscoped. For ordinary ac-
cesses, a token is scoped to a project

7 Currently, OpenStack does not support activating an arbitrary subset of roles as-
signed to a user in the project.



Extending OpenStack Access Control with Domain Trust 61

associated with a user, the function token project returns the target project
and the function token roles returns the roles assigned to the user in the target
project. Typically a user is issued one token for each project. Thus, in a partic-
ular project, the permissions available to the user are the permissions assigned
to the roles revealed in the correlated token.

We summarize the above in the following definition.

Definition 1. Core OSAC model has the following components.

– U , G, P , D, R, S, OT , OP and T are finite sets of users, groups, projects,
domains, roles, services, object types, operations and tokens respectively.

– user owner : U → D, a function mapping a user to its owning domain.
Equivalently viewed as a many-to-one relation UO ⊆ U ×D.

– group owner : G → D, a function mapping a group to its owning domain.
Equivalently viewed as a many-to-one relation GO ⊆ G×D.

– project owner : P → D, a function mapping a project to its owning domain.
Equivalently viewed as a many-to-one relation PO ⊆ P ×D.

– UG ⊆ U ×G, a many-to-many relation assigning users to groups where the
user and group must be owned by the same domain.

– PRP = P ×R, the set of project-role pairs.
– PERMS = OT ×OP , the set of permissions.
– ot service : OT → S, a function mapping an object type to its associated

service.
– PA ⊆ PERMS×R, a many-to-many permission to role assignment relation.
– UA ⊆ U × PRP , a many-to-many user to project-role assignment relation.
– GA ⊆ G×PRP , a many-to-many group to project-role assignment relation.
– user tokens : U → 2T , a function mapping a user to a set of tokens; corre-

spondingly, token user : T → U , mapping of a token to its owning user.
– token project : T → P , a function mapping a token to its target project.
– token roles : T → 2R, a function mapping token to its set of roles. Formally,

token roles(t) = {r ∈ R|(token user(t), (token project(t), r)) ∈ UA} ∪
(
⋃

g∈user groups(token user(t) {r ∈ R|(g, (token project(t), r)) ∈ GA}).
– avail token perms : T → 2PERMS , the permissions available to a user

through a token, Formally,
avail token perms(t) =

⋃
r∈token roles(t){perm ∈ PERMS|(perms, r) ∈ PA}.

Role hierarchy (RH) is not supported in OSAC but it could be a reasonable
extension for convenience. Depending on operation needs, the hierarchy relation
may be added upon roles or to project-role pairs. Both approaches allow spec-
ification of role-hierarchy assignments in the centralized identity service while
the former also supports distributed assignment since different service may build
different structures of role hierarchy as needed. Consideration of these extensions
is beyond the scope of this paper.

Administrative OSAC Model. As described previously, the identity infor-
mation of all the entities including services, domains, users, groups, projects



62 B. Tang and R. Sandhu

and roles are stored and managed by the Keystone identity service in Open-
Stack, as are the assignments associating users and groups with roles in domains
or projects. It is worth to note that the permission assignments are separately
maintained by each cloud service provider in a policy file. The policy file for the
identity service specifies the permissions to manage identities and assignments
for administrator roles.

The administrative OSAC (AOSAC) model consists of three levels of admin-
istrative roles: cloud admin, domain admin and project admin. As their names
indicate, cloud admin refers to top-level administrators with the CSP manag-
ing all the information in the identity service; domain admin at the middle-
level is able to conduct administrative tasks within the associated domain; and
project admin at the bottom-level take the responsibility of managing UA and
GA assignments for the associated project. A user can only be assigned to
cloud admin role at the installation time of the cloud or by other users with
the cloud admin role afterwards. The domain admin and project admin roles
are assigned to users by associating the users with the “admin” role in a specific
domain or project respectively. Figure 3 illustrates an example administrative
role hierarchy in AOSAC.

Cloud_Admin 
(CA)

Development 
Domain_Admin

(DDA)

Production 
Domain_Admin

(PDA)

Sales.Development 
Project_Admin

(SDPA)

HR.Development 
Project_Admin

(HDPA)

Sales.Production 
Project_Admin

(SPPA)

HR.Production 
Project_Admin

(HPPA)

Fig. 3. An example administrative role hierarchy

In the DevOps example described in Section 2, Development domain admin
(DDA) and Production domain admin (PDA) roles are assigned to users owned
by each domain respectively. A PDA can list and view users, groups and projects
in Production. He or she can also assign roles, including the “admin” role, in
a project of Production to a user. A Sales.Production project admin (SPPA)
can assign roles other than the “admin” role in Sales.Production to a user.
Note that a PDA or a SPPA can assign Dennis@Development to the “de-
veloper” role in Sales.Production. As a result, DevOps cross-domain accesses
may be authorized. However, the administrative boundary of the two domains
are intersected with each other. This may lead to unwanted authorization in
cross-domain collaboration, such as the DevOps example.

4 Domain Trust Model

In order to achieve additional control for cross-domain accesses, we propose
domain trust models integrating with the OSAC model. From the description in



Extending OpenStack Access Control with Domain Trust 63

the previous sections, we observe that domains are introduced as administrative
boundaries. Bridging domains using trust relations gives a controlled way to
allow cross-boundary collaborations. For a user to have roles in a project, a
proper trust relation needs to be established between the owning domains of the
user and the project.

Domain Trust Relation. The definitions of trust relations vary in different
application scenarios. In the field of access control, either explicit or implicit trust
relation is essential to decentralized authorization [9]. Thus, in order to properly
authorize cross-domain accesses, we have to specify what a trust relation means
and how the trust relation interacts with the existing access control model.

Trust is a complicated concept and has been treated in different ways in the
context of access control. The following is a list of characteristics related to
domain trust relations. Figure 4 depicts the potential combinations.

Trust

Two-party Federation

Unilateral Bilateral

BidirectionalUnidirectional Bidirectional

TransitiveNon-Transitive

Fig. 4. A tree structure showing characteristics of domain trust relation

Protocol (Two-party vs Federation). Two-party trust is established be-
tween two domains. A federation trust exists in an alliance or cooperative as-
sociation in which a participant that is a domain trusts each other participants
and it is also true in return.

Initiation (Bilateral vs Unilateral). When the trustor creates a trust rela-
tion, if the trustee is required to confirm, then the trust relation is regarded as
bilateral otherwise unilateral. It is worth to note that transferring a unilateral
trust relation to a bilateral one is much easier than doing the reverse.

Direction (Bidirectional vs Unidirectional). A bidirectional trust relation
requires the actions enabled through the trust relation are equally available for
the trustor and the trustee. Conversely, a unidirectional trust, as the name refers,
requires availability of the actions only on one side.

Transitivity (Transitive vs Non-transitive). For domain A, B and C, if A
trusts B and B trusts C it is implied that A trusts C, then the trust relation is
transitive. Otherwise, the trust relation is non-transitive.

In this paper, the domain trust relation is specified as an two-party, unilateral,
unidirectional and non-transitive relation. Moreover, it is reflexive meaning each
domain trusts itself. It is functionally defined as the following.



64 B. Tang and R. Sandhu

Definition 2. If and only if Domain A trusts Domain B, also written as “A�
B”, A or B can perform unidirectional cross-domain authorization.

The actions enabled through a domain trust relation depend on the trust
types defined as follows.

Definition 3. Based on collaborative access control needs, the domain trust re-
lation described in Definition 2 can be categorized into three useful types.

– Type-α, requires visibility of the trustee’s user information for the trustor
to assign trustee’s users to roles in trustor’s projects, written as “�α”.

– Type-β, requires the trustor to expose its user information for the trustee to
assign trustor’s users to roles in trustee’s projects, written as “�β”.

– Type-γ, requires the trustor to expose its project information for the trustee
to assign trustee’s users to roles in trustor’s projects, written as “�γ”.

Type-α Trust is used implicitly in current OpenStack since the trustor
domain admin and project admin can see the users in all the domains and
assign them to roles in the trustor’s projects. Type-α Trust is only useful when
user related information is not sensitive and available across domains by default.
In contrast, Type-β Trust and Type-γ Trust protect user information as sensi-
tive property of each domain. Both of them require dual control. In particular,
the trustor manages the trust relation while the trustee manages cross-domain
authorization. In this way, cross-domain accesses can be revoked by either end
of the trust relation.

OSAC Domain Trust Since we have specifically defined the domain trust
relation above, integrating it with OSAC becomes straightforward. The formal
definition of the OSAC Domain Trust (OSAC-DT) model follows.

Definition 4. The OSAC-DT model extends the OSAC model in Definition 1
with the following modifications.

– DT ⊆ D ×D, a many-to-many trust relation on D, also written as “�”.
– UA is modified to require that (u, (p, r)) ∈ UA only if

project owner(p) ≡ user owner(u)∨project owner(p) �α user owner(u)∨
user owner(u) �β project owner(p)∨project owner(p) �γ user owner(u).

– GA is modified to require that (g, (p, r)) ∈ GA only if
project owner(p) ≡ group owner(g)∨project owner(p) �α group owner(g)
∨ group owner(g) �β project owner(p) ∨ project owner(p) �γ

group owner(g).

The modification focuses on the effect of the domain trust relation introduced.
Particularly, the project owner has to trust the user owner for UA and GA to
take effect. The trust relation is checked during both authorization time and
accessing time so that if it is revoked the correlated cross-domain accesses may
be automatically or manually revoked depending upon implementation.



Extending OpenStack Access Control with Domain Trust 65

OSAC-DT allows the three types of trust relations to coexist with each other.
A specific cross-domain UA or GA is effective as long as the trust relation be-
tween the user or group and the project domains satisfy the condition described
in Definition 4. In fact, combining Type-α and Type-β trusts we achieve a bi-
lateral trust relation. For example, only if both Production �α Development
and Development �β Production exists, then cross-domain authorization by
Production is enabled.

By introducing explicit domain trust relation, the following constraints may
be enforced over cross-domain authorization.

Separation of Duties (SoD). Some of the collaborations among domains may
have conflict of interests which should be addressed by additional constraint
policy and lists of mutually exclusive domains.

Minimum Exposure. In collaboration, the over-exposure of user or project
information increases security and privacy risks. An effective solution is limiting
exposure of information based on each domain or each trust requirements.

Cardinality. A domain may limit the number of domains to be trusted. For
example, some domains , such as Production, require high-level security and
allow only one trusted domain at a time for temporary access if necessary.

The constraints listed above and a lot more are previously not available with-
out domain trust relations.

Domain Trust Administration. The administrative OSAC-DT (AOSAC-
DT) model extends the AOSAC model by the administration of domain trust
relations and their enabled actions. Since the trust relation is unilateral, only
the cloud admin the domain admin of the trustor and have permission to cre-
ate and revoke a specific domain trust relation. The trust relation enables the
project admin and domain admin of the trustor, in case of Type-α trust, or
the trustee, in case of Type-β trust or Type-γ trust, to view the user or project
information necessary for them to make cross-domain authorization.

5 Prototype and Evaluation in OpenStack

To further explore the feasibility of our OSAC-DT model, we implement a pro-
totype system based on the Havana release of Keystone source code [4]. Further-
more, we conduct experiments on the prototype system in terms of performance
and scalability. The results turn out to be convincing that the integrated domain
trust introduces minimum authorization overhead.

Implementation Overview. The architecture of our prototype follows the
Keystone design. The domain trust verification process intercepts the authenti-
cation process. Before Keystone issues the token for a requesting user, the domain
trust relations stored in the MySQL database are checked. Only if the requesting
user’s owning domain is trusted by the target project’s owning domain, then the
token issuing process can go through. Otherwise, an “unauthorized” response



66 B. Tang and R. Sandhu

will be returned. For proof of concept purpose, we implement only Type-γ trust
in the prototype system. It is straightforward to extend the implementation
other types of domain trust relations discussed in Section 4 and similar evalu-
ation results are predicted because the domain trust verification processes are
similar.

Evalutation. The implementation and experiments are conducted in experi-
mental Devstack [2] deployments in a private cloud. The core OpenStack ser-
vices, including Keystone, are running on a single VM. The requesting clients
are from the same data center network of the private cloud. Since only Keystone
code is modified, the experiments focus on evaluating the token issuing process
including sequential processes of authentication, domain trust verification, token
composition and network transmission, etc.

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

T
o
k
e
n
 I

ss
. 
D

e
la

y
 (

m
s)

Req. Numbers (x100)

intra-domain
cross-domain

(a) performance

7

7.2

7.4

7.6

7.8

8

1 2 4 8

T
h
ro

u
g
h
p
u
t 

(r
e
q
/s

e
c
)

Keystone Capability (x1CPU/1GB)

intra-domain

cross-domain

(b) scalability

Fig. 5. Performance and scalability evaluation results

The experiments simulate sequential token requests for one-hundred users
and projects owned by ten independent domains. Each user is associated with
both intra-domain and cross-domain assignments through ten different roles.
As Figure 5a shows, the x-axis represents the requests per user and the y-axis
indicates the latency between request time and response time from the client end,
also known as the token issuing delay. Comparing the token issuing delay of intra-
domain and cross-domain access requests, the domain trust verification process
costs 0.96 ms on average or 0.7% performance overhead which is acceptable.

Figure 5b presents the results for scalability tests on our prototype system.
The x-axis represents the capability of the VM running Devstack in the unit
of “1CPU/1GB RAM”. The y-axis is the calculated throughput for the token
issuing process. The plotted diagram shows that with ten requests per user, the
throughput increase of the prototype system is proportional to the increase of
the capability of Keystone servers from 1 unit to 8 units so that the system is
scalable and adding the domain trust does not cause scalability problem.



Extending OpenStack Access Control with Domain Trust 67

6 Related Work

Role-Based Access Control (RBAC) [12] is a dominant model in single organi-
zation scenarios. ROBAC [24], one of the RBAC extensions, is able to manage
authorization for multiple organizations, comparable to domains, but collabora-
tion among organizations are not allowed. GB-RBAC [15] supports collaboration
among groups. Yet, the group admin can not manage the users inside the group
which is different with domains in OpenStack. More importantly, most of RBAC
extensions need a centralized authority to administer each collaboration. In the
cloud environment, the centralized authority is the cloud service provider (CSP)
who is inappropriate and incapable to manage all the collaborations.

Role-based delegation models [8,13,14,23] are designed to solve collaboration
problems. However, the chained delegation relations are not flexible enough.
Since the entities in the cloud are created on-demand and deleted afterwards,
any node of the chain may disappear resulting in void delegation. Comparing to
OSAC-DT, the trust relation is always created and maintained by the trustor
and non-transitive so that the management of trust relations is simple.

Secure multi-domain interoperation solutions [19,18] leverage role mapping
techniques between domains to facilitate interoperation. Role mapping is a form
of role hierarchy linking roles across domains. But it cannot be integrated with
OpenStack since role hierarchy is not supported. Even if role hierarchy can be
established, as we discussed in the OSAC model, role-mapping will not func-
tion until the PA becomes project-specific or domain-specific. In OSAC-DT, the
trust relations is on domains and only affects UA and GA which are project-
specific. Authorization services [6,11,16] in the Grid leverage decentralized trust
management [9]. In order to establish collaboration, maintaining credentials be-
tween nodes becomes a huge performance overhead which could be avoided in
the Cloud by the centralized identity service.

OSAC-DT is closely related to the models like MTAS [10,22], MT-RBAC [20]
and CTTM [21]. OSAC-DT differs in its compatibility with the OpenStack Iden-
tity API v3. Further, the administrative model also merges with the OpenStack
Keystone management. Ray et al [17] propose a formal trust-based delegation
model solving similar problems in mobile cloud environment. However, the calcu-
lated trust relation is inappropriate and unnecessary between domains in Open-
Stack since domains have the authority to assign trust relations with each other.

7 Conclusion

In this paper, we present a formalized OpenStack access control model from
which we propose a domain-trust extension to better facilitate the decentral-
ized authorization for cross-domain collaborations. There are three useful types
of OpenStack-specific domain trust relations, intuitive trust, user-aware trust
and project-aware trust, applicable to various collaboration needs. Further, we
implement a proof of concept prototype system with project-aware trust based
on Keystone Havana release source code. The experiment results show that the
integrated domain trust model is acceptable in both performance and scalability.



68 B. Tang and R. Sandhu

Acknowledgement. Sincere gratitude is hereby extended to the following.
Farhan Patwa, director of ICS, for his patient help on the OpenStack implemen-
tation and active connections with the OpenStack community. Dolph Mathews,
PTL of Keystone, for his reviews on the preliminary OSAC model and the do-
main trust blueprint. Dr. Jaehong Park, research associate professor of ICS, for
his insights and comments leading to improvement of the OSAC model. This
work is partially supported by grants from the National Science Foundation and
AFOSR MURI program.

References

1. DevOps, http://en.wikipedia.org/wiki/DevOps
2. Devstack, http://www.devstack.org
3. Microsoft windows active directory,

http://en.wikipedia.org/wiki/Active_Directory

4. OpenStack Havana Release, http://www.openstack.org/software/havana
5. Openstack identity service api v3 (stable),

http://developer.openstack.org/api-ref-identity-v3.html

6. Alfieri, R., Cecchini, R., et al.: From gridmap-file to VOMS: managing authoriza-
tion in a grid environment. Future Generation Computer Systems 21(4), 549–558
(2005)

7. Baracaldo, N., Masoumzadeh, A., Joshi, J.: A secure, constraint-aware role-based
access control interoperation framework. In: Proc. of the 5th International Confer-
ence on Network and System Security (NSS), pp. 200–207. IEEE (2011)

8. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proc. of
the Annual Conf. on Comp. Sec. Applications (ACSAC), pp. 168–176. IEEE (2000)

9. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc. of
the 1996 IEEE Symp. on Security and Privacy, pp. 164–173. IEEE (1996)

10. Calero, J.M.A., Edwards, N., et al.: Toward a multi-tenancy authorization system
for cloud services. IEEE Security & Privacy, 48–55 (November/December 2010)

11. Chadwick, D.W., Otenko, A.: The PERMIS X. 509 role based privilege manage-
ment infrastructure, vol. 19, pp. 277–289. Elsevier (2003)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. TISSEC 4(3), 224–274 (2001)

13. Freudenthal, E., Pesin, T., et al.: dRBAC: distributed role-based access control for
dynamic coalition environments. In: Proc. of ICDCS, pp. 411–420. IEEE (2002)

14. Li, N., Mitchell, J.C., et al.: Design of a role-based trust-management framework.
In: Proc. of IEEE Symp. on Sec. and Privacy, pp. 114–130. IEEE (2002)

15. Li, Q., Zhang, X., Xu, M., Wu, J.: Towards secure dynamic collaborations with
group-based RBAC model. Computers & Security 28(5), 260–275 (2009)

16. Pearlman, L., Welch, V., Foster, I., et al.: A community authorization service for
group collaboration. In: Proc. of Intl. POLICY, pp. 50–59. IEEE (2002)

17. Ray, I., Mulamba, D., Ray, I., Han, K.J.: A model for trust-based access control
and delegation in mobile clouds. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS,
vol. 7964, pp. 242–257. Springer, Heidelberg (2013)

18. Shafiq, B., Joshi, J.B., Bertino, E., Ghafoor, A.: Secure interoperation in a mul-
tidomain environment employing RBAC policies. IEEE Transactions on Knowledge
and Data Engineering 17(11), 1557–1577 (2005)

http://en.wikipedia.org/wiki/DevOps
http://www.devstack.org
http://en.wikipedia.org/wiki/Active_Directory
http://www.openstack.org/software/havana
http://developer.openstack.org/api-ref-identity-v3.html


Extending OpenStack Access Control with Domain Trust 69

19. Shehab, M., Bertino, E., Ghafoor, A.: SERAT: SEcure role mApping technique for
decentralized secure interoperability. In: Proc. of SACMAT, pp. 159–167 (2005)

20. Tang, B., Li, Q., Sandhu, R.: A multi-tenant RBAC model for collaborative cloud
services. In: Proc. of IEEE Conf. on Privacy, Security and Trust, PST (2013)

21. Tang, B., Sandhu, R.: Cross-tenant trust models in cloud computing. In: Proc. of
IEEE Conf. on Information Reuse and Integration, IRI (2013)

22. Tang, B., Sandhu, R., Li, Q.: Multi-tenancy authorization models for collaborative
cloud services. In: Proc. of Intl. Conf. on Collab. Tech. and Sys., CTS (2013)

23. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC. In:
Proc. of SACMAT, pp. 149–157. ACM (2003)

24. Zhang, Z., Zhang, X., Sandhu, R.: ROBAC: Scalable role and organization based
access control models. In: Proc. of CollaborateCom, pp. 1–9. IEEE (2006)


	Extending OpenStack Access Controlwith Domain Trust
	1 Introduction
	2 Background and Motivation
	3 OpenStack Access Control Model
	4 Domain TrustModel
	5 Prototype and Evaluation in OpenStack
	6 Related Work
	7 Conclusion
	References




