Access Control Model for AWS
Internet of Things

Smriti Bhatt®), Farhan Patwa, and Ravi Sandhu

Department of Computer Science and Institute for Cyber Security,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
bhattsmritil@gmail.com, {farhan.patwa,ravi.sandhu}@utsa.edu

Abstract. Internet of Things (IoT) has received considerable attention
in both industry and academia in recent years. There has been significant
research on access control models for IoT in academia, while industrial
deployment of several cloud-enabled IoT platforms have already been
introduced. However, as yet there is no consensus on a formal access con-
trol model for cloud-enabled IoT. Currently, most of the cloud-enabled
IoT platforms utilize some customized form of Role-Based Access Con-
trol (RBAC), but RBAC by itself is insufficient to address the dynamic
requirements of IoT. In this paper, we study one of the commercial cloud-
ToT platform, AWS IoT, and develop a formal access control model for it,
which we call AWS-IoTAC. We do this by extending AWS cloud’s formal
access control (AWSAC) model, previously published in the academic lit-
erature, to incorporate the IoT specific components. The AWS-IoTAC
model is abstracted from AWS IoT documentation and has been for-
malized based on AWSAC definitions. We show how this model maps
to a recently proposed Access Control Oriented (ACO) architecture for
cloud-enabled IoT. We demonstrate a smart-home use case in AWS IoT
platform, and inspired by this use case, we propose some Attribute-Based
Access Control (ABAC) extensions to the AWS-IoTAC model for enhanc-
ing the flexibility of access control in IoT.

Keywords: Internet of Things - Devices - Virtual objects - Attributes -
Attribute-based access control

1 Introduction

Security is an essential requirement for the Internet of Things (IoT), especially as
deployments grow. The number of connected devices is increasing exponentially.
According to Gartner, there will be more than 20 billion connected devices by
2020 [5]. This has given rise to an attractive and new attack surface. Access
control is an essential component of security solutions for IoT. Accordingly,
several access control models for IoT have been proposed. Ouaddah et al. [25]
provide a recent survey of these. Meanwhile, dominant cloud providers, such
as Amazon Web Services (AWS) [1], Microsoft Azure [7], and Google Cloud
Platform (GCP) [6], have built upon their existing cloud services and resources

© Springer International Publishing AG 2017
Z. Yan et al. (Eds.): NSS 2017, LNCS 10394, pp. 721-736, 2017.
DOI: 10.1007/978-3-319-64701-2_57

722 S. Bhatt et al.

to launch IoT services. Azure and GCP utilize some customized form of role-
based access control (RBAC) [15,27] with predefined roles and groups for their
access control requirements in the cloud. GCP uses RBAC for its IoT solutions
authorization [9]. AWS uses a policy-based access control mechanism for its cloud
and IoT services [1,2]. Unlike Azure cloud, Azure IoT has adopted policy-based
access control to specify IoT authorizations [4]. However, a formal access control
model for real-world cloud-enabled IoT platforms is still lacking.

In this paper, we study and investigate AWS and its IoT service, leading
to a formal access control model called AWS-IoTAC. This model is abstracted
from dispersed AWS IoT documentation available, along with our exercises on
this service to validate our understanding of the IoT functionality. AWS-IoTAC
builds upon the AWS Access Control (AWSAC) model developed by Zhang
et al. [29], for AWS access control in general.

The ToT services require new concepts beyond basic access control in the
cloud. While developing an access control model for IoT, conceptualizing the
model in context of a well-defined IoT architecture is useful. A layered access
control oriented (ACO) architecture for cloud-enabled IoT has been proposed
by Alshehri and Sandhu [12]. We map different entities of our model with the
four layers of ACO architecture to underscore the relevance of our model with
a cloud-enabled IoT architecture especially designed from an access control per-
spective. We also demonstrate and configure a smart-home use case in the AWS
IoT platform which depicts the applicability of our model in addressing IoT
authorizations in AWS.

With billions of connected devices in the near future, it will become inevitable
for IoT to adopt a flexible access control model, such as attribute-based access
control (ABAC) [18,19], for meeting dynamic access control requirements of the
ToT services. In ABAC, attributes (properties), represented as name-value pairs,
of users and resources are utilized to determine user accesses on resources. AWS
ToT supports a partial form of ABAC with attributes for the IoT devices, how-
ever, the use of these attributes in access control policies is limited. Therefore,
we propose ABAC enhancements to our (AWS-IoTAC) model for incorporating
a complete form of ABAC in it.

A summary of our contributions is given below.

e We develop a formal access control model for AWS IoT, which we call AWS-
ToTAC.

e We present a smart-home IoT use case which clearly shows how our model
addresses the authorizations in a cloud-enabled IoT platform.

e We propose ABAC enhancements for AWS-IoTAC to include more flexible
and fine-grained access policies.

The rest of the paper is organized as follows. Section 2 discusses related work,
including the AWSAC model. AWS-IoTAC model is presented and defined in
Sect. 3. A smart-home use case that utilizes the AWS-IoTAC model is demon-
strated in Sect.4. Section5 proposes some extensions to AWS-IoTAC. Finally,
we conclude the paper with possible future directions in Sect. 6.

Access Control Model for AWS Internet of Things 723

2 Related Work and Background

2.1 Related Work

There has been significant research in IoT access control models, as recently
surveyed by Ouaddah et al. [25]. Many of these models are based on capability-
based access control (CAPBAC) [17], role-based access control (RBAC) [15,27],
while there are a few utilizing attribute-based access control (ABAC) [18,19].
In [16], a centralized CAPBAC model has been proposed based on a centralized
Policy Decision Point (PDP). Whereas, a fully decentralized CAPBAC model
for ToT is presented in [17]. However, a fully centralized or a fully decentralized
approach may not be appropriate for managing the access control needs in a
dynamic IoT architecture. Mahalle et al. [23] proposed an identity establish-
ment and capability-based access control scheme for authentication and access
control in ToT. Besides CAPBAC, a RBAC model is used for IoT in [22] where
a thing’s accesses are determined based on its roles. Similarly, Zhang and Tian
[28] proposed an extended role-based access control model for IoT where access
is granted based on the context information collected from system and user envi-
ronment. These RBAC models for IoT still suffer from RBAC’s limitations, such
as role-explosion [26]. A hybrid access control model (ARBHAC) based on RBAC
and ABAC is proposed by Sun et al. [20] to handle large number of dynamic
users in IoT. Here attributes are used to make user-role assignments, and then
a user’s roles determine access on resources or things. This approach is similar
to dynamic roles [11,21], where roles are dynamically assigned to users based on
their attributes. However, ARBHAC lacks utilization of user, thing, environment
and application attributes available in more general ABAC models.

Our model significantly differs from the existing models discussed above,
especially in its nature of being an access control model developed for a real-
world cloud-enabled IoT platform that is managed by the largest cloud service
provider, Amazon Web Services (AWS) [1]. Another distinguishing feature of our
work is to identify the applicability of user attributes and attributes of IoT things
(things/devices requesting access to other things/devices, and things/devices on
which the access is being requested) in IoT access control. We strongly believe
that ABAC models are the best approach to address access control requirements
of the rapidly evolving IoT arena.

2.2 AWS Access Control Model (AWSACQC)

An access control model for AWS cloud services was developed by Zhang
et al. [29]. We briefly describe the AWS Access Control (AWSAC) model and its
formal definitions here, which in turn forms a base for the AWS-IoTAC model
presented in the next section. The AWSAC model within a single AWS account
is shown in Fig.1, with formal definitions presented in Table1l. AWSAC has
seven components: Accounts (A), Users (U), Groups (G), Roles (R), Services
(S), Object Types (OT), and Operations (OP). Accounts are basic resource
containers in AWS, which allows customers to own specific cloud resources, and

724

S. Bhatt et al.

Group
Ownership
(GO)

or
Ownership
(010)

User
Ownership
(Uo)

Object
Types
(oT)

PERMS

Operations
(op)

/ virtual
user_role

Roles
Ownership
(RO)

one-to-one

<44—>»> many-to-many

one-to-many
Fig.1. AWS access control within a single account [29]

Table 1. AWSAC model components [29]

Definition 1

- AU G,R,S,OT and OP are finite sets of accounts, users,
groups, roles, services, object types, and operations respectively

- User Ownership (UO) : U — A, is a function mapping a user
to its owning account, equivalently a many-to-one relation
UOCUxA

- Group Ouwnership (GO) : G — A, is a function mapping a
group to its owning account, equivalently a many-to-one relation
GOCGxA

- Role Ownership (RO) : R — A, is a function mapping a role to
its owning account, equivalently a many-to-one relation
ROCRXxA

- Object Type Ownership(OTO) : OT — S, is a function
mapping an object type to its owning service, equivalently a
many-to-one relation OTO C OT x S

- PERMS = OT x OP, is the set of permissions

- Virtual Permission Assignment (VPA): VPA C (UUGU R) x
PERMS, is a many-to-many virtual relation resulting from
policies attached to users, groups, roles and resources

- user_group C U x G is a many-to-many mapping between users
and groups where users and groups are owned by the same
account

- virtual user_role (VUR) : VUR C U X R is a virtual relation
resulting from policies attached to various entities (users, roles,

groups), where users use AssumeRole action to acquire/activate
a role authorized in VUR

Access Control Model for AWS Internet of Things 725

serve as the basic unit of resource usage and billing. Users represent individu-
als who can be authenticated by AWS and authorized to access cloud resources
through an account. A user who owns an account can create other users inside
that account and can assign them specific permissions on resources, and thus is
an administrator. Groups are a set of user groups. The user_group relation
specifies the user to group assignment. “Roles” in AWS, unlike standard RBAC
roles, are used for establishing trust relationships between users and resources
in different AWS accounts. Users can be assigned roles through the AssumeRole
action, and permissions assigned to these roles allows these users gain access
to corresponding cloud resources. The user-role mapping is specified through
virtual user_role relation. To distinguish the AWS “roles” from RBAC roles,
quotation marks are used in Fig. 1. For simplicity, we understand roles to signify
“roles” in rest of the paper, unless otherwise specified. Services refer to AWS
cloud services. Object Types represents a specific type of an object in a par-
ticular cloud service, such as virtual machines. Operations represent allowed
operations on the object types based on an access control policy attached to
them or their owning services.

AWS utilizes a policy-based access control mechanism. An AWS policy is a
JSON file which includes permissions defined on services and resources in the
cloud. It comprise of three main parts (or tags) Effect, Action and Resources,
and optional Conditions. A policy can be attached to a user, a group, a role
or a specific cloud resource. Virtual Permission Assignment is the process
of virtually assigning permissions to users, roles, and groups through attaching
policies to these entities. In cases where a policy is attached to a resource, a
specific Principal (an account, a user or a role) needs to be specified in the
policy. There could be multiple permissions defined in one policy, and multiple
policies can be attached to one entity.

3 Access Control in AWS Internet of Things

3.1 AWS IoT Access Control (AWS-IoTAC) Model

AWS ToT is an IoT platform managed by one of the leading cloud service
provider, Amazon Web Services (AWS). It allows secure communication between
connected IoT devices and applications in the AWS cloud [2]. An access control
model for AWS IoT, a cloud-enabled IoT platform, involves different entities in
the IoT space, and should define how these entities are authorized to interact
with each other securely. We incorporate the entities involved in access con-
trol and authorization in the AWS IoT service into the AWSAC model so as to
develop the AWS-IoTAC model. AWS-IoTAC is based on meticulous exploration
of the extensive documentation on AWS IoT and our hands-on experiments on
this service to verify our understanding.

The AWS-IoTAC model is shown in Fig.2 along with its different compo-
nents. Since it is developed on top of the AWSAC model, it consists of all the
components and relations of AWSAC with additional set of components and

726

Group
Ownership
(60)

Ownership

S. Bhatt et al.

AWS loT \
OW"C:::MP/ Service Rule
cert_binding Registration, (AlS) OW;';;’"P
Thing
Ownership
(70)
....... -
trigger_

action

Devices

(D)

[Cert + PrivateKey]

VPA x PERMS

N 7 b loT

W, 4 fo) N _f- trigger.
RN / perations § -
P, §
., \\x// VPA \ (1oP) action /

7N
~
Ownershil N \,
s i \/ \ VPA e
RN N
virtual 4 / N N or AWS
user_role ! / \\\ Ownership Services
/
/ vPA NN
s
“Roles” -
R JEmmmmme---- >

Fig. 2. AWS IoT access control (AWS-IoTAC) model within a single account

Table 2. AWS-IoTAC model — additional components and relations

Definition 2

- AWS IoT Service (AIS) is one of the Services(S) in AWS
-C,D,10,IOP, and Ru are finite sets of X.509 certificates,
physical IoT devices, IoT objects, IoT operations, and rules
defined in the rules engine of AILS respectively

- Cert Ownership/Registration (CO) : C — AIS, is a function
mapping a certificate to its owning service (AIS), equivalently a
many-to-one relation CO C C x AIS

- Rules Ownership (RO) : Ru — AIS, is a function mapping a
rule to its owning service (AIS), equivalently a many-to-one
relation RO C Ru x AIS

- Thing Ownership (TO) : IO — AIS, is a function mapping the
IoT objects to its owning service (AIS), equivalently a
many-to-one relation TO C IO x AIS

- PERMS = OT x OP, is the set of permissions (including IoT
Permissions)

- Virtual Permission Assignment (VPA): VPAC (UUGU
RUC) x PERMS, is a many-to-many virtual relation resulting
from policies attached to users, groups, roles, certificates, and
resources

- cert_binding C C' x D is a mutable one-to-one relation between
X.509 certificate and IoT devices within a single account

- trigger_action C Ru x (IO x S) represents a many-to-many
mapping between rules and IoT objects and AWS services on
which a rule triggers action(s)

Access Control Model for AWS Internet of Things 727

relations associated with the AWS IoT service. The additional or modified com-
ponents and relations are formally defined in Table 2, and informally discussed
below. There are six additional components in the AWS-IoTAC model. AWS
IoT Service (AIS) is the new IoT service in AWS. It owns different entities
to support IoT devices and their underlying authorization in the cloud. We rep-
resent AIS as a separate entity in our model to emphasize its importance and
clearly show other components and relations associated with it. The rectangular
box of AIS emphasize its singleton existence in AWS. Certs (C) is a set of X.509
certificates [10], issued by a trusted entity, the certificate authority (CA). AIS
can generate X.509 certificates for the IoT clients, or allow the use of certificates
created by the clients as long as they are signed by a registered CA in the AWS
ToT service. Certs are used by MQTT based clients (IoT devices, applications)
to authenticate to AIS. MQTT, an OASIS standard, is a machine-to-machine
(M2M) lightweight publish/subscribe messaging protocol, especially designed for
constrained devices [8]. Devices (D) represent a set of connected IoT devices,
such as sensors, light bulbs. The devices can exist independent of AIS, thus,
we show them in a different color in the model. A valid X.509 certificate and
its private key need to be copied onto the device, along with a root AWS CA
certificate before authentication and establishment of a secure communication
channel with the AWS IoT service. The certificates to devices association is
done through the cert_binding relation. In the AWS IoT platform, one certifi-
cate can be attached to many things/devices. Similarly, many certificates can be
copied onto one IoT device. However, in our model, we assume cert_binding is an
one-to-one association between devices and certificates for better authorization
management, and is mutable in nature so can be changed by an administrator in
cases of certificate expiry or revocation. In AWS IoT, the access control policies
are attached to certificates, and are enforced on physical IoT devices associated
with these certificates.

IoT Objects (10) represent virtual IoT objects in the cloud. Virtual objects
are the digital counterparts of real physical devices, or standalone logical enti-
ties (applications) in the virtual space [24]. In AWS IoT, a Thing and a Thing
Shadow represent the IoT objects which are the virtual counterparts of real
physical IoT devices in the cloud. For each IoT device, we assume that there is
at least one thing with its thing shadow instantiated in the cloud, which pro-
vides a set of predefined MQTT topics/channels (associated with this device) to
allow interaction with other IoT devices and applications, even when the device
is offline. Thing shadow maintains the identity and last known state of the asso-
ciated IoT device. IoT Operations (IOP) are a set of operational operations
defined for IoT service, and do not include the administrative operations, such
as create things, certificates, etc. The basic set of IoT operations can be cate-
gorized based on the communication protocols used by IoT devices and applica-
tions to communicate with the AWS IoT service. For MQTT clients, four basic
IoT operations are available: iot:Publish allows devices to publish a message to
a MQTT topic, iot:Subscribe allows a device to subscribe to a desired MQTT
topic, iot:Connect allows a MQTT client to connect to the AWS IoT service, and

728 S. Bhatt et al.

tot: Receive allows devices to receive messages from subscribed topics. Similarly,
for HTTP clients, iot:GetThingShadow allows to get the current state of a thing
shadow, iot: Update ThingShadow allows to send messages to update/change the
state of a thing shadow, and iot:Delete ThingShadow deletes a thing shadow.
Whenever a device or application sends message to a virtual thing in the cloud,
a new thing shadow is automatically created, if one does not already exist.

Rules (Ru) are simple SQL statements which trigger predefined actions
based on the condition defined in the rule. A rule receives data from a
device/thing and triggers one or more actions. The actions route the data from
one IoT device to other IoT devices, or to other AWS services. Each rule must
be associated with an TAM (Identity and Access Management) role which grants
it permissions to access IoT objects and AWS services on which actions are
triggered. The relation trigger_action represents a many-to-many mapping
between rules and IoT objects and AWS services on which the rule triggers
action(s). The access control policies in AWS have been modified to include IoT
operations and resources, and are thereby named as IoT policies. AWS IoT uti-
lizes both IoT policies and TAM policies to assign specific permissions to IoT
devices, TAM users, and IoT applications. Consequently, Virtual Permission
Assignment (VPA) has been updated to include the IoT policies, and these
policies are attached to X.509 certificates. The policy attached to a certificate is
enforced on the device which uses that certificate to connect and authenticate
to the AWS IoT service. One policy can be attached to multiple certificates, or
multiple policies can be attached to one certificate.

All the components and relations of our model are defined within the scope
of a single AWS account. Cross-account authorizations are outside the scope
of this paper. The components and relations of our model are based on current
capabilities of the AWS IoT service. Although, there are many other components
and relations associated with the AWS IoT service, we encompassed the most
important ones from an access control perspective in our model.

3.2 ACO IoT Mapping

Here, we show relevance of the AWS-IoTAC model to the access control ori-
ented (ACO) IoT architecture presented by Alshehri and Sandhu [12]. A map-
ping of different entities of our model with the ACO architecture is depicted in
Fig. 3. Different entities map to different layers of ACO IoT architecture. Phys-
ical devices or things exist at Object layer, and virtual IoT things or resources
maps to the Virtual Object layer. All the AWS cloud services and resources are
at Cloud Service layer, and users and applications interacting with cloud and
IoT devices exists at Application layer. The authorization policies are defined
in the cloud. These policies enforce access control decisions for physical devices
and applications (used by users) trying to access cloud and virtual IoT resources.
AWS-ToTAC is generally compatible with the ACO architecture.

Access Control Model for AWS Internet of Things 729

. . Users
Application Layer (Through Apps)

Request
Access
Ccloud Services Layer) Cloud
Resources
Virtual loT
Virtual Object Layer Resources
Request
Access
(Object Layer D Physical
Devices/Things

Fig. 3. AWS-IoTAC entities mapping to ACO architecture for cloud-enabled IoT

Authorization
Policy
in Cloud

4 Use Case

In this section, we present a smart-home use case where a thermostat and two
light bulbs are controlled through the AWS IoT service based on sensor inputs.
Here we focus on interactions between IoT devices through the cloud. (A more
complex example would involve different users and applications also interacting
with ToT devices.) We demonstrate how the access control and authorization
between different components are configured based on the AWS-IoTAC model.

4.1 TUse Case Setup and Configuration

Figure4 shows different connected devices, virtual things/objects, and AWS
Cloud and IoT Services involved in the use case. We first created an AWS account
to setup the use case in the AWS IoT service. Using AWS IoT management con-
sole, we created one virtual object (thing) for each physical device—two sensors,

Users —'l Applications |
mart A HTTP
_API")

/ -
e P %

AWS Lambda Rules Engine

maQrt/
HTTP

Amazon SNS 1AM

Fig. 4. Smart-home use case utilizing AWS IoT and cloud services

maQrt/
mart/ HTTP
Thing Type: Sensor Thing Type: Lights Thing Type: Lights Thing Type: Sensor | | Thing Type: Actuator

o Stype: Light Location: Outdoor tocation: Outdoor StyperTend B ot
2 Belongs: Homel Name: Porch Name: Garage Belongs: Homel 2

5 Belongs: Homel Belongs: Home1 5

3 =

3 ¥

"

730 S. Bhatt et al.

one thermostat and two light bulbs. A thing can have a thing type that stores con-
figuration for similar things, and thing attributes (key-value pairs) representing
properties of individual IoT devices. For example, Sensor_1 has a Sensor thing
type and has two attributes SType (sensor type) and Belongs (belongs to). The
values for these attributes are set during thing creation. We also created X.509
certificates for each IoT thing/device using “one-click certificate creation” in
the AWS IoT console. We then defined and attached appropriate authorization
policies to the certificates. After policy attachment, appropriate certificate is
attached to a virtual thing and is copied onto its corresponding physical device
along with the private key of the certificate and an AWS root CA certificate.
The CA certificate specifies the identity of the server, viz., AWS IoT server in
this case. A device certificate is used during device authentication and specifies
its authorization based on attached policies. We simulated the lights and ther-
mostat devices using AWS SDKs (Node.js) [3] provided by AWS, and simulated
sensors as MQTT clients using MQTT.fx tool [8]. All these devices use MQTT
protocol to communicate to the AWS IoT service with TLS security.

Based on our use case scenarios, we utilized the rules engine, a part of
the AWS IoT platform, to define rules and trigger desired actions. The actions
include a Lambda function and notification to users by sending text messages
through Amazon Simple Notification Service (SNS). For each rule, an IAM “role”
is associated with it to authorize the rule to access required AWS and AWS IoT
services and resources.

4.2 TUse Case Scenarios

Here, we discuss two scenarios of our use case and their relevant authorization
aspects.

A. Scenario 1: This scenario involves a temperature sensor and a thermostat
and is depicted in Fig.5(a). A temperature sensor Sensor_2 (shown in solid
oval) senses the temperature and sends data to its thing shadow, Sensor_2

4 N

temp: 780F

Publish:
mode: ON
temp: 720F

Yy
\

"Version": "2012-10-17",
“Statement": [{
"Effect": "Allow",

*n

---------- S “Action”: "iot:*",
Publish: Publish: m “Resource”: "*"
temp: 780F m mode: ON

temp: 720F }1

(E:

\ = B

a. Use Case — Scenario 1 b. A Simple loT Policy

Fig. 5. Smart-home use case scenario 1

Access Control Model for AWS Internet of Things 731

(shown in dotted oval), in the AWS ToT platform. Based on Sensor_2 data, a
rule (Rulel) triggers a lambda function to change the state of the Thermostat
by publishing an update message to its thing shadow (shown as the dotted
oval). If the environment temperature is greater than 78 degree Fahrenheit,
then the rule invokes a lambda function that publishes a message on Ther-
mostat thing shadow to turn on the thermostat and set its temperature to
72 degree Fahrenheit. The physical thermostat (shown in solid oval) has sub-
scribed to its shadow topics, hence, receives the update message and syncs
its state with its thing shadow. For this scenario, we defined a simple autho-
rization policy for both Sensor_2 and Thermostat, as shown in Fig. 5(b). It
allows an entity to do any IoT operation (e.g., publish, subscribe) on any
resource in the AWS cloud. The policy is attached to the X.509 certificates
which are copied onto the corresponding physical IoT devices (Sensor_2 and
Thermostat). In this example, the physical devices have full IoT access on
all the resources in AWS IoT.

. Scenario 2: A more comprehensive scenario with a fine-grained authoriza-
tion policy is presented in Fig. 6. A light sensor, Sensor_1, monitors the light
level of the environment and turns on outdoor lights, Light_1 and Light_2,
when the light level is low. When the lights are turned on, users (owner or
resident) of the home get a text notification about the state change of the
lights. For this scenario, we defined a more restrictive policy for Sensor_1
where we utilized thing attributes in the Condition section of the policy. The
policy is shown in Fig.6(b), and comprises two policy statements—first to
authorize a client to connect to AWS IoT only if its client ID is Sensor_1, and
second to allow IoT publish, subscribe, and receive operations on all resources
only if the client requesting access has a thing attribute Belongs with a value
Homel. This policy employs thing attributes in making access control deci-
sions. Thing attributes, as shown in Fig.4, represent the characteristics of
IoT things/devices.

\ /
=7

L~
(i)
{

"Action": "iot:Connect",
"Resource": i t-1:15400377 i 3 i
b

“Effect": "Allow",

: "Home1"

a. Use Case — Scenario 2 b. A Fine-grained loT Policy

Fig. 6. Smart-home use case scenario 2

732 S. Bhatt et al.

Currently AWS IoT policy supports thing attributes of only those clients
(devices/things) which are requesting access on resources in the AWS IoT
service. A useful scenario would be to utilize the attributes of target resources
on which ToT operations are performed. Suppose, a user wants Sensor_1
to be able to publish data only on those lights which have an attribute
Location = Outdoor. Currently, the AWS-IoTAC model cannot incorporate
the attributes of target things/devices in IoT policies. This scenario, however,
can be realized by means of rules and lambda functions as illustrated in the
following. The code snippet of the lambda function is presented in Fig.7.
Here, we search for things that have an attribute key and value, Location =
Outdoor, and get a list of such things, i.e., Light_1 and Light_2 in our use
case. Once the list is obtained, a message (in JSON format) to turn on the
lights is published to their shadow update topic, as shown in the Figure. The
physical light bulbs receive the update message and change their states. As
soon as the device state changes, a text message notification is sent to a user
specified in the rules, Rule_2 and Rule_3, through the AWS SNS service.

var params2 = {attributeName: ‘Location’,
attributeValue: 'Outdoor’

d
iot.listThings(params2, function(err, data) {

for (i in data.things) {
x = data.things[i].thingName;

var params3 = {

topic: ‘Saws/things/"+x+'/shadow/update’,

payload: new Buffer('{"state": {"desired" : {"light" : "ON"}}}),
qos: 0
5

iotdata.publish(; , function(er, data){

Fig. 7. Lambda function

5 Proposed Enhancements

In a typical ABAC model, attributes of the users (actors), who are requesting
access, and attributes of the resources (target objects), on which accesses are
performed, are utilized in the access control policies to determine allowed access
on objects. The attributes in ABAC are name-value pairs and represent char-
acteristics of entities, such as users and objects. Often environment or system
attributes are also brought into consideration. In AWS IoT, things can have a
set of attributes. The attributes are defined for virtual things in the cloud and
are synchronized with their associated physical devices.

An example of thing attributes is shown in Fig.8(a). Another way a thing
can get attributes is through the certificate attachment or association as shown
in Fig.8(b). A number of attributes are set and defined while creating a X.509

Access Control Model for AWS Internet of Things 733

- ABAC Attributes =~

loT Thing ,/” AN
\
Certificate { Thing User Group I
o Attributes S Attributes Attributes Attributes P
o ™S -

: attached to/
""" Certificates Devices

a. Example of an loT Thing
and its Attributes

»
a2

5
z
e

n

-
N
@
a2

b. Attributes of loT Things/Devices ¢. User and Group Attributes

Fig. 8. Attributes in AWS IoT

certificate, and when a certificate is attached to a thing then the attributes of
this certificate can be used in AWS IoT policies to assign permissions to the
things. However, a certificate attribute does not reflect any direct properties of
the thing it is attached to, and is thereby different than typical ABAC attributes.

Therefore, the access control model of AWS IoT (AWS-IoTAC) can be cat-
egorized as a restricted form of an ABAC model, mainly due to the following
reasons.

e In AWS-IoTAC model, the attributes of only those IoT things/devices can be
utilized which are requesting to perform actions on IoT resources (other IoT
devices or applications) in the cloud.

e The thing attributes are applied in the policy only if the things/devices are
using MQTT protocol to connect and communicate to the AWS IoT service.

e In AWS 10T, currently a thing can have only fifty attributes, of which only
three are directly searchable.

Based on the above discussion and our exploration of the AWS IoT service, we
propose some enhancements for the AWS-IoTAC model in order to incorporate
a more complete form of ABAC in the model.

1. ABAC Including Attributes of Target Resources
As discussed in our use case scenario 2, the AWS-IoTAC model should be able
to incorporate attributes of things/devices performing IoT operations as well
as attributes of things/devices on which the operations are being performed,
independent of the connection and communication protocol being used. The
target resource attributes are mainly useful in isolating the identity of specific
IoT objects. For example, an IoT device needs to publish messages to other
devices which have some specific attribute values. The publishing device need
not be aware of the specific topics it need to publish to, and can publish to
multiple topics meeting some specific criteria.

2. ABAC Including User and Group Attributes
A more complete form of ABAC would require inclusion of attributes of users
and groups of users, as shown in Fig. 8(c). In real-world IoT systems, there are
multiple users using and controlling IoT devices. Therefore, including users

734 S. Bhatt et al.

and devices relationships in access control decisions facilitates fine-grained
authorization in cloud-enabled IoT platforms.
3. Policy Management Utilizing the Policy Machine

AWS offers a form of policy-based access control based on policy files attached
to entities such as users, groups, “roles”, and certificates. For all these enti-
ties, there are numerous policies defined. With billions of devices and their
users, the policies for them will scale tremendously and soon become unman-
ageable. In near future, a possible problem that AWS might encounter is a
policy-explosion problem. While setting up our use case as an administrator,
we realized the need for a customer-based policy management tool. Policy
Machine (PM) [13,14], an access control specification and enforcement tool
developed by National Institute of Standards and Technology (NIST), could
be utilized in this context. However, more detailed analysis of our model with
respect to PM would be required to demonstrate its applicability.

6 Conclusion

We presented a formal access control model for AWS IoT. AWS is one of the
largest cloud computing platforms that provides numerous services and products
along with their extensive documentations. It was a challenge to incorporate all
the aspects and capabilities of its IoT platform in our model. We mainly focused
on access control and authorizations in a real cloud-enabled IoT platform. We
believe our model would act as an initial blueprint for developing a general-
ized access control model for cloud-enabled IoT which can be incrementally
enhanced to incorporate new IoT access control capabilities. We also proposed
some enhancements to the AWS-IoTAC model based on our experience during
use case setup and configuration. ABAC seems to be a promising access con-
trol model for the IoT services. For the future work, we will explore ways to
incorporate the ABAC enhancements in our model, including both client (e.g.,
thing, user, application) attributes and target resource (e.g., things, applica-
tions) attributes. We also plan to investigate access control and authorizations
in other real-world cloud-enabled IoT platforms.

Acknowledgments. This research is partially supported by NSF Grants CNS-
1111925, CNS-1423481, CNS-1538418, and DoD ARL Grant W911NF-15-1-0518.

References

1. Amazon Web Services (AWS). https://aws.amazon.com/. Accessed 10 Dec 2016

2. AWS IoT Platform. http://docs.aws.amazon.com/iot/latest/developerguide/
what-is-aws-iot.html. Accessed 8 Jan 2017

3. AWS SDK for JavaScript in Node.js. https://aws.amazon.com/sdk-for-node-js/.
Accessed 10 Aug 2016

4. Azure IoT. https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-
iot-hub. Accessed 10 Nov 2016

https://aws.amazon.com/
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://aws.amazon.com/sdk-for-node-js/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Access Control Model for AWS Internet of Things 735

Build your blueprint for the internet of things, based on ve architecture styles.
https://www.gartner.com/doc/2854218 /build-blueprint-internet-things-based.
Accessed 2 Jan 2017

Google Cloud Platform. https://cloud.google.com/. Accessed 10 Dec 2016
Microsoft Azure. https://azure.microsoft.com/en-us/. Accessed 28 Nov 2016
MQTT.fx - A JavaFX based MQTT Client. http://www.mqttfx.org/. Accessed 10
Sep 2016

Overview of Internet of Things. https://cloud.google.com/solutions/iot-overview/.
Accessed 10 Dec 2016

X.509 Certificates. http://searchsecurity.techtarget.com/denition/X509-certificate.
Accessed 10 Feb 2017

Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.
In: 18th IEEE Annual Computer Security Applications Conference, pp. 353-362.
IEEE (2002)

Alshehri, A., Sandhu, R.: Access control models for cloud-enabled internet of
things: a proposed architecture and research agenda. In: 2nd IEEE International
Conference on Collaboration and Internet Computing (CIC), pp. 530-538. IEEE
(2016)

Ferraiolo, D., Atluri, V., Gavrila, S.: The policy machine: a novel architecture and
framework for access control policy specification and enforcement. J. Syst. Archit.
57(4), 412-424 (2011)

Ferraiolo, D., Gavrila, S., Jansen, W.: Policy Machine: features, architecture, and
specification. NIST Internal Report 7987 (2014)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 4(3), 224-274 (2001)

Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security approach to
manage access control in the Internet of Things. Math. Comput. Modell. 58(5),
1189-1205 (2013)

Herndndez-Ramos, J.L., Jara, A.J., Marin, L., Skarmeta, A.F.: Distributed
capability-based access control for the Internet of Things. J. Internet Serv. Inf.
Secur. (JISIS) 3(3/4), 1-16 (2013)

Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone,
K.: Guide to attribute based access control (ABAC) definition and considerations.
NIST Special Publication 800-162 (2014)

Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41-55. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31540-4_4

Kaiwen, S., Lihua, Y.: Attribute-role-based hybrid access control in the Inter-
net of Things. In: Han, W., Huang, Z., Hu, C., Zhang, H., Guo, L. (eds.)
APWeb 2014. LNCS, vol. 8710, pp. 333-343. Springer, Cham (2014). doi:10.1007/
978-3-319-11119-3.31

Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. Computer 43(6), 79-81 (2010)

Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the Internet
of Things. In: 32nd IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW), pp. 588-592. IEEE (2012)

https://www.gartner.com/doc/2854218/build-blueprint-internet-things-based
https://cloud.google.com/
https://azure.microsoft.com/en-us/
http://www.mqttfx.org/
https://cloud.google.com/solutions/iot-overview/
http://searchsecurity.techtarget.com/denition/X509-certificate
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-319-11119-3_31
http://dx.doi.org/10.1007/978-3-319-11119-3_31

736

23.

24.

25.

26.

27.

28.

29.

S. Bhatt et al.

Mabhalle, P.N., Anggorojati, B., Prasad, N.R., Prasad, R.: Identity establishment
and capability based access control (IECAC) scheme for Internet of Things. In: 15th
IEEE Symposium on Wireless Personal Multimedia Communications (WPMC),
pp. 187-191. IEEE (2012)

Nitti, M., Pilloni, V., Colistra, G., Atzori, L.: The virtual object as a major element
of the internet of things: a survey. IEEE Commun. Surv. Tutorials 18(2), 1228-1240
(2016)

Ouaddah, A., Mousannif, H., Elkalam, A.A., Ouahman, A.A.: Access control in
the Internet of Things: big challenges and new opportunities. Comput. Netw. 112,
237-262 (2017)

Rajpoot, Q.M., Jensen, C.D., Krishnan, R.: Integrating attributes into role-based
access control. In: Samarati, P. (ed.) DBSec 2015. LNCS, vol. 9149, pp. 242-249.
Springer, Cham (2015). doi:10.1007/978-3-319-20810-7_17

Sandhu, R., Coyne, E.J., Feinstein, H., Youman, C.: Role-based access control
models. Computer 29(2), 38-47 (1996)

Zhang, G., Tian, J.: An extended role based access control model for the Inter-
net of Things. In: IEEE International Conference on Information Networking and
Automation (ICINA), vol. 1, pp. V1-319-V1-323. IEEE (2010)

Zhang, Y., Patwa, F., Sandhu, R.: Community-based secure information and
resource sharing in AWS public cloud. In: 1st IEEE Conference on Collaboration
and Internet Computing (CIC), pp. 46-53. IEEE (2015)

http://dx.doi.org/10.1007/978-3-319-20810-7_17

	Access Control Model for AWS Internet of Things
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 AWS Access Control Model (AWSAC)

	3 Access Control in AWS Internet of Things
	3.1 AWS IoT Access Control (AWS-IoTAC) Model
	3.2 ACO IoT Mapping

	4 Use Case
	4.1 Use Case Setup and Configuration
	4.2 Use Case Scenarios

	5 Proposed Enhancements
	6 Conclusion
	References

