
The GURAG Administrative Model
for User and Group Attribute Assignment

Maanak Gupta(B) and Ravi Sandhu

Institute for Cyber Security, Department of Computer Science,
University of Texas at San Antonio,

One UTSA Circle, San Antonio, TX 78249, USA
gmaanakg@yahoo.com, ravi.sandhu@utsa.edu

Abstract. Several attribute-based access control (ABAC) models have
been recently proposed to provide finer-grained authorization and to
address the shortcomings of existing models. In particular, Servos et al.
[33] presented a hierarchical group and attribute based access control
(HGABAC) model which introduces a novel approach of attribute inher-
itance through user and object groups. For authorization purposes the
effect of attribute inheritance from groups can be equivalently realized
by direct attribute assignment to users and objects. Hence the practi-
cal benefit of HGABAC-like models is with respect to administration. In
this paper we propose the first administration model for HGABAC called
GURAG. GURAG consists of three sub-models: UAA for user attribute
assignment, UGAA for user-group attribute assignment and UGA for
user to user-group assignment.

Keywords: Attribute based access control · Attribute inheritance ·
Group hierarchy · Group attribute administration · User-group
assignment

1 Introduction

Interest in attribute-based access control (ABAC) has been developing over the
past two decades, in part due to limitations of the widely deployed role-based
access control (RBAC) model [32]. A number of ABAC models have been pub-
lished over the years [10–12,15,27,34,36,37], although none of these is quite
regarded as the definitive characterization of ABAC.

Since ABAC access mechanism revolves around the attributes of entities,
Servos et al. [33] proposed the hierarchial group and attribute-based (HGABAC)
model, which leverages user and object groups for allocating attribute values to
users and objects. In this model, a user can be assigned to a user-group and
instead of assigning attributes individually to each user in the group, a collection
of attribute values is assigned to the group and inherited by all users in that
group. A similar mechanism applies on the object side with object groups.

The essential benefit of HGABAC is convenient administration of attribute
values for users and objects. Our contribution in this paper is to present the
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 318–332, 2016.
DOI: 10.1007/978-3-319-46298-1 21



The GURAG Administrative Model 319

first administrative model for HGABAC, called GURAG. GURAG builds upon
the GURA model [14] for user attribute assignment (UAA) but further adds
components for user-group attribute assignment (UGAA) and user to user-group
assignment (UGA). For this purpose we introduce an alternate formalization of
the HGABAC model which is compatible with the GURA and GURAG models.

Remaining paper has been organized as follows. An overview of HGABAC
followed with re-formalized model is discussed and specified in Sect. 2. In Sect. 3,
we propose a formal role and attribute based administration model for user
and user groups (GURAG). Section 4 discusses some limitations of the proposed
model. Section 5 reviews previous work related to ABAC and administration
models, followed by conclusion in Sect. 6.

2 HGABAC Model

This section gives an informal characterization of groups in HGABAC [33], fol-
lowed by a formal specification. Our formalization is in the style of ABACα [15],
different from but equivalent to the formalization of Servos et al. [33]. Our alter-
nate formalization of HGABAC enables us to build upon the GURA adminis-
trative model [14] for ABACα in Sect. 3.

2.1 Groups in HGABAC

Similar to many ABAC models, HGABAC recognizes the entities of users, sub-
jects and objects. A user is a human being which interacts directly with the
computer, while subjects are active entities (like processes) created by the user
to perform actions on objects. Objects are system resources like files, applica-
tions etc. Operations correspond to access modes (e.g. read, write) provided by
the system and can be exercised by a subject on an object. The properties of
entities in the system are reflected using attributes. Users and subjects hold the
same set of attributes whereas objects have a separate set of attributes reflecting
their characteristics. We assume all attributes are set valued. Also each attribute
has a finite set of possible atomic values from which a subset can be assigned to
appropriate entities.

In addition to the above familiar ABAC entities, HGABAC further introduces
the notion of a group as a named collection of users or objects. Each group has
attribute values assigned to it. A member of the group inherits these values from
the group. Users will inherit attributes from user groups and objects from object
groups. A partially ordered group hierarchy also exists in the system where senior
groups inherit attribute values from junior groups.

An example user-group hierarchy is illustrated in Fig. 1. Senior groups are
shown higher up and the arrows indicate the direction of attribute inheritance.
Since Graduate group (G) is senior to both CSD and UN, G will hold the
attribute values directly assigned to it as well as values inherited from CSD
and UN. The values of univId and college attributes for group G are respec-
tively inherited from UN and CSD, values of userType and studType are directly



320 M. Gupta and R. Sandhu

Fig. 1. Example User Groups (values in black are direct and in gray are inherited)

assigned to G while the values of roomAcc are a mix of directly assigned val-
ues, 2.03 and 2.04, and inherited value 3.02 from CSD. Each user is assigned
to a subset of user groups. Similarly there is an object-group hierarchy wherein
attribute values of objects are analogously inherited.

The core advantage of introducing groups is simplified administration of user
and object attributes where an entity obtains a set of attributes values by group
membership in lieu of assigning one value at a time. In context of Fig. 1 assigning
an attribute value to CSD potentially saves hundreds or thousands of assign-
ments to individual student and staff. Likewise changing the CSD level room
from 3.02 to, say, 3.08, requires only one update as opposed to thousands.

2.2 HGABAC Model: An Alternate Formalization

We now develop a formalization of the HGABAC model different from that of
Servos et al. [33]. This alternate formalization will be useful in the next section
where we develop the GURAG for administration of HGABAC. Our formal-
ization uses the conceptual model of HGABAC shown in Fig. 2. The complete
HGABAC formalization is given in Table 1, which we will discuss in the remain-
der of this subsection. An example configuration of HGABAC is given in the
next subsection.

Basic sets and functions of HGABAC are shown at the top of Table 1. U,
S, O and OP represent the finite set of existing users, subjects, objects and
operations respectively. UG and OG represent sets of user and object groups in
the system. UA is the set of user attributes for users, user groups and subjects.
OA is similarly the set of object attributes for objects and object groups. All
these sets are disjoint.

Attribute values can be directly assigned to users, objects, user groups and
object groups (we will consider subjects in a moment). These are collectively
called entities. Each attribute of an entity is set valued. The value of an attribute



The GURAG Administrative Model 321

Fig. 2. A Conceptual Model of HGABAC

att for an entity is some subset of Range(att) which is a finite set of atomic values,
as indicated by the functions attu and atto in Table 1. These functions specify
the attribute values that are directly assigned to entities. The function directUg
specifies the user groups to which the user is assigned, and similarly the function
directOg specifies the object groups to which an object is assigned.

User group hierarchy (UGH) is a partial order on UG, written as �ug, where
ug1 �ug ug2 denotes ug1 is senior to ug2 or ug2 is junior to ug1. This many to
many hierarchy results in attribute inheritance where the effective values of user
attribute function attu for a user-group ug (defined by effectiveUGattu(ug)) is
the union of directly assigned values for attu and the effective attribute values
of all groups junior to ug. The assignment of a user to a user-group will inherit
values from this group to that user. The function effectiveattu maps a user to the
set of values which is the union of the values of attu directly assigned to the user
and the effective values of attribute attu from all user groups directly assigned to
the user. Similar sets and functions are specified for objects and object groups.

A subject is created by a user, denoted by the SubUser function. The effective
attribute values of a subject are under control of its creating user. These values
are required to be a subset of the corresponding effective attribute values for
the creator. In general these values can change with time but cannot exceed
the creator’s effective values. The exact manner in which a subject’s effective
attributes are modified by its creator is not specified in the model, and can be
realized differently in various implementations.

Each operation op ∈ OP in the system has an associated boolean authoriza-
tion function Authorizationop(s,o) which specifies the conditions under which
subject s ∈ S can execute operation op on object o ∈ O. The condition is specified
as a propositional logic formula using the policy language given in Table 1. This
formula can only use the effective attribute values of the subject and object in



322 M. Gupta and R. Sandhu

Table 1. HGABAC: An Alternate Formal Model



The GURAG Administrative Model 323

Table 2. Example HGABAC Configuration

Basic Sets and functions

– UA = {studId, userType, skills, studType, univId, roomAcc, college, jobTitle, studStatus}
– OA = {readerType}
– OP = {read}
– UG = {UN, CSD, G, UGR, S}, OG = { }
– UGH is given in Fig. 1, OGH = { }
– Range of each attu in UA, denoted by Range(attu):

studId = {er35, abc12, fhu53}, userType = {faculty, staff, student},

skills = {c, c++, java}, studType = {Grad, UnderGrad},

univId = {12345}, roomAcc = {1.2, 2.03, 2.04, 3.02},

college = {COS, COE, BUS}, jobTitle = {TA, Grader, Admin},

studStatus = {graduated, part-time, full-time}
– Range of each atto in OA, Range(readerType) = {faculty, staff, student}
Authorization Function:

Authorizationread(s : S, o : O) ≡ effectiveuserType(s) ∈ effectivereaderType(o) ∧ java ∈ effectiveskills(s)

Fig. 3. Example Access Request Flow

question. The authorization functions are specified by the security policy archi-
tects when the system is created. Thereafter, a subject si ∈ S is allowed to
execute operation op on object o oj ∈ O if and only if Authorizationop(si, oj)
evaluates to True.

2.3 Example HGABAC Configuration

An example HGABAC configuration is given in Table 2, utilizing the user group
hierarchy of Fig. 1. For simplicity, we do not include any object groups. The
authorization policy for the read operation is specified. The access request flow
in Fig. 3 assumes the user has the set of effective attributes shown. The subject
has the given subset of its creator’s effective attributes. The subject is thereby
allowed to read the object as the authorization policy for read is satisfied by the
effective attributes of the subject and object.



324 M. Gupta and R. Sandhu

Table 3. GURAG Administrative Model

Administrative Roles and Expressions

– AR: a finite set of administrative roles

– EXPR(UA): a finite set of prerequisite expressions composed of user attribute
functions as defined in Sects. 3.1 and 3.2

– EXPR(UA ∪ UG): a finite set of prerequisite expressions composed of user
attribute functions and user groups as defined in Sect. 3.3

Administrative Relations

– User Attribute Assignment (UAA) & User-Group Attribute Assignment
(UGAA):

For each attu in UA,

canAddattu ⊆ AR × EXPR(UA) × 2Range(attu)

canDeleteattu ⊆ AR × EXPR(UA) × 2Range(attu)

– User to User-Group Assignment (UGA):

canAssign ⊆ AR × EXPR(UA ∪ UG) × 2UG

canRemove ⊆ AR × EXPR(UA ∪ UG) × 2UG

3 The GURAG Administrative Model

The HGABAC model offers the advantage of easy administration of attributes
for users and objects. The novel approach of assigning attributes to groups and
users to groups is analogous to the permission-role and user-role assignment
in RBAC [32]. By assigning a user to a user-group, the user inherits all the
effective attribute values of that group in a single step, as compared to one by
one attribute value assignment. Further, if an inherited attribute value has to
be changed for multiple users, instead of changing per user, the value in a group
can be changed, making administration very convenient.

The essence of HGABAC model is in simple administration as the effect
of attribute inheritance can also be realized by direct attribute assignment for
authorization purposes. Changing the attribute values of a group can impact
large numbers of users and objects, thus reducing the administrative effort, and
leading to better comprehension of attribute values. For example, in Fig. 1 the
fact that groups G, UGR and S inherit the roomAcc value 3.02 from CSD is
visible because of the group structure.

This section presents the GURAG administrative model for managing the
user side of HGABAC. GURAG is inspired by the GURA model [14] which in
turn evolved from URA97 [30]. All these models require a set of administra-
tive roles AR that will be assigned to security administrators. Administrative
role hierarchy also exists, wherein senior administrative roles inherit permissions
from junior ones. GURAG regulates the powers of an administrative role with
respect to user attribute assignment (UAA), user-group attribute assignment
(UGAA) and user to user-group assignment (UGA) (see Fig. 2). The Add and



The GURAG Administrative Model 325

Table 4. Example rules in UAA

canAddjobTitle rule:

(DeptAdmin, Grad ∈ effectivestudType(u), {TA, Grader})

canDeleteroomAcc rule:

(BuildAdmin, graduated ∈ effectivestudStatus(u), {1.2, 2.03, 2.04, 3.02})

Delete operations enable addition or deletion of attribute values from user and
user groups. Assignment or removal of a user from a user-group is accomplished
by Assign and Remove operations. Table 3 depicts the various sets and adminis-
trative relations required to administer the user side of HGABAC. The prereq-
uisite conditions are specified with slight modifications to the policy language
described in Table 1. We now define the three sub-models of GURAG.

3.1 The UAA Sub-model of GURAG

The UAA sub-model deals with addition or deletion of values to a set-valued
attribute of a user. It is composed of two relations as shown in Table 3. The
meaning of (ar,Expr(ua),Z) ∈ canAddattu is that a member of an administrator
role ar (or senior to ar) is authorized to add any value in the allowed range
Z of attribute attu of a user whose attributes satisfy the condition specified
in Expr(ua). EXPR(UA) is the set of all prerequisite conditions represented
as propositional logic expressions. The expressions return true or false and are
specified using earlier defined policy language (Table 1) with following changes.

set ::= attui(u) | effectiveattui
(u) | constantSet for attui ∈ UA

atomic ::= constantAtomic

The meaning of (ar,Expr(ua),Z) ∈ canDeleteattu is that the member of
administrator role ar (or senior) is authorized to delete any value in allowed
range Z of attribute attu of a user whose attributes satisfy the condition specified
in Expr(ua). The delete operation will only impact directly assigned attribute
value of the user (i.e. val ∈ attu(u)). If the value to be deleted is inherited from a
group, the operation will not have any effect. Further, if a value is both inherited
and directly assigned to user, deletion will only delete the direct value, thereby,
the user will still hold the value inherited from the group. It is worth mentioning
that any change in prerequisite conditions after the attribute value assignment
has been made, will not have any retrospective effect and the entity involved will
still retain the value. This is consistent with the GURA and URA97 models.

Table 4 illustrates example UAA relation. First rule allows administrator role
DeptAdmin (or senior to DeptAdmin) to add any value in {TA, Grader} to user
attribute jobTitle if the user’s studType attribute includes Grad. Second rule
allows administrator role BuildAdmin (or senior to BuildAdmin) to remove any
of the specified room values from the roomAcc attribute of a user whose status
includes graduated.



326 M. Gupta and R. Sandhu

Fig. 4. Example User-Group Attribute Assignment (UGAA)

Table 5. Example rules in UGAA

canAddroomAcc rule: (BuildAdmin, COS ∈ college(ug), {2.04})

canAddskills rule: (DeptAdmin, Grad ∈ studType(ug), {c++})

canDeleteroomAcc rule: (BuildAdmin, 2.04 ∈ roomAcc(ug), {3.02})

3.2 The UGAA Sub-model of GURAG

This sub-model controls addition and deletion of attributes to user-groups as
shown in Table 3. The relations for UAA and UGAA have slightly different policy
languages for EXPR(UA), which in UGAA is defined as follows.

set ::= attui(ug) | effectiveUGattui
(ug) | constantSet for attui ∈ UA

atomic ::= constantAtomic

The meaning of canAdd and canDelete are similar to those in UAA sub-
model. In particular, the delete operation in UGAA only impacts directly
assigned attribute values of a user-group (i.e. val ∈ attu(ug)) and will not delete
inherited values from junior groups.

Figure 4 shows addition and deletion of attribute values to user-group CSD
in context of Table 5. Addition of value 2.04 to roomAcc attribute of CSD group
by administrator role BuildAdmin (or senior to BuildAdmin) is allowed by first
rule in Table 5. Figure also shows deletion of 3.02 value from roomAcc attribute
authorized by third rule.

3.3 The UGA Sub-model of GURAG

The UGA sub-model is composed of two authorization relations in the lower part
of Table 3. These control the assignment of user to user-groups, as well as removal
of a user from a user-group. The meaning of (ar, expr, {g1, g2, g3}) ∈ canAssign
is that member of administrator role ar (or senior) can assign any user-group



The GURAG Administrative Model 327

Fig. 5. Example User to User-Group Assignment (UGA)

Table 6. Example rules in canAssign UGA

Admin role Prereq. cond AllowedGroups

DeptAdmin {c, java} ⊆ effectiveskills(u) ∧ S /∈ effectiveUg(u) {G, CSD}
StaffAdmin {G,UGR} ∩ effectiveUg(u) = ø ∧ Admin ∈ effectivejobTitle(u) {S}
DeptAdmin U ∈ directUg(u) ∧ 3.02 ∈ roomAcc(u) ∧ S /∈ effectiveUg(u) {UGR, CSD}

in {g1, g2, g3} to a user which satisfy the conditions in expr. EXPR(UA ∪ UG)
now includes the current membership or non-membership of user in user-groups
along with user attributes. The policy language has the following changes.

set ::= attui(u) | effectiveattui
(u) | directUg(u) | effectiveUg(u) | constantSet

atomic ::= constantAtomic
where effectiveUg(u) = directUg(u) ∪ (

⋃

∀ugi ∈ directUg(u)

{ugj|ugi �ug ugj})

The canRemove relation in Table 3 controls the removal of a user from user-
group memberships. The remove operation is said to be weak in that it will only
impact explicit memberships of user. A user is an explicit member of group ug
if ug ∈ directUg(u) whereas a user is an implicit member of ug if for some ugi

∈ directUg(u), ug ∈ {ugj | ugi �ug ugj} exists. It should be mentioned that
removal of a user from any explicit membership ug will automatically result in
removal from all implicit membership due to ug.

Figure 5 shows assignment of user to user-group G allowed by first rule
in Table 6. This assignment results in updates on effective attributes of user
as user now inherits all attributes from group G along with direct attributes
assigned through UAA. In case of weak removal (using Fig. 1), suppose a user
is an explicit member of groups CSD and G and administrator role DeptAdmin



328 M. Gupta and R. Sandhu

Table 7. Example rules in canRemove UGA

Admin role Prereq. cond AllowedGroups

UniAdmin graduated ∈ effectivestudStatus(u) ∧ {G, UGR}
∩ effectiveUg(u) �= ø

{G,UGR}

DeptAdmin COS /∈ effectivecollege(u) {CSD}

Table 8. Operational Specification

Operations Conditions Updates

In following operations: V AL′ ∈ 2Range(attu ), val ∈ V AL′, expr ∈ EXPR(UA)

Add(ar, u, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canAddattu
∧ expr(u) = True ∧ val /∈ attu(u)

att′
u(u) = attu(u)∪{val}

Delete(ar, u, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(u) = True ∧ val ∈ attu(u)

att′
u(u) = attu(u)\{val}

Add(ar, ug, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canAddattu
∧ expr(ug) = True ∧ val /∈ attu(ug)

att′
u(ug) = attu(ug)∪{val}

Delete(ar, ug, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(ug) = True ∧ val ∈ attu(ug)

att′
u(ug) = attu(ug)\{val}

In following operations: UG′ ∈ 2UG, ug ∈ UG′, expr ∈ EXPR(UA ∪ UG)

Assign(ar, u, ug) if ∃〈ar, expr, UG′〉 ∈ canAssign

∧ expr(u) = True ∧ ug /∈ directUg(u)

directUg′(u) = directUg(u)∪{ug }

Remove(ar, u, ug) if ∃〈ar, expr, UG′〉 ∈ canRemove

∧ expr(u) = True ∧ ug ∈ directUg(u)

directUg′(u) = directUg(u)\{ug }

removes user from CSD (authorized by second rule in Table 7), the user will still
have attributes of CSD through its membership in G.

3.4 Operational Specification of GURAG

Table 8 outlines administrative operations required for user-group membership
and attribute assignment. In all operations: ar ∈ AR, u ∈ U, attu ∈ UA, ug ∈
UG. A request (first column) succeeds only if a tuple exists in administrative
relation and the entity satisfies the conditions (second column), in which case
the update (third column) is performed.

3.5 GURAG Model Extensions

This section proposes some enhancements to GURAG.
Strong Removal: We can define a strong removal operation as per the fol-

lowing example using Fig. 1. If a user is explicit member of CSD and G and
administrator role DeptAdmin removes this user from CSD (allowed by second
rule in Table 7), the user will also be removed from group G along with CSD
if allowed by authorization rules. If the user cannot be deleted from G, the
operation will have no effect.

Inherited Value Deletion in User: Let Alice have administrator role r1 and
Alice tries to delete inherited value val from attribute attu of user u1. Let there



The GURAG Administrative Model 329

be a canDeleteattu rule (r, cond, allowedV al) and if r1 � r, val ∈ allowedV al
and u1 satisfies cond, find all user groups ug in directUg(u1) from where the
attribute value val is inherited. There are two possibilities: (i) If there exists
a canRemove rule (r, cond, allowedGroup) and if r1 � r, ug ∈ allowedGroup
and u1 satisfies the cond, remove u1 from all such ug groups. (ii) If such a rule
doesn’t exist or u1 cannot be removed from some ug groups, the operation will
have no effect.

Inherited Value Deletion in User Group: Let Alice have role r1, and Alice
tries to delete inherited value val from attribute attu of user group ug1. Let there
exists a canDeleteattu rule (r, cond, allowedV al) and if r1 � r, val ∈ allowedV al
and ug1 satisfies cond, find all user groups ug junior to ug1 which has val directly
assigned. Delete val from all such ug as if Alice did this delete. If any delete fails
this operation is aborted.

4 Discussion and Limitations

The principal advantage of HGABAC model is convenient and simplified
administration of attributes. GURAG proposes first administration model for
HGABAC. Reachability analysis in GURA [16] discusses whether a user can be
assigned specific values with a given set of administrator roles. Since GURAG

proposes the authorization relations in line with GURA, we conjecture that sim-
ilar reachability analysis is feasible for GURAG.

At the same time, GURAG inherits some weaknesses of URA97 and GURA
as discussed in [23]. Authorization rules in UAA and UGAA may require a user
or user-group to have attribute values to satisfy prerequisite conditions to get
other attribute values. To attain prerequisite attribute values, entity might need
to satisfy another condition which itself would require some other attributes and
so on. A single GURAG attribute assignment may require multiple attribute
assignments to get final attribute values, possibly involving several administra-
tors. These multi-step assignments may also result in some attribute values to
be assigned to an entity solely for administrative purposes, but not otherwise
needed.

Likewise, UGA rules may require a user having existing attribute values or
membership in groups, which might also require multiple user groups or attribute
pre-assignments and security administrators. If some rule has prerequisite junior
groups requirement to assign a senior group membership, it will unnecessarily
necessitate a user to be explicit member of junior groups, though same attribute
inheritance can be achieved through senior group membership only. Thus, junior
group assignments would be redundant and may lead to multiple step revoca-
tions when the user is deleted from system. An approach similar to [23] could be
proposed to resolve these shortcomings where users and user-groups are assigned
to organizational structure based user or group pools. Organizational pool is a
group of users or user-groups with similar goals. Entities are assigned to pools
and then attribute values depending on the requirements. Pools are used in pre-
requisite conditions instead of attributes overcoming multiple pre-assignments



330 M. Gupta and R. Sandhu

for user and user-groups. A similar approach can also be followed in user to
user-group assignment.

The object side of HGABAC has not been discussed but it seems to be a
pragmatic approach to extend URA97 for object administration as well. Though
user and object have different properties, for attribute assignments we believe it
will not make any difference. For user and object group hierarchies, RRA97 [30]
could be a base model to be worked upon.

5 Related Work

Several papers [4,7,8,22] have been published to associate attributes to
encrypted data, policies and keys. A fine grained ABAC for data outsourc-
ing system is discussed in [12]. Work in [28] proposes key distribution center
and encryption using cloud owner attributes. RBAC has been extended to use
attributes for role assignment [5,24]. [20] discussed approaches to relate roles and
attributes while RB-RBAC [3] dynamically assign roles to users using attribute
based rules. Role activation based on time constraints is explored in [17]. Muta-
ble attributes in access decisions is discussed in [25]. Xin et al. [15] also presented
an ABAC model with DAC, MAC and RBAC configurations. Lang et al. [21]
proposed a model by extending XACML [1] and SAML [2] to support multi-
policy ABAC. Using location attribute to secure social networks is discussed in
[9]. [13] enforces separation of duty in ABAC systems. Automatic security risk
adjustment based on attributes is presented in [18]. Yuan et al. [37] presented
an authorization architecture and policy formulation for ABAC in web services.
Wang et al. [36] provided framework using logic based programming to model
ABAC. Preference based authorization [19] is proposed by extending XACML.
Context based policy redeployment is discussed in [26]. [35] proposes an exten-
sion to assertion based policy language for federated systems. Administrative
models include URA97 [31], PRA97 [29], ARBAC97 [30], GURA [14] and work
by Crampton et al. [6].

6 Conclusion and Future Work

The paper presents first generalized URA97, called GURAG, for HGABAC
administration. Propositional logic conditions together with administrative roles
are used to make administrative authorization decisions. GURAG has three
sub-models: user attribute assignment (UAA), user-group attribute assignment
(UGAA) and user to user-group assignment (UGA). The authorization rela-
tions in UAA and UGAA control addition and deletion of direct attributes from
user and user-group. UGA governs assignment and removal of a user from user-
groups based on the current membership (or non-membership) and attributes of
user. Some extensions to GURAG have also been discussed. As GURAG proposes
manual assignment of attribute values and user-groups to users, a potential foray
can be to develop automated GURAG like model. An administrative model for
group hierarchies and objects can also be a future prospect.



The GURAG Administrative Model 331

Acknowledgement. This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

References

1. https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml
2. https://www.oasis-open.org/committees/tc home.php?wg abbrev=security
3. Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.

In: Proceedings of IEEE ACSAC, pp. 353–362 (2002)
4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: Proceedings of IEEE Security and Privacy, pp. 321–334 (2007)
5. Chadwick, D.W., Otenko, A., Ball, E.: Role-based access control with X.509

attribute certificates. IEEE Internet Comput. 7(2), 62–69 (2003)
6. Crampton, J., Loizou, G.: Administrative scope: a foundation for role-based admin-

istrative models. ACM TISSEC 6(2), 201–231 (2003)
7. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy

attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009)

8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM CCS, pp. 89–98
(2006)

9. Hsu, A.C., Ray, I.: Specification and enforcement of location-aware attribute-based
access control for online social networks. In: Proceedings of ACM ABAC 2016, pp.
25–34 (2016)

10. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to attribute based access
control (ABAC) definition and considerations. NIST Special Publication 800–162
(2014)

11. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
put. 2, 85–88 (2015)

12. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE TPDS 22(7), 1214–1221 (2011)

13. Jha, S., Sural, S., Atluri, V., Vaidya, J.: Enforcing separation of duty in attribute
based access control systems. In: Jajodia, S., et al. (eds.) ICISS 2015. LNCS,
vol. 9478, pp. 61–78. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26961-0 5

14. Jin, X., Krishnan, R., Sandhu, R.: A role-based administration model for
attributes. In: Proceedings of ACM SRAS, pp. 7–12 (2012)

15. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control
model covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer,
Heidelberg (2012)

16. Jin, X., Krishnan, R., Sandhu, R.: Reachability analysis for role-based administra-
tion of attributes. In: Proceedings of ACM DIM, pp. 73–84. ACM (2013)

17. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE TKDE 17(1), 4–23 (2005)

18. Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-
adaptive access control models. In: Proceedings of IEEE ARES, pp. 236–241,
August 2011

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://dx.doi.org/10.1007/978-3-319-26961-0_5


332 M. Gupta and R. Sandhu

19. Kounga, G., Mont, M.C., Bramhall, P.: Extending XACML access control archi-
tecture for allowing preference-based authorisation. In: Katsikas, S., Lopez, J.,
Soriano, M. (eds.) TrustBus 2010. LNCS, vol. 6264, pp. 153–164. Springer,
Heidelberg (2010)

20. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Comput. 43(6), 79–81 (2010)

21. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible
attribute based access control method for grid computing. J. Grid Comput. 7(2),
169–180 (2009)

22. Liang, K., Fang, L., Susilo, W., Wong, D.: A ciphertext-policy attribute-based
proxy re-encryption with chosen-ciphertext security. In: Proceedings of IEEE
INCoS, pp. 552–559 (2013)

23. Oh, S., Sandhu, R., Zhang, X.: An effective role administration model using orga-
nization structure. ACM TISSEC 9(2), 113–137 (2006)

24. Oppliger, R., Pernul, G., Strauss, C.: Using attribute certificates to implement role-
based authorization and access controls. In: Sicherheit in Informationssystemen,
pp. 169–184 (2000)

25. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM TISSEC 7(1),
128–174 (2004)

26. Preda, S., Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Toutain, L.:
Dynamic deployment of context-aware access control policies for constrained secu-
rity devices. J. Syst. Softw. 84(7), 1144–1159 (2011)

27. Priebe, T., Dobmeier, W., Kamprath, N.: Supporting attribute-based access con-
trol with ontologies. In: Proceedings of IEEE ARES, p. 8 (2006)

28. Ruj, S., Nayak, A., Stojmenovic, I.: DACC: Distributed Access Control in Clouds.
In: Proceedings of IEEE TrustCom, pp. 91–98 (2011)

29. Sandhu, R., Bhamidipati, V.: An Oracle implementation of the PRA97 model for
permission-role assignment. In: Proceedings of ACM RBAC Workshop, pp. 13–21
(1998)

30. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM TISSEC 2(1), 105–135 (1999)

31. Sandhu, R.S., Bhamidipati, V.: The URA97 model for role-based user-role assign-
ment. In: DBSec, pp. 262–275. Chapman & Hall, Ltd. (1998)

32. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 2, 38–47 (1996)

33. Servos, D., Osborn, S.L.: HGABAC: towards a formal model of hierarchi-
cal attribute-based access control. In: Cuppens, F., Garcia-Alfaro, J., Zincir
Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 187–204.
Springer, Heidelberg (2015)

34. Shen, H., Hong, F.: An attribute-based access control model for web services. In:
Proceedings of IEEE PDCAT, pp. 74–79 (2006)

35. Squicciarini, A.C., Hintoglu, A.A., Bertino, E., Saygin, Y.: A privacy preserving
assertion based policy language for federation systems. In: Proceedings of ACM
SACMAT, pp. 51–60 (2007)

36. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of ACM FMSE, pp. 45–55 (2004)

37. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of IEEE ICWS (2005)


	The GURAG Administrative Model for User and Group Attribute Assignment
	1 Introduction
	2 HGABAC Model
	2.1 Groups in HGABAC
	2.2 HGABAC Model: An Alternate Formalization
	2.3 Example HGABAC Configuration

	3 The GURAG Administrative Model
	3.1 The UAA Sub-model of GURAG
	3.2 The UGAA Sub-model of GURAG
	3.3 The UGA Sub-model of GURAG
	3.4 Operational Specification of GURAG
	3.5 GURAG Model Extensions

	4 Discussion and Limitations
	5 Related Work
	6 Conclusion and Future Work
	References


