
Safety of ABACα Is Decidable

Tahmina Ahmed(B) and Ravi Sandhu

Institute for Cyber Security and Department of Computer Science,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

tahmina.csebuet@gmail.com, ravi.sandhu@utsa.edu

Abstract. The ABACα model was recently defined with the motiva-
tion to demonstrate a minimal set of capabilities for attribute-based
access control (ABAC) which can configure typical forms of the three
dominant traditional access control models: discretionary access con-
trol (DAC), mandatory access control (MAC) and role-based access con-
trol (RBAC). ABACα showed that attributes can express identities (for
DAC), security labels (for MAC) and roles (for RBAC). Safety analysis
is a fundamental problem for any access control model. Recently, it has
been shown that the pre-authorization usage control model with finite
attribute domains (UCONfinite

preA) has decidable safety. ABACα is a pre-
authorization model and requires finite attribute domains, but is other-
wise quite different from UCONfinite

preA . This paper gives a state-matching
reduction from ABACα to UCONfinite

preA . The notion of state-matching
reductions was defined by Tripunitara and Li, as reductions that preserve
security properties including safety. It follows that safety of ABACα is
decidable.

Keywords: ABACα · Safety

1 Introduction

Attribute-Based Access Control (ABAC) is gaining attention in recent years for
its generalized structure and flexibility in policy specification [2]. Considerable
research has been done and a number of formal models have been proposed for
ABAC [3–6,8,10]. Among them UCONABC [6] and ABACα [4] are two popular
ABAC models. UCONABC has been defined to continuously control usage of
digital resources which covers authorizations, obligations, conditions, continuity
and mutability, while ABACα is defined to configure DAC, MAC and RBAC
which shows that attributes can express identities, security labels and roles.
UCONfinite

preA is a member of UCONABC family of models which covers attribute
based pre-authorization usage control with finite attribute domains.

Safety is a fundamental problem for any access control model. Harrison et al.
[1] introduced the safety question in protection systems, which asks whether or
not a subject s can obtain right r for an object o. They showed this problem is
undecidable in general. A safety analyzer can answer decidable safety questions.
A recent result shows that safety of UCONfinite

preA is decidable [7]. Since UCONfinite
preA

c© Springer International Publishing AG 2017
Z. Yan et al. (Eds.): NSS 2017, LNCS 10394, pp. 257–272, 2017.
DOI: 10.1007/978-3-319-64701-2 19

258 T. Ahmed and R. Sandhu

allows unbounded creation of subjects and objects, in general a UCONfinite
preA sys-

tem can grow without bound.
ABACα shares some characteristics with UCONfinite

preA . Both models restrict
attributes to finite constant domains, and both allow unbounded creation of
subjects and objects. Nonetheless there are significant differences between the
two models, as discussed in Sects. 2 and 3. The central result of this paper is
that the safety problem for ABACα can be reduced to that for UCONfinite

preA , and
hence is decidable. Our reduction follows the notion of state-matching [9] and
preserves security properties, including safety.

The rest of the paper is organized as follows. Section 2 reviews the ABACα

model, and provides a slightly re-casted, but essentially identical, formal defini-
tion relative to its original definition [4]. Section 3 reviews the formal description
of UCONfinite

preA model. Section 4 presents a reduction from ABACα to UCONfinite
preA .

Section 5 proves that the reduction of Sect. 4 is state-matching, from which decid-
ability of ABACα follows. Section 6 concludes the paper.

2 The ABACα Formal Model (Review)

ABACα is an ABAC model that has “just sufficient” features to be “easily and
naturally” configured to do DAC, MAC and RBAC [4]. The core components
of this model are: users (U), subjects (S), objects (O), user attributes (UA),
subject attributes (SA), object attributes (OA), permissions (P), authorization
policy, creation and modification policy, and policy languages. The structure of
ABACα model is shown in Fig. 1. Table 1 gives the formal definition of ABACα.

Fig. 1. ABACα model (adapted from [4])

2.1 Users, Subjects, Objects and Their Attributes

Users (U) represent human beings in an ABACα system who create and mod-
ify subjects, and access resources through subjects. Subjects (S) are processes
created by users to perform some actions in the system. ABACα resources are
represented as Objects (O). Users, subjects and objects are mutually disjoint

Safety of ABACα Is Decidable 259

Table 1. ABACα formal model

Basic Sets and Functions
U, S, O are finite sets of existing users, subjects and objects
UA = {ua1, ua2, . . . ual }, finite set of user attributes
SA = {sa1, sa2, . . . sam }, finite set of subject attributes
OA = {oa1, oa2, . . . oan}, finite set of object attributes
SubCreator: S → U. A system function, specifies the creator of a subject.
attType: UA ∪ SA ∪ OA → {set, atomic}
For each attribute att∈ UA ∪ SA ∪ OA:
SCOPE(att) denotes the finite set of atomic values for attribute att.
Range(att) represents a finite set of atomic or set values as the range of att.

Range(att) =
SCOPE(att) attType(att) = atomic.

2SCOPE(att) attType(att) = set.

uai: U → Range(uai), uai ∈ UA
saj : S → Range(saj), saj ∈ SA
oak: O → Range(oak), oak ∈ OA
Tuple Notation
UAVT ≡ ×l

i=1 Range(uai), set of all possible attribute value tuples for users
SAVT ≡ ×m

j=1 Range(saj), set of all possible attribute value tuples for subjects
OAVT ≡ ×n

k=1 Range(oak), set of all possible attribute value tuples for objects
uavtf: U → UAVT, current attribute value tuple for a user
savtf: S → SAVT, current attribute value tuple for a subject
oavtf: O → OAVT, current attribute value tuple for an object

Authorization Policy

P = {p1, p2, . . . pn}, a finite set of permissions.
For each p∈ P, Authorizationp(s:S,o:O) returns true or false.
Specified in language LAuthorization.

Creation and Modification Policy

Subject Creation Policy:
ConstrSub(u:U,s:NAME,savt:SAVT) returns true or false.
Specified in language LConstrSub.
Subject Modification Policy:
ConstrSubMod(u:U,s:S,savt:SAVT) returns true or false.
Specified in language LConstrSubMod.
Object Creation Policy:
ConstrObj(s:S,o:NAME,oavt:OAVT) returns true or false.
Specified in language LConstrObj.
Object Modification Policy:
ConstrObjMod(s:S,o:O,oavt:OAVT) returns true or false.
Specified in language LConstrObjMod.

Policy Languages
Each policy language is an instantiation of the Common Policy Language CPL that
varies only in the values it can compare. Table 2 defines CPL for ABACα.

Functional Specification
ABACα operations are formally specified in Table 3

260 T. Ahmed and R. Sandhu

in ABACα, and are collectively called entities. NAME is the set of all names
for various entities in the system. Attributes are set-valued or atomic-valued
functions which take an entity (user, subject or object) and return a value from
a finite set of atomic values. Each user, subject, object is associated with a finite
set of user attributes (UA), subject attributes (SA) and object attributes (OA)
respectively. Each attribute is a set-valued or atomic-valued function. attType
is a function that returns type of the attribute, i.e., whether it is set or atomic
valued. SCOPE represents the domain of an attribute which is a finite set of
atomic values. Potentially infinite domain attribute such as location, age are rep-
resented as large finite domains. For each attribute att, SCOPE(att) can be an
unordered, a totally ordered or a partially ordered set. Range(att) is a finite set
of all possible atomic or set values for attribute att. Each attribute takes a user or
a subject or an object, and returns a value from its range. SubCreator is a sys-
tem function which specifies the creator of a subject. SubCreator is assigned by
the system at subject creation time, and cannot change. UAVT, SAVT, OAVT
are sets of all possible Attribute Value Tuples for users, subjects and objects
respectively. The functions uavtf, savtf and oavtf, return current attribute value
tuples for a particular user, subject or object respectively.

2.2 Authorization Policy

ABACα authorization policy consists of a single authorization policy for each
permission. Permissions are privileges that a user can hold on objects and exer-
cise through subjects. It enables access of a subject on an object in a particular
mode, such as read or write. P = {p1, p2, . . . pn} is a finite set of permissions.
Each Authorization Policy is a boolean function which is associated with a
permission, and takes a subject and an object as input and returns true or false
based on the boolean expression built from attributes of that subject and object.

2.3 Creation and Modification Policy

User creation, attribute value assignment of user at creation time, user dele-
tion and modification of a user’s attribute values is done by security admin-
istrator, and is outside the scope of ABACα. Subject creation and assigning
attribute value to subject during creation time is constrained by the values
of user attributes. Only creator is allowed to terminate and modify attributes
of a subject. Modification of subject attributes is constrained by the creating
user’s attribute values, and existing and new attribute values of the concerned
subject.1 Objects are created by subjects. Object creation and attribute value
assignment at creation time is constrained by creating subject’s attribute values
and proposed attribute value for the object. Modification of object attribute

1 In the original definition of ABACα [4] subject creation and modification have iden-
tical policies. However, a correct configuration of MAC in ABACα requires different
policies for these two operations. Hence, we define ABACα here to have separate
policies for these two operations.

Safety of ABACα Is Decidable 261

value is constrained by subject and object’s existing attribute values and pro-
posed attribute values for object. ABACα has subject deletion however there is
no object deletion. An existing subject can be deleted only by its creator.

2.4 Policy Languages

Each policy is expressed using a specific language. CPL is the common policy
language part for each language. Each language is a CPL instantiation with
different values for set and atomic. CPL is defined in Table 2.

Table 2. Definition of CPL

CPL

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ ϕ | ∃ x ∈ set.ϕ | ∀ x ∈
set.ϕ | set setcompare set | atomic ∈ set |
atomic atomiccompare atomic

setcompare ::= ⊂ | ⊆ | �⊆
atomiccompare ::= < | = | ≤

Authorization Policy: The boolean expression of authorization policy is
defined using the language LAuthorization which is a CPL instantiation where
set and atomic refers to the set and atomic valued attribute of concerned subject
and object.

Creation and Modification Policy: Subject creation, subject attribute modi-
fication, object creation and object attribute modification policies are all boolean
expressions and defined using LConstrSub, LConstrSubMod, LConstrObj and
LConstrObjMod respectively. LConstrSub is a CPL instantiation where set and
atomic refers to the set and atomic valued attribute of creating user and proposed
attribute values for subject being created. LConstrSubMod is a CPL instantia-
tion where set and atomic refers to the set and atomic valued attribute value of
concerned user and subject and proposed attribute value for subject. LConstrObj
is a CPL instantiation where set and atomic refers to the set and atomic valued
attribute value of creating subject and proposed attribute value for object being
created. LConstrObjMod is a CPL instantiation where set and atomic refers to
the set and atomic valued attribute value of concerned subject and object and
proposed attribute values for the object.

2.5 Functional Specification

ABACα functional specification has six operations: access an object by a subject,
creation of subject and object, deletion of subject, modification of subject and
object attributes. Each ABACα operation has two parts: condition part and
update part. Table 3 shows the specification of condition and update parts for
ABACα operations.

262 T. Ahmed and R. Sandhu

Table 3. Functional specification of ABACα operations

Operations Conditions Updates

Accessp(s, o) s∈ S ∧ o∈ O
∧ Authorizationp(s, o)

CreateSubject
(u, s: NAME, savt: SAVT)

u∈U ∧ s/∈S
∧ ConstrSub(u, s, savt)

S′ = S∪{s}
SubCreator(s) = u
savtf(s) = savt

DeleteSubject
(u, s: NAME)

s∈S ∧ u∈U
∧ SubCreator(s) = u

S′ = S\{s}

ModifySubjectAtt
(u, s: NAME, savt: SAVT)

u∈U ∧ s∈S
∧ SubCreator(s) = u
∧ConstrSubMod(u, s, savt)

savtf(s) = savt

CreateObject
(s, o: NAME, oavt: OAVT)

s∈S ∧ o/∈O
∧ ConstrObj(s, o, oavt)

O′ = O∪{o}
oavtf(o) = oavt

ModifyObjectAtt
(s, o: NAME, oavt: OAVT)

s∈S ∧ o∈O ∧
ConstrObjMod(s, o, oavt)

oavtf(o) = oavt

3 The UCONfinite
preA Model (Review)

In usage control authorization model entities are subjects and objects, and sub-
jects are a subset of objects. Each object has a unique identifier and a finite
set of attributes. Attributes can be mutable or immutable. Usage control Pre-
Authorization model (UCONpreA) evaluates authorization decisions of permis-
sion prior to the execution of commands. Figure 2 shows the components of
UCONpreA model.

Fig. 2. UCONpreA model.

Safety of ABACα Is Decidable 263

The UCONfinite
preA model, i.e., pre-authorization UCON with finite attributes,

is defined through a usage control scheme [7], as follows.

1. Object schema OSΔ, is of the form {a1: σ1, . . . , an: σn} where each ai is the
name of an attribute and σi is a finite set specifying ai’s domain. UCONfinite

preA

considers single object schema for different objects and considers only atomic
values for each domain σi.

2. UR = {r1, r2, . . . rk}, a set of usage rights, where ri defines a permission
enabled by a usage control command.

3. UC = {UC1, UC2, . . . UCl}, a set of usage control commands.
4. ATT ={a1, a2, . . . an}, a finite set of object attributes.
5. AVT = σ1 × . . . × σn, set of all possible attribute value tuples.
6. avtf: O → AVT, returns existing attribute value tuple of an object.
7. Each command in UC is associated with a right and has two formal parame-

ters s and o, where s is a subject trying to access object o with right r. A single
right can be associated with more than one command. Number of commands
(l) ≥ number of rights (k). There are two types of usage control commands,
Non-Creating Command and Creating Command. Each command has a pre-
condition part and an update part. Table 4 shows the structure of non-creating
and creating command of UCONfinite

preA .

(a) In UCONfinite
preA non-creating command, fb(s, o) is a boolean function which

takes the attribute values of s and o and returns true or false. If the result
is true then the PreUpdate is performed with zero or more attributes of s
and o independently updated to new values computed from their attribute
values prior to the command execution. Also the usage right r is granted.
Otherwise the command terminates without granting r. f1 and f2 are the
computing functions for new values.

(b) In UCONfinite
preA creating command, fb(s) is a boolean function which takes

the attribute values of s and returns true or false. If the result is true then

Table 4. UCONfinite
preA command structure

Non-Creating Command Creating Command

Command Namer(s,o) Command Namer(s,o)
PreCondition:fb(s,o)→ {true,false}; PreCondition:fb(s)→ {true,false};
PreUpdate: s.ai1 := f1,ai1

(s,o); PreUpdate: create o;
... s.ai1 := f1,ai1

(s);

s.aip := f1,aip
(s,o);

...

o.aj1 := f2,aj1
(s,o); s.aip := f1,aip

(s);
... o.aj1 := f2,aj1

(s);

o.ajq := f2,ajq
(s,o);

...

o.ajq := f2,ajq
(s);

264 T. Ahmed and R. Sandhu

the PreUpdate is performed with zero or more attributes of s updated to
new values computed from the attribute values of s. All attributes of
the newly created object o are assigned computed attribute values. Also
the usage right r is granted. Otherwise the command terminates without
granting r. f1 and f2 are the computing functions for new values.

4 Reduction from ABACα to UCONfinite
preA

In this section we define a reduction from ABACα to UCONfinite
preA . For conve-

nience we introduce policy evaluation functions and sets of eligible attribute
value tuples for creation and modification of subjects and objects of ABACα.
We also introduce the PreCondition evaluation functions of UCONfinite

preA which
we will use in the next section. These additional notations enable us to relate
the machinery of these two models.

4.1 Policy Evaluation Functions for ABACα

Each Policy evaluation function evaluates corresponding policy and returns true
or false.

Authorization Policy Evaluation Function: ChkAuth(p, savtf(s),
oavtf(o)) returns true or false. This function evaluates the authorization pol-
icy Authori-zationp(s, o) to determine whether a subject s is allowed to have
permission p on object o.

Creation and Modification Policy Evaluation Functions:

– ChkConstrSub(uavtf(u),savt) returns true or false. It evaluates the subject
creation policy ConstrSub(u, s, savt) as to whether a user u with attribute
value tuple uavtf(u) is allowed to create a subject s with attribute value
tuple savt.

– ChkConstrSubMod(uavtf(u), savtf(s), savt) returns true or false. It evalu-
ates the subject modification policy ConstrSubMod(u, s, savt) as to whether
a user u with attribute value tuple uavtf(u) is allowed to modify a subject s
with attribute value tuple savtf(s) to savt.

– ChkConstrobj(savtf(s), oavt) returns true or false. It evaluates the object
creation policy ConstrObj(s, o, oavt) as to whether a subject s with attribute
value tuple savt is allowed to create an object o with attribute value tuple
oavt.

– ChkConstrobjMod(savtf(s), oavtf(o), oavt) returns true or false. It evaluates
the object modification policy ConstrObjMod(s, o, oavt) as to whether a sub-
ject s with attribute value tuple savtf(s) is allowed to modify an object o with
attribute value tuple oavtf(o) to oavt.

Safety of ABACα Is Decidable 265

4.2 Sets of Eligible Attribute Value Tuples

Using the policy evaluation functions for ABACα we define 4 eligible sets for
attribute value tuples as follows.

Definition 1. set of user-subject-creatable-tuples
UAVTCrSAVT ⊆ UAVT × SAVT
UAVTCrSAVT = {〈i, j〉 | i ∈ UAVT ∧ j ∈ SAVT

∧ ChkConstrSub(i,j)}
Definition 2. set of user-subject-modifiable-tuples

UAVTModSAVT ⊆ UAVT × SAVT × SAVT
UAVTModSAVT = {〈i, j, k〉 | i ∈ UAVT ∧ j∈ SAVT

∧ k ∈ SAVT ∧ ChkConstrSubMod(i, j, k)}
Definition 3. set of subject-object-creatable-tuples

SAVTCrOAVT ⊆ SAVT × OAVT
SAVTCrOAVT = {〈i, j〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ ChkConstrObj(i, j) }
Definition 4. set of subject-object-modifiable-tuples

SAVTModOAVT ⊆ SAVT × OAVT × OAVT
SAVTModOAVT = {〈i, j, k〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ k ∈ OAVT ∧ ChkConstrObjMod(i,j,k)}

4.3 PreCondition Evaluation Functions for UCONfinite
preA

PreCondition evaluation functions of UCONfinite
preA check the PreConditions of

UCONfinite
preA commands and return true or false.

– CheckPCNCR(ucr, avtf(s), avtf(o), avt1, avt2) returns true or false. It
evaluates the PreCondition fb(s, o) and PreUpdate of non-creating command
ucr(s, o) as to whether a subject s is allowed to execute command ucr on
object o and if allowed whether it modifies s’s attribute value tuple from
avtf(s) to avt1 and o’s attribute value tuple from avtf(o) to avt2.

– CheckPCCR(ucr, avtf(s), o, avt1, avt2) returns true or false. It evaluates
the PreCondition fb(s) and PreUpdate of creating command ucr(s, o) as to
whether a subject s is allowed to execute the command uc with right r and
if allowed whether it creates object o with attribute value tuple to avt2 and
modifies s’s own attribute value tuple from avtf(s) to avt1.

4.4 Reduction from ABACα to UCONfinite
preA

The reduction is presented showing the configuration of UCONfinite
preA object

schema, rights and commands to do ABACα. Table 5 shows the reduction.

Object Schema of UCONfinite
preA : Every ABACα entity (user, subject, object)

is represented as a UCONfinite
preA object and the attribute entity type specifies

266 T. Ahmed and R. Sandhu

Table 5. Reduction from ABACα to UCONfinite
preA

Object Schema(OSΔ):

[entity type:{user, subject, object}, user name: UABACα , SubCreator: UABACα ,

isDeleted: {true,false}, ua1:Range(ua1), . . . , uam:Range(uam),

sa1:Range(sa1), . . . , san:Range(san), oa1:Range(oa1), . . . , oap: Range(oap)]

Attributes:

ATT = {entity type, user name, SubCreator, isDeleted}
∪ UAABACα ∪ SAABACα ∪ OAABACα

Usage Rights:

UR= PABACα ∪ {d}
Commands:

UCONfinite
preA commands are defined in Tables 6 and 7

whether a particular UCONfinite
preA object is ABACα user, subject or object. User,

subject and object attributes of ABACα are represented as UCONfinite
preA object

attributes. There is no user creation in ABACα so UABACα is a finite set. ABACα

function SubCreator is configured here with a mandatory UCONfinite
preA object

attribute whose domain would be finite set of users (UABACα). To determine
which user is the creator of an ABACα subject, UCONfinite

preA object needs to have
another mandatory attribute user name whose range is also finite set of users
(UABACα). ABACα has a subject deletion operation. In [7] it is shown that dele-
tion of a subject can be simulated by using a special boolean attribute isDeleted
which has a boolean domain. We consider “NULL” as a special attribute value
for any atomic or set valued attribute. It is assigned to an attribute which
is not appropriate for a particular entity. We need to add “NULL” in the
range of UA, SA and OA for this reduction. As there is no user deletion and
object deletion in ABACα, isDeleted would be “NULL” for both users and
objects. UCONfinite

preA attribute set ATT = {entity type, user name, SubCreator,
isDeleted} ∪ UAABACα ∪ SAABACα ∪ OAABACα .

UCONfinite
preA usage rights UR: In this reduction each ABACα permission is

considered as a usage right in UCONfinite
preA and additionally a dummy right d is

introduced. Each UCONfinite
preA command associates with a right. We use dummy

right d for association with the commands which are defined to configure ABACα

operations. Usage Right URUCONfinite
preA = PABACα ∪ {d}.

UCONfinite
preA commands: ABACα operations are reduced to specific UCONfinite

preA

commands. We use the sets of eligible attribute value tuples to define UCONfinite
preA

commands. It defines a creating command for each element of UAVTCrSAVT
and SAVTCrOAVT and a non-creating command for each element of UAVT-
ModSAVT and SAVTModOAVT. For example consider an ABACα subject
creation policy where a user u with attribute value tuple uavt is allowed to

Safety of ABACα Is Decidable 267

create a subject s with attribute value tuple savt, so by definition 〈uavt, savt〉
∈ UAVTCrSAVT. For each element 〈i, j〉 ∈ UAVTCrSAVT this reduction
has a command named CreateSubject ij(s, o) which creates an object o with

Table 6. UCONfinite
preA non-creating commands

for each r ∈ URUCONfinite
preA \ {d} DeleteSubjectd(s, o)

Accessr(s, o) PreCondition: s.entity type =user
PreCondition: ChkAuth(r,avtf(s),avtf(o)) ∧ o.entity type = subject
PreUPdate: N/A ∧ o.SubCreator = s.user name

∧ o.isDeleted = false
PreUpdate: o.isDeleted = true

For each i, j, k UAVTModSAVT For each i, j, k SAVTModOAVT
ModifySubjectAtt ijkd(s,o) ModifyObjectAtt ijkd(s,o)
PreCondition: s.entity type = user PreCondition: s.entity type = subject

∧ o.entity type = subject ∧ o.entity type = object
∧ o.isDeleted = false ∧ s.isDeleted = false
∧ o.SubCreator = s.user name ∧ s.sa1, . . . , s.san = i1, . . . , in
∧ s.ua1, . . . , s.uam = i1, . . . , im ∧ o.oa1, . . . , s.oap = j1, . . . , jp

∧ o.sa1, . . . , s.san = j1, . . . , jn

PreUpdate: o.sa1 = k1 PreUpdate: o.oa1 = k1

...
...

o.san = kn o.oap = kp

Table 7. UCONfinite
preA creating commands

For each i, j UAVTCrSAVT For each i, j SAVTCrOAVT
CreateSubject ijd(s, o) CreateObject ijd(s,o)
PreCondition: s.entity type = user PreCondition: s.entity type = subject

∧ s.ua1, . . . , s.uam = i1, . . . , im ∧ s.isDeleted = false
∧ s.sa1, . . . , s.san = i1, . . . , in

PreUpdate: create o PreUpdate: create o
o.entity type = subject o.entity type = object
o.user name = NULL o.user name = NULL
o.SubCreator = s.user name o.SubCreator = NULL
o.isDeleted = false o.isDeleted = NULL
o.ua1 = NULL o.ua1 = NULL
...

...
o.uam = NULL o.uam = NULL
o.sa1 = j1 o.sa1 = NULL
...

...
o.san = jn o.san = NULL
o.oa1 = NULL o.oa1 = j1
...

...
o.oap = NULL o.oap = jp

268 T. Ahmed and R. Sandhu

entity type = subject. Each Access
UCONfinite

preA
r (s, o) configures AccessABACα

p (s, o)

where r = p. Here Access
UCONfinite

preA
r is a non-creating command with PreCondi-

tion part only and PreCondition checks the authorization evaluation function of

ABACα. Each DeleteSubject
UCONfinite

preA
d (s, o) configures DeleteSubjectABACα(u, s)

which is also a non-creating command and sets o.isDeleted = true. Tables 6
and 7 show the configuration of non-creating and creating commands for this
construction.

5 Safety of ABACα

In this section we show that safety of ABACα is decidable. We prove that the
reduction provided in the previous section is state matching, so it preserves
security properties including safety. Decidable safety for ABACα then follows
from decidable safety for UCONfinite

preA . Tripunitara and Li [9] define an access
control model as a set of access control schemes. An access control scheme is
a state transition system 〈Γ, Ψ,Q,
〉, where Γ is a set of states, Ψ is a set of
state transition rules, Q is a set of queries and
: Γ × Q → {true, false} is the
entailment relation. The notion of state-matching reduction is defined as follows.

Definition 5. State Matching Reduction:
Given two schemes A and B and a mapping A to B, σ : (ΓA × ΨA) ∪ QA →
(ΓB × ΨB) ∪ QB, we say that the two states γA and γB are equivalent under
the mapping σ when for every qA ∈ QA, γA
A qA if and only if γB
B σ(qA).
A mapping σ from A to B is said to be a state-matching reduction if for every
γA ∈ ΓA and every ψA ∈ ΨA, 〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two
properties:

1. For every γA
1 in scheme A such that γA ∗−→ψ γA

1 , there exists a state γB
1 such

that γB ∗−→ψ γB
1 and γA

1 and γB
1 are equivalent under σ.

2. For every γB
1 in scheme B such that γB ∗−→ψ γB

1 , there exists a state γA
1 such

that γA ∗−→ψ γA
1 and γB

1 and γA
1 are equivalent under σ.

In order to show that a reduction from ABACα and UCONfinite
preA is state matching,

we have to show the following:

1. Represent ABACα and UCONfinite
preA models as ABACα and UCONfinite

preA

schemes
2. Construct a mapping σABACα that maps ABACα to UCONfinite

preA

3. Prove that σABACα mapping from ABACα to UCONfinite
preA satisfies the follow-

ing two requirements for state matching reduction:
(a) for every state γABACα

1 reachable from γABACα under the mapping
σABACα there exists a reachable state in UCONfinite

preA scheme that is equiv-
alent (answers all the queries in the same way)

(b) for every state γ
UCONfinite

preA
1 reachable from γUCONfinite

preA under the mapping
σABACα there exists a reachable state in ABACα scheme that is equivalent
(answers all the queries in the same way)

Safety of ABACα Is Decidable 269

5.1 ABACα Scheme

An ABACα scheme consists of 〈ΓABACα , ΨABACα , QABACα ,
ABACα〉. Where

– ΓABACα is the set of all states. Where each state γABACα ∈ ΓABACα is char-
acterized by 〈Uγ , Sγ , Oγ , UA, SA, OA, uavtf, savtf, oavtf, P, SubCreator〉
where Uγ , Sγ , Oγ are set of users, subjects objects respectively in state γ.

– ΨABACα is the set of state transition rules which are all ABACα operations
defined in Table 3.

– QABACα is the set of queries of type:
1. Authorizationp(s, o) for p ∈ PABACα , s ∈ SABACα , o ∈ OABACα .
2. ConstrSub(u, s, savt) for u ∈ UABACα , s /∈ SABACα , savt ∈ SAVTABACα .
3. ConstrSubMod(u, s, savt) for u ∈ UABACα , s ∈ SABACα , savt ∈

SAVTABACα .
4. ConstrObj(s, o, oavt) for s ∈ SABACα , o /∈ OABACα , oavt ∈ OAVTABACα .
5. ConstrObjMod(s, o, oavt) for s ∈ SABACα , o ∈ OABACα , oavt ∈

OAVTABACα .
– Entailment
 specifies that given a state γ ∈ ΓABACα and a query q ∈

QABACα , γ
 q if and only if q returns true in state γ.

5.2 UCONfinite
preA Scheme

An UCONfinite
preA scheme consists of 〈ΓUCONfinite

preA , ΨUCONfinite
preA , QUCONfinite

preA ,

UCONfinite
preA 〉, as follows.

– ΓUCONfinite
preA is the set of all states. Where each state γUCONfinite

preA ∈ ΓUCONfinite
preA

is characterized by 〈OSγ
Δ, UR,ATT,AV T, avtf〉. Here OSγ

Δ is the object
schema in state γ.

– ΨUCONfinite
preA is set of state transition rules which are the set of creating and

non-creating commands of UCONfinite
preA defined in Tables 6 and 7.

– QABACα is the set of queries and of following types:
1. CheckPCNCR(ucr, avtf(s), avtf(o), avt1, avt2) for ucr ∈ UC, r ∈ UR, s

and o are UCONfinite
preA objects.

2. CheckPCCR(ucr, avtf(s), avt1, avt2) for ucr ∈ UC, r ∈ UR, s is an
UCONfinite

preA object.

– Entailment
 specifies that given a state γ ∈ ΓUCONfinite
preA and a query q ∈

QUCONfinite
preA , γ
 q if and only if q returns true in state γ.

5.3 Mapping from ABACα to UCONfinite
preA (σABACα)

– Mapping of ΓABACα to ΓUCONfinite
preA

• Mapping of Object Schema(OSΔ), ATT and UR is provided in Table 5
– Mapping of ΨABACα to ΨUCONfinite

preA

• σ(Accessp) = Access
UCONfinite

preA
r where r = p.

270 T. Ahmed and R. Sandhu

• σ(CreateSubject(u, s, savt)) = CreateSubject ijd(s, o),
i = uavtf(u) and j = savt.

• σ(DeleteSubject(u, s)) = DeleteSubjectd(s, o).
• σ(ModifySubjectAtt(u, s, savt)) = ModifySubjectAtt ijkd(s, o),

i = uavtf(u) and j = savtf(s) and k = savt.
• σ(CreateObject(s, o, oavt)) = CreateObject ijd(s, o),

i = savtf(s) and j = oavt.
• σ(ModifyObjectAtt(s, o, oavt)) = ModifyObjectAtt ijkd(s, o),

i = savtf(s) and j = oavtf(o) and k = oavt.
– Mapping of QABACα to QUCONfinite

preA is provided below
• σ(Authorizationp(s, o)) = CheckPCNCR(Accessp, avtf(s), avtf(o),

avtf(s), avtf(o)).
• σ(ConstrSub(u, s, savt)) = CheckPCCR(CreateSubject ijd, avtf(s), o,

avtf(s), 〈subject, NULL, u, false, NULL,. . . , NULL, savt1, . . . savtn,
NULL,. . . , NULL〉) where i = uavtf(u) and j = savt.

• σ(ConstrSubMod(u, s, savt))= CheckPCNCR(ModifySubjectAtt ijkd,
avtf(s), avtf(o), avtf(s), 〈savt1, . . . savtn〉) where i = uavtf(u), j = savtf(s)
and k = savt.

• σ(ConstrObj(s, o, oavt)) = CheckPCCR(CreateObject ijd, avtf(s), o,
avtf(s), 〈object, NULL, NULL, NULL, NULL,. . . , NULL, NULL,. . . ,
NULL, oavt1, . . . oavtp〉) where i = savtf(s) and j = oavt.

• σ(ConstrObjMod(s, o, oavt))=CheckPCNCR(ModifyObjectAtt ijkd,
avtf(s), avtf(o), avtf(s), 〈oavt1, . . . oavtp〉) where i = savtf(s), j = oavtf(o)
and k = oavt.

5.4 Proof that σABACα Is State-Matching

The proof that the mapping provided above is a state matching reduction is
lengthy and tedious. Here we present an outline of the main argument.

Lemma 1. σABACα satisfies assertion 1 of the state matching reduction of Def-
inition 5.

Proof. (Sketch): Assertion 1 requires that, for every γABACα ∈ ΓABACα and
every ψABACα ∈ ΨABACα , 〈γABACα , ψABACα〉 = σ (〈γABACα , ψABACα〉) has the
following property:

For every γABACα
1 in scheme ABACα such that γABACα

∗−→ψABACα γABACα
1 ,

there exists a state γ
UCONfinite

preA
1 such that

1. γUCONfinite
preA (=σ(γABACα)) ∗−→

ψ
UCONfinite

preA (=σ(ψABACα))
γ
UCONfinite

preA
1 .

2. for every query qABACα ∈ QABACα , γABACα
1
ABACα qABACα if and only if

γ
UCONfinite

preA
1
UCONfinite

preA σ(qABACα). It can be decomposed into two directions:
(a) The “if” direction:

γ
UCONfinite

preA
1
UCONfinite

preA σ(qABACα) => γABACα
1
ABACα qABACα .

Safety of ABACα Is Decidable 271

(b) The “only if” direction:

γABACα
1
ABACα qABACα => γ

UCONfinite
preA

1
UCONfinite
preA σ(qABACα).

The proof is by induction on number of steps n in γABACα
∗−→ψABACα γABACα

1 .

Lemma 2. σABACα satisfies assertion 2 of the state matching reduction of Def-
inition 5.

Proof. (Sketch): Assertion 2 requires that, for every γABACα ∈ ΓABACα and
every ψABACα ∈ ΨABACα , 〈γABACα ,ψABACα〉 = σ (〈γABACα ,ψABACα〉) has the
following property:

For every γ
UCONfinite

preA
1 in scheme UCONfinite

preA such that γUCONfinite
preA

(=σ(γABACα)) ∗−→
ψ

UCONfinite
preA (=σ(ψABACα))

γ
UCONfinite

preA
1 , there exists a state γABACα

1

such that

1. γABACα
∗−→ψABACα γABACα

1 .
2. for every query qABACα ∈ QABACα , γABACα

1
ABACα qABACα if and only if

γ
UCONfinite

preA
1
UCONfinite

preA σ(qABACα).
It can be decomposed into two directions:
(a) The “if” direction:

γ
UCONfinite

preA
1
ABACα σ(qABACα) => γABACα

1
ABACα qABACα .
(b) The “only if” direction:

γABACα
1
ABACα qABACα => γ

UCONfinite
preA

1
UCONfinite
preA σ(qABACα).

The proof is by induction on number of steps n in γUCONfinite
preA (= σ(γABACα))

∗−→
ψ

UCONfinite
preA (=σ(ψABACα))

γ
UCONfinite

preA
1 .

Theorem 1. σABACα is a state matching reduction.

Proof. Lemma 1 shows that σABACα satisfies assertion 1 of Definition 5 and
Lemma 2 shows that σABACα satisfies assertion 2 of Definition 5. According to
the Definition 5, σABACα is a state matching reduction.

Theorem 2. Safety of ABACα is decidable.

Proof. Safety of UCONfinite
preA is decidable [7]. Theorem 1 proved there exists a

state matching reduction from ABACα to UCONfinite
preA . A state matching reduc-

tion preserves security properties [9] including safety.

6 Conclusion

This paper gives a state matching reduction from ABACα to UCONfinite
preA . Safety

of UCONfinite
preA is decidable [7] and state matching reduction preserves security

properties including safety [9]. It follows that safety of ABACα is decidable.

Acknowledgments. This research is partially supported by NSF Grants CNS-
1111925, CNS-1423481, CNS-1538418, and DoD ARL Grant W911NF-15-1-0518.

272 T. Ahmed and R. Sandhu

References

1. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
mun. ACM 19(8), 461–471 (1976). http://doi.acm.org/10.1145/360303.360333

2. Hu, V.C., Ferrariolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Karen,
S.: Guide to attribute based access control (ABAC) definitions and considerations.
2014 NIST Special Publication 800–162

3. Jin, X.: Attribute-Based Access Control Models and Implementation in Cloud
Infrastructure as a Service. Ph.D. thesis, UTSA (2014)

4. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31540-4 4

5. Kolter, J., Schillinger, R., Pernul, G.: A privacy-enhanced attribute-based access
control system. In: Barker, S., Ahn, G.-J. (eds.) DBSec 2007. LNCS, vol. 4602, pp.
129–143. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73538-0 11

6. Park, J., Sandhu, R.: The UCONabc usage control model. ACM TISSEC 7,
128–174 (2004)

7. Rajkumar, P., Sandhu, R.: Safety decidability for pre-authorization usage control
with finite attribute domains. IEEE Trans. Dependable Secure Comput. 13(5),
582–590 (2016)

8. Shen, H.: A semantic-aware attribute-based access control model for web services.
In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS, vol. 5574, pp. 693–703.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03095-6 65

9. Tripunitara, M.V., Li, N.: A theory for comparing the expressive power of access
control models. J. Comput. Secur. 15(2), 231–272 (2007)

10. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of the IEEE International Conference on Web Services, ICWS 2005,
pp. 561–569 (2005). http://dx.doi.org/10.1109/ICWS.2005.25

http://doi.acm.org/10.1145/360303.360333
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-540-73538-0_11
http://dx.doi.org/10.1007/978-3-642-03095-6_65
http://dx.doi.org/10.1109/ICWS.2005.25

	Safety of ABAC Is Decidable
	1 Introduction
	2 The ABAC Formal Model (Review)
	2.1 Users, Subjects, Objects and Their Attributes
	2.2 Authorization Policy
	2.3 Creation and Modification Policy
	2.4 Policy Languages
	2.5 Functional Specification

	3 The UCONpreAfinite Model (Review)
	4 Reduction from ABAC to UCONpreAfinite
	4.1 Policy Evaluation Functions for ABAC
	4.2 Sets of Eligible Attribute Value Tuples
	4.3 PreCondition Evaluation Functions for UCONpreAfinite
	4.4 Reduction from ABAC to UCONpreAfinite

	5 Safety of ABAC
	5.1 ABAC Scheme
	5.2 UCONpreAfinite Scheme
	5.3 Mapping from ABAC to UCONpreAfinite (ABAC)
	5.4 Proof that ABAC Is State-Matching

	6 Conclusion
	References

