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ABSTRACT
In an infrastructure as a service (IaaS) cloud, virtualized IT
resources such as compute, storage and network are offered
on demand by a cloud service provider (CSP) to its tenants
(customers). A major problem for enterprise-scale tenants
that typically obtain significant amount of resources from
a CSP concerns orchestrating those resources in a secure
manner. For instance, unlike configuring physical hardware,
virtual resources in IaaS are configured using software, and
hence prone to misconfigurations that can lead to critical
security violations. Examples of such resource orchestration
operations include creating virtual machines with appropri-
ate operating system and software images depending on their
purpose, creating networks, connecting virtual machines to
networks, attaching a storage volume to a particular virtual
machine, etc. In this paper, we propose attribute-based con-
straints specification and enforcement as a means to mitigate
this issue. High-level constraints specified using attributes of
virtual resources prevent resource orchestration operations
that can lead to critical misconfigurations. Our model al-
lows tenants to customize the attributes of their resources
and specify fine-grained constraints. We further propose a
constraint mining approach to automatically generate con-
straints once the tenants specify the attributes for virtual re-
sources. We present our model, enforcement challenges, and
its demonstration in OpenStack, the de facto open-source
cloud IaaS software.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security
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1. INTRODUCTION
Enterprises are increasingly driven by economics and flexi-

bility to use computing resources provided by cloud IaaS [23].
In cloud IaaS the physical resources in a datacenter are log-
ically arranged by the cloud service provider (CSP), while
computing resources are virtualized and hosted on those log-
ical collections of physical resources. This is illustrated in
figure 1 where, for example, a rack is a collection of a specific
set of physical servers and network hosts. Other resources
such as physical storages may be associated with those com-
pute hosts in the rack. This is shown as physical resource
to physical resource mapping (PR-to-PR) in the figure. The
single and double-headed arrows indicate the usual “one-to”
and “many-to” mappings respectively. In cloud IaaS, en-
terprises or tenants obtain a number of separate pieces of
virtual computing resources (or simply virtual resources or
resources), e.g. virtual machines (VMs), virtual networks
(NETs), etc., from the CSP, where a physical resource is
shared by multiple virtual resources for maximizing utiliza-
tion and reducing cost. IaaS providers allow multi-tenancy
which multiplexes virtual resources of multiple enterprises
upon same hardware. This includes co-location of VMs from
different tenants on a single (physical) host, sharing of VM
images in a repository, etc. This is illustrated as virtual re-
source to physical resource mapping in figure 1. This raises
many security and performance considerations for a tenant’s
workload in the cloud. For instance, a tenant’s VMs can be
attacked by co-located malicious VMs of an adversary ten-
ant. Such issues that arise due to multi-tenancy of virtual
resources on physical resources have been extensively inves-
tigated in the past (see for example [19, 22, 28, 29, 32, 33]).

Another major issue arises from the fact that, for a given
tenant with large-scale, heterogeneous virtual resources in
IaaS, orchestrating those resources in a secure manner is
cumbersome. Virtual to virtual resource mapping relations
are also shown in figure 1. Here, orchestration refers to re-
source management issues such as creating networks, design-
ing network layouts, applying appropriate images to VMs,
etc. Since, in IaaS resource orchestration operations are
performed in software (unlike in the case of physical re-
sources where, for instance, servers are physically connected
via Ethernet cables), they are highly prone to misconfigura-
tions that can lead to security issues or increased exposure.
For instance, a web-facing VM can be accidentally connected
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Figure 1: Cloud Resources Mapping Relation

to a sensitive internal network or a low-assurance image may
be applied to a VM that is expected to be security-hardened.

In this paper, we present the design, implementation, and
evaluation of attribute-based CVRM (constraint-driven vir-
tual resource management) as an approach to mitigate such
concerns in cloud IaaS. Constraints in access control theory
are effective ways of risk mitigation. A classic example is
separation of duty in RBAC [24] where certain roles such as
accounts manager and purchase manager conflict with each
other and hence should never be assigned to the same user.
Our developed CVRM enables tenants to express several es-
sential properties of cloud resources as their attributes and
specify constraints on resource mappings (VR-to-VR in fig-
ure 1) based on those attributes. We expect such constraints
to be specified by a tenant administrative user or the CSP
administrator. We provide a number of examples illustrating
the utility of this technique in practical situations, such as
configuring a Hadoop Cluster and a 3-tier business applica-
tion in cloud IaaS. The CSP can then algorithmically enforce
such constraints specified by all of its tenants when a virtual
resource is mapped with another. We have implemented a
prototype of CVRM in the widely-deployed OpenStack, the
de facto open-source IaaS cloud software. We also propose
an algorithm for mining the constraints in CVRM where the
tenants specify the necessary attributes according to their
business specifications and the algorithm automatically con-
structs the required constraints.

2. MOTIVATION
Migrating line-of-business applications to IaaS can be dis-

astrous rather than beneficial for the tenants if their virtual
resources are not properly configured. A misconfigured sys-
tem not only hinders expected performance but also poses
several security threats to a tenant. These threats include
(i) malicious image insertion and inadvertent leakage of sen-
sitive information through snapshot, (ii) sensitive informa-
tion passing from a virtual machine to malicious virtual
networks, and (iii) flow of information from a highly sen-
sitive virtual network to a malicious or less sensitive one.
However, present commercial cloud IaaS providers, includ-
ing Amazon and Rackspace, offer at best rudimentary ca-
pabilities for such configuration management. For instance,
AWS-IAM [1] offers a tenant to specify policies that can re-
strict resource-level permissions for certain users where the

Figure 2: Constraints on Virtual Resources Arrangement
Configurations

permissions include snapshot a VM, create a virtual storage
with specific capacity, etc. On the other hand, Rackspace
provides a fixed mechanism for isolation management where
cloud resources and administrative users of a tenant, also re-
ferred as admin-users, can be grouped into different projects
where admin-users can only configure the resources in their
assigned projects. These fixed approaches lack the gener-
ality to capture diverse enterprise-specific requirements for
configuring virtual resources. Moreover, in these user-driven
configuration management setups, completely relying on the
admin-users increases the risk of possible misconfiguration
since admin-users may inadvertently create incorrect config-
urations. It also elevates potential for insider threats.

Motivated by this scenario, we aim to develop CVRM
that offers a tenant to specify various constraints for con-
figuring the required arrangements of virtual resources. We
address the fact that security concerns due to misconfigu-
ration will vary across line-of-business applications of the
tenants. For instance, 3-tier business application will be
concerned about protecting unauthorized disclosure of data,
while hadoop cluster configurations will seek to ensure in-
tegrity and availability of the resources. CVRM is designed
to address tenant-specific constraints where the constraints
are enforced on user-operations that affect the configurations
of virtual resources. Constraints specified by a tenant can
be enforced on operations performed by the tenant’s admin-
users during regular operations or by CSP’s admin-users in
case of exceptions and troubleshooting. We believe that, in
addition to any access control mechanism implemented in
this system, CVRM provides resource management capabil-
ity that prevents misconfiguration caused by admin-users.

Figure 2 shows conceptual view of constraint driven vir-
tual resource management. Constraints can be specified
for a specific mapping relation (or simply relation) between
two virtual resources. We describe these mapping relations
and possible misconfiguration issues. We also provide ex-
amples for 3-tier application and hadoop cluster configu-
rations. Note that, 3-tier aims to isolate computational
requirements of an organization by three different tiers—
presentation (PS), application (APP), and database (DB),
for better security and scalability. Hadoop is a master-slave
architecture for faster analysis of big-data where security
issues include integrity and availability of the resources.

• IMG-VM Compatibility Relations: As shown in
figure 2, a virtual machine image, also referred as IMG,
can be used by multiple VMs and also from a VM mul-
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tiple snapshots can be imaged. This process provides
quick replication of a VM into large numbers of VMs,
and also quick migration of a VM to another server.
However, incorrect usage of IMG can critically affect
the security and performance in the system. For in-
stance, in 3-tier, VMs running the application of each
tier require separate IMGs since VMs in different tiers
perform different operations. Thus, an IMG created for
DB-tier is not to be used for VMs of PS-tier, since PS-
tier VMs are web-facing and the IMG may expose crit-
ical information about DB-tier. Similarly, in hadoop,
each type of VMs such as nameNode and taskTracker
have different functionalities, whereby improper use of
IMG can hamper performance and availability.

• NET-VM Connectivity Relations: A group of VMs,
connect to a network NET, so as to internally com-
municate. However, a wrong VM connected to a NET
may hamper communication in NET and availability of
information. For instance, in 3-tier application, APP-
tier VMs can be connected to each other for faster com-
munications, however, accidental assignment of VMs
from other tiers can hamper the flow. Similarly, the
taskTracker VMs performing reduce jobs should be con-
nected with each other and no other VMs should con-
nect to this network.

• RT-NET Connection Relations: Using a virtual
router (RT), VMs of two selected NETs can commu-
nicate. In 3-tier application, VMs of APP-tier and PS-
tier should communicate, however, PS-tier should not
directly communicate with DB-tier. Also, connection
to the external internet is only authorized for tier-1
VMs. Similarly, in hadoop, a NET for nameNode VMs
should only connect to the NET of jobTracker VMs.

• STR-VM Attachment Relations: A persistent vir-
tual storage (STR), is like a hard-disk drive which can
be attached and detached to multiple VMs, but one
at a time, until it is destroyed. Note that, a STR at-
tached to a VM stores data from the VM. Later, if the
STR is detached and re-attached to another VM with-
out deleting its data, the new VM will get access to
the data of the previous VM.

3. DESIGN OF CVRM
Intuitively, an attribute captures a property of an entity

in the system, expressed as a name:value pair. For instance,
clearance can be a user attribute and values of clearance
could be ‘top-secret’, ‘secret’, etc. In the context of cloud
IaaS, various useful properties of the virtual resources, such
as VMs and NETs, can be captured by associating attributes
to them. For instance, attributes can represent a VM’s dif-
ferent properties including owner tenant, operational pur-
pose, workloads sophistication, and connected networks. In
CVRM, given that the properties of the virtual resources
are represented by their attributes, a constraint is enforced
while mapping (i.e., connecting) two virtual resources by
comparing the specific attributes of the virtual resources.

In this section, we formally define CVRM that includes
representation of the basic elements, relations among virtual
resources and the constraint specification language. Then,
we instantiate CVRM for 3-tier architecture in cloud IaaS.

3.1 Formal Specification
The basic elements of CVRM include representation of

existing tenants and virtual resources in a cloud IaaS system
where each virtual resource belongs to a particular tenant. A
virtual resource is also mapped to a particular class of virtual
resource such as VM, NET, IMG, RT, and STR. Formally, we
have the following.

• VR is the set of all existing virtual resources in CSP.

• CLS is the set of all classes of virtual resources that
are supported by the CSP.

• rCls : VR→ CLS, is a function that maps each virtual
resource to its class.

• TENANTS is the finite set of existing tenants in CSP.

• tenant : VR → TENANTS, is a function that maps
each virtual resource to the tenant that owns it.

• VRtnt is the set of virtual resources that are owned by
the tenant tnt. Formally,
VRtnt={v∈ VR | tenant(v)=tnt}.

Here, VRtnt contains the virtual resources of a tenant tnt

and these virtual resources are partitioned into different sets
based on their class. We define such sets of the virtual re-
sources of each tenant as follows,

• VRtnt,c is the set of virtual resources of class c that are
owned by the tenant tnt. Formally,
VRtnt,c={v∈VRtnt | rCls(v)=c}.

In a tenant, a particular class of virtual resources can
have specific type of mapping relations to virtual resources
of another class. For instance, virtual resources of class VM
can have connection-mapping and attachment-mapping re-
lations with virtual resources of class NET and STR respec-
tively. We can define the relations between elements of every
two classes of virtual resources in a tenant as follows,

• Rtnt,c
i
,c

j
is the relation between virtual resources of

class ci and cj in a tenant tnt. Formally,
Rtnt,c

i
,c

j
⊆ VRtnt,ci×VRtnt,cj .

However, CVRM restricts the following type of relations,

1. Relations between virtual resources of same class can-
not be specified (i.e., Rtnt,c

i
,c

i
cannot be specified).

2. For two classes ci 6=cj we can defineRtnt,c
i
,c

j
orRtnt,c

j
,c

i

but not both.

CVRM provides two operations called Add and RM re-
spectively to add and remove tuples to a relation, where each
operation is a function that takes as inputs the relation and
two virtual resources of appropriate classes. Each operation
also evaluates a specific constraint with respect to these two
virtual resources as discussed below. Formally they are de-
fined as follows (the notation for defining these operations is
similar to the notation of schema used in NIST RBAC [25]),

Add(Rtnt,ci,cj ,vr1,vr2) C
vr1∈VRtnt,ci ∧ vr2∈VRtnt,cj ∧ consEval(δAdd

tnt,ci,cj ,vr1,vr2)
Rtnt,ci,cj

′ = Rtnt,ci,cj ∪ {<vr1,vr2>}B
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RM(Rtnt,ci,cj ,vr1,vr2) C
vr1∈VRtnt,ci ∧ vr2∈VRtnt,cj ∧ consEval(δRM

tnt,ci,cj ,vr1,vr2)
Rtnt,ci,cj

′ = Rtnt,ci,cj − {<vr1,vr2>}B

Here, δAdd
tnt,ci,cj and δRM

tnt,ci,cj are constraints that are re-
spectively specified for adding and removing a tuple to the
relation Rtnt,c

i
,c

j
. A successful execution of an operation is

allowed if the constraint is satisfied for the particular virtual
resources vr1 and vr2. Both Add andRM call the constraint
evaluation function consEval with vr1, vr2 as inputs along
with the relevant constraint. Evaluation of the constraint is
a simple evaluation of a logical formula to true or false.

Basically, a constraint compares different properties as-
signed to the virtual resources vr1 and vr2 which are evalu-
ated by consEval to make a decision. In CVRM, there are
attributes of each class of virtual resource that character-
ize different properties of the resources and are modeled as
functions. For each attribute function, there is a set of finite
constant values that represents the possible values of that
attribute. We assume values of attributes to be atomic,1

therefore, for a particular element of that resource, the name
of the attribute function maps to one value from the set. For
convenience attribute functions are simply referred to as at-
tributes. Formally, we have the following.

• ATTRci
tnt is the set of attribute functions of a virtual

resource class ci in tenant tnt. Here, for a function
att∈ATTRci

tnt, the domain of the function is the vir-
tual resources VRtnt,ci and the codomain is the values
of att written as SCOPEatt which is a set of atomic
values. Formally, att : VRtnt,ci→ SCOPEatt where
att∈ATTRci

tnt.

Now, for eachRtnt,ci,cj , at most two constraints can be spec-
ified for the operations Add and RM respectively. Each
constraint is used to verify if assigned values of specific at-
tributes of two virtual resources vr1 and vr2 of class ci and
cj respectively satisfy certain conditions. CVRM uses the
grammar below to specify constraints,

<Quantifier>:= ∀(vr1,vr2) ∈ R<Cls>,<Cls> . <Stmt>
<Stmt>:= <Stmt> <connector><Stmt> | (<rule>)
<rule>:= <Token> → <Token>
<Token>:= (<Token> <connector> <Token>)|(<Term>)
<Term>:= <Attribute>(<resource>) <comperator> <Scope>
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope>::= <letter> | <digit> <Scope>
<connector>::= ∧ | ∨
<comparator>::= = | 6=
<Cls>::= c1 | c2 | . . . | cn
<resoruce> ::= vr1 | vr2
<digit>::= 0|1|2| . . . |8|9
<letter>::= a|b|. . . |y|z|A|B|. . . |Y|Z

The constraint specification grammar syntax is given in
Backus Normal Form (BNF). Each constraint statement con-
tains single or multiple small expressions in the form of im-
plication, A→B, joined by logical connectors. The small
expression is also referred to as constraint-rule or just rule.

1As given in section 2, in 3-tier application, an example of
such constraints is to restrict communication between VMs
of APP-tier and DB-tier. Here, if the attribute is called tier
and the possible values are presentation, application and
database, a vm can only get one of the three values. However,
there might be constraints that require set-valued attributes
where the virtual resources get multiple values. CVRM is
not currently designed to express such constraints, however,
can be easily extended to set-valued attributes.

Both A and B in a rule A→B contain one or more predicates
connected by logical connectors, where a predicate contains
an attribute function of a specific class of virtual resource
and the function returns the assigned value to the attribute
of a specific instance of that class and, then, the predicate
compares the value with a particular value of the attribute.
Basically, a rule, A→B, verifies that if assigned attribute val-
ues of a virtual resource vr1 meets the conditions specified
in A then assigned attribute values of vr2 should satisfy the
condition in B in order to insert vr1 and vr2 into a relation.

Note that, the grammar is also weakly typed since in each
predicate <Attribute> and <Scope> are replaced by arbi-
trary names. To this end, we develop a simple static type-
checking system that ensures valid constraint expression.
For each predicate of a constraint, it checks if the value,
specified after the <comparator> sign of the predicate, be-
longs to the scope of the attribute name specified before the
<comparator>. It is formally defined as follows.

Predicate format:
attribute(<Resource>) <comparator> attribute-value

Type-Checking Rule:
If attribute-value ∈ SCOPEattribute Then

return true
Else

return error

3.2 Instantiation
In this section, we instantiate CVRM for an example of 3-

tier business application setup. Another example of hadoop
cluster setup is given in the appendix. We focus on the
tenant called 3-tier. The classes of virtual resources sup-
ported by the CSP are VM, NET, RT, STR and IMG and 3-

tier supports relations from VM-to-NET, NET-to-RT, VM-
to-IMG and VM-to-STR which are written as R3-tier,VM,NET ,
R3-tier,NET,RT, R3-tier,VM,STR and R3-tier,VM,IMG respectively.

Attributes are defined for the instances of each class of
virtual resources that characterize different properties nec-
essary to capture the requirements to run 3-tier applica-
tion in cloud. Figure 3-A identifies the attributes of the
virtual resources of tenant 3-tier. It also shows the map-
ping relation among virtual resources (represented by arrow-
headed lines). Figure 3-B gives the scopes of these at-
tributes. For instance, in A, a VM attribute tier represent
the tier-operations a VM performs and B shows the scope
of tier which is presentation, application, database. For
each vm, tier assigns a value from the scope to the vm.
An example attribute assignment for a vm that performs
as a database server is: tier(VM)= database. Other two
attributes of VM called versionVM and status represent
the version of a VM in specific tier and the activity status
respectively. Similarly, IMG also has attributes called tier
and versionIMG that represnts the tier and version respec-
tively for which an IMG is created. For 3-tier, we also cre-
ate a NET attribute called netType that specifies the layer
for which a NET is created for the communication. For in-
stance, a NET with netType value psNet should only carry
presentation layer data. Figure 3-A and 3-B also defines
attributes and their scopes for RT and STR respectively.

Generally, in CVRM, tenants can specify attributes for
their virtual resources to capture specific organizational re-
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Figure 3: Constraints Specification for 3-Tier Application System

quirements. Also, resources can have certain general proper-
ties irrespective of organizational diversities of the tenants.
CVRM categorizes attributes in two types: one that cap-
tures the general properties across all the tenants (referred as
inter-tenant attributes) and the other that captures tenant-
specific properties (referred to as intra-tenant attributes).

For a 3-tier application, the tenant specifies VM attribute
called tier, as shown in figure 3-A, for their operational
purpose. Here, tier is intra-tenant attribute since this at-
tribute does not capture anything in other applications such
as hadoop. However, volumeSize attribute of STR repre-
sents the size of the volume and this attribute is required by
virtual storage regardless of operational objectives of differ-
ent tenants, and is thereby an inter-tenant attribute

In this setup, proper administration of the attributes is
necessary where administration process should include cre-
ation and deletion of the attributes and their scopes as well
as assigning correct attribute values to the virtual resources.
Creation and deletion of inter-tenant attributes and their
scopes should be managed by the CSP’s admin-users, while,
the attribute value assignment to virtual resources are per-
formed by CSP’s or tenant’s admin-users or by the IaaS sys-
tem as appropriate. Attribute administration is beyond the
scope of this paper. However, there is literature on attribute
administration [18] that might apply in this context.

Followed by attribute specification of the resources, the
tenant 3-tier specifies at most two constraints for the re-
lations of every two classes. Some example constraints with
high level descriptions are shown in figure 3-C. For instance,
constraint δAdd

3-tier,VM,NET applies to the Add operation where
it checks if a vm is connecting to an appropriate virtual
network by comparing their attributes. Another constraint
called δRM

3-tier,VM,NET applies to RM operation of same rela-
tion where it checks if the a vm is in stop state to disconnect
it from a virtual network. Figure 3-C also shows example
constraints for other relations.

4. CVRM ENFORCEMENT
We describe a CVRM enforcement in OpenStack cloud

platform. Then, we analyze some security issues of CVRM.

4.1 Enforcement in OpenStack
Figure 4 shows conceptual picture of CVRM enforcement

process in IaaS. This process includes a constraint specifier
and constraint enforcer components. Constraint specifier
specifies necessary attributes and their scopes for the vir-
tual resources in IaaS. It also specifies the constraints for the
operations that add/remove configuration-relations between
two virtual resources. When users execute the operations,
respective constraints are enforced. As shown in the figure,
after getting each request from users, the constraint evalua-
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Figure 4: Components of CVRM Enforcement Process in a
Service of OpenStack

tor retrieves the attributes of the virtual resources and the
respective constraints from cloud database and evaluate the
constraints to make decision.

4.1.1 OpenStack Overview
OpenStack comprises various service components that pro-

vide functionalities for managing different virtual resources.
For instance, it has compute service called nova that offers
operations for the management of VMs where the operations
include create, delete, start and stop virtual machines. nova
also has operations for arranging other virtual resources to
VMs, e.g., connect VMs with NETs, attach STRs to VMs,
etc. In OpenStack, each resource is a member of a specific
project. A user is authorized to exercise a service opera-
tion to virtual resources of a project if she is a member of
the project and has the role called project-admin. There is
also a notion in OpenStack called domain where a domain
consists multiple projects. A user who is a member of a
domain and assigned to the role called domain-admin is re-
sponsible to create/delete projects in that domain as well
as add/remove users to specific projects. We can consider
such users of a domain and its projects as the super and
regular admin-users of a tenant respectively. There is also
a fixed domain called admin whose members are the CSP’s
admin-users. Members of the admin domain are responsi-
ble to create other domains and also add/remove users to
them. Generally, in OpenStack, if a user requests a virtual
resource configuration-operation, the authorization service
which is called keystone provides a token that contains user
authorization information including the projects where the
user is a member. The operation is allowed if the project of
respective virtual-resources are same as the requesting user.

Figure 5 shows execution steps of an user-operation (volume-
attach) in OpenStack that attaches a STR to a VM. When
a user in a project tries to execute the operation, the Open-
Stack client program retrieves the token for the user from
keystone. Then, it forwards the token along with respective
VM and STR names to nova since nova manages volume-
attach. nova verifies validity of the token and collects the
tenant information of VM and STR from database and it
approves if the given user, VM and STR are in same tenant.

4.1.2 Constraint Specifier
Our designed constraint specifier component can be in-

cluded in each service in OpenStack. The specifier extends

respective service operations by adding functionalities for
the creation and management of the attributes and their
scopes for respective virtual resources. In a tenant (domain),
managing such functionalities are only authorized for the
users having domain-admin role in the domain. Specifier
also provides operations for constraint specification. Each
constraint is mapped to an operation-name to which it ap-
plies. Operations that specify constraints are also authorized
only to users having domain-admin role. Attributes, their
scopes and constraints are stored in database-tables of re-
spective service. Entries in a database-table across tenants
(domains) are isolated by specific domain ids and admin-
users of a domain cannot access other domains’ information.

Figure 6 shows a nova operation of the constraint-specifier
component that specifies VM attributes. Database of nova
contains tables for storing attributes and constraints. When
a user tries to create an attribute, the token of the user is
verified to check if the user has domain-admin role in order
to make a decision. The component also contains similar
operations that specify constraints.

4.1.3 Constraint Enforcer
Similar to constraint specifier, an enforcer component is

included in every service in OpenStack. When a user exe-
cutes a service operation that affects a relation between two
virtual resources, enforcer verifies the respective constraint
which is already specified by constraint specifier. This pro-
cess retrieves attributes of the virtual resources and the con-
straint expression from service database. It implements an
evaluator to evaluate the constraint for making a decision.
Note that, in OpenStack, these operations are authorized
only for project admin-users.

Figure 7 shows extended view of figure 5 for the execution
of volume-attach. Besides, comparing the project informa-
tion of the VM, storage and user, the enforcer component
now retrieves the attributes for VM and STR and constraint
for volume-attach and evaluates the constraints by consid-
ering the VM and STR attributes.

4.2 Security Analysis
We present different security issues for enforcing CVRM

in practice.

4.2.1 Constraint Specifications Process

• Constraints, Attribute and Scope: CVRM aims
to restrict privileges of admin-users in order to mitigate
misconfiguration issues of a tenant. Therefore, con-
straints specification and modification process should
be restricted to the majority of admin-users and only
selected admin-users of a tenant should be authorized
to specify constraints, attributes of the virtual resources
and their scope. In OpenStack, there are three types of
admin-users: CSP-admin, domain-admin and project-
admin. In our developed constraint enforcement in
OpenStack we only authorize domain-admins to man-
age the constraints, attributes and their scopes where
the specified constraints are applied to all three type
of admin-users. A more formal isolation management
scheme is given in [8] that can also be applied here.

• Attribute Value Assignments: An admin-user who
can create virtual-resources should also assign values
to their attributes. In CVRM, the project-admin users
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Figure 5: Operation volume-attach
in Nova

Figure 6: Constraint Specifier
in Nova

Figure 7: Constraint Enforcement
for volume-attach

can assign values to the attributes. However, one needs
to make sure that the admin-users can only assign ap-
propriate values. For instance, a project-admin can
create VMs and assign only her project-id to those
VMs (not ids of other projects). In this paper we do
not focus on such access control system, however, ex-
isting mechanisms such as [8] might be useful.

• Generalized Enforcement Engine with Data Iso-
lation: For scalability, one generalized enforcement
engine should be designed for the evaluations of the
constraints of all the tenants. In our developed en-
forcement engine in OpenStack, constraints are stored
in the database separated according to the domain-id
of a tenant and only respective admin-users can have
access to their constraints.

4.2.2 Issues on Constraint Structure

• Contradictory Constraint: The sub-expressions of
a constraint can be of two types. One restricts the re-
lation of virtual resources of two different classes when
values of their attributes are mutual exclusive. An-
other one forces relation when the values of the at-
tributes are congruent. A constraint containing both
type of sub-expressions for same combination of values
of the attributes generates contradictory decisions for
a relation. We call these constraints as contradictory
constraints and they need to be avoided.

• Deadlock Constraints: In a constraint, a value, let’s
say, valx of an attribute attp of the virtual resources
of specific class ci can have mutual exclusion relation
with all the values of an attribute attq of the virtual re-
sources of class cj . Then, the virtual resources of class
ci with assigned value valx cannot be arranged with
any resources of cj . These constraints are deadlock
constraints and tenants need to handle them properly.

• Redundant CVRM Expressions: In CVRM, an
expression is redundant if it specified multiple times.
Redundant expression unnecessarily increases the run-
time complexity since it requires evaluation of the same
expression more than once. One such example of a re-
dundant expression is the multiple occurrences of same
sub-expression in a constraint expression.

4.3 Prototype Implementation
We describe the implemented prototype of CVRM en-

forcement process. We leverage the DevStack cloud frame-
work [2], a quick and stand-alone installation of OpenStack,
for the implementation and analysis. We choose DevStack as
it provides all components of the open source cloud platform
OpenStack. We installed DevStack in a physical server that
has 4 cores and 3GB RAM. We implemented the CVRM
components for nova. The implemented component can
specify attributes and their scopes for VMs and NETs which
are stored in the database. It also has a process to spec-
ify and evaluate constraints for VM-NET connection. Our
python-based implementation of constraint specifier, that
includes API design to enable users to declare attributes
and constraints which require tables creation into DevStack
database (MySQL), has 190 lines of sqlalchemy code. The
constraint enforcer that includes the constraint parser has
257 lines. The parser returns true or false value based on a
constraint expression by considering assigned attribute val-
ues for a VM and NET which need to be connected.

5. CONSTRAINT MINING IN CVRM
In this section, we consider approaches for mining CVRM

constraints from already specified relations among the in-
stances of two classes of virtual resources. Basically, this
process generates a collection of restricted rules, also refer-
eed as min rule, where a min rule is an implication, a→b, in
which both a and b are single predicates. Note that, the ac-
tual rule in the form of A→B as defined in section 3.1 allows
both A and B to be collections of predicates connected by ∧
and/or ∨. Now for a givenRtnt,ci,cj , δAdd

Rtnt,ci,cj
and δRM

Rtnt,ci,cj
,

a min rule can be generated by following grammar,
<Quantifier>:= ∀(vr1,vr2) ∈ R<Cls>,<Cls> . <Stmt>
<Stmt>:= <Stmt> <connector><Stmt> | (<min rule>)
<min rule>:= <Token> → <Token>
<Token>:= <Attribute>(<resource>)<comperator><Scope>
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope>::= <letter> | <digit> <Scope>
<connector>::= ∧ | ∨
<comperator>::= = | 6=
<Cls>::= c1 | c2 | . . . | cn
<resoruce> ::= vr1 | vr2
<digit>::= 0|1|2| . . . |8|9
<letter>::= a|b|. . . |y|z|A|B|. . . |Y|Z

Each min rule is restricted to specify a comparison be-
tween only two attributes of virtual resource classes ci and
cj . Now let us say Rtnt,ci,cj is a given set of tuples that
specifies the relation between instances of the two classes

189



ci and cj . The min rule mining problem is to construct all
possible min rules. For given Rtnt,ci,cj , ATTRci

tnt, ATTR
cj
tnt,

attp ∈ ATTRci
tnt, attq ∈ ATTR

cj
tnt, SCOPEattp and SCOPEattq ,

min rules can be of four following formats, where each val
has to belong to the appropriate attribute SCOPEatt.

• a→b where a≡(attp(vr1)=valx) ∧ b≡(attq(vr2)=valy).

• a→b where a≡(attp(vr1)=valx) ∧ b≡(attq(vr2)6=valy).

• a→b where a≡(attp(vr1)6=valx) ∧ b≡(attq(vr2)=valy).

• a→b where a≡(attp(vr1)6=valx) ∧ b≡(attq(vr2)6=valy).

For simplicity, we provide a mining algorithm for the for-
mat a→b which is also referred as mutual exclusive min rule.
Similar algorithms can be generated for other formats. We
choose mutual exclusive min rule format because we develop
mining algorithm on top of a constraint mining algorithm for
role based access control [20] where they also mine mutual
exclusive roles, so it is feasible to compare mutual exclusive
min rule to mutual exclusive roles.

5.1 Overview: Mining Constraints in RBAC
Mining association rules has become a fundamental prob-

lem in data mining, and it has been studied extensively.
Many algorithms such as FP-growth, Apriori, and Eclat [4]
have been developed to solve this problem in databases con-
taining transactions. Recently, a constraint mining algo-
rithm, called anti-Apriori, is proposed for role-based access
control (RBAC) [20] which is developed on top of the Apri-
ori algorithm [4]. In RBAC, U and R contains set of users
and roles in the system. A function user roles maps each
user to a set of roles that are assigned to the user. Now the
mutual exclusive constraint for RBAC is defined as follows.

A mutual exclusive RBAC constraint between roles ∈ R is
an implication of the form R1→R2 where R1 ⊂ R and R2 ⊂
R and R1 ∩ R2=∅ and user roles(u) ⊆ R1→ user roles(u)
∩ R2 = ∅ for each user u ∈ U. Let D be a set of user-role
assignments, the constraint R1→R2 has confidence c if c%
of users in U that are assigned a role in R1 do not have any
role from R2, and it has support s if s% users are assigned
a role in R1. The constraint R1→R2 holds for D if it has
certain user-specified minimum support and confidence.

5.2 Mining min rule in CVRM
In this section, we discuss the mining approaches for mu-

tual exclusive min rule. We first utilize the anti-Apriori al-
gorithm [20] for mining min rules. Then, we customize the
anti-Apriori algorithm, which we call CVRM-Apriori, for
min rule mining in order to get better performance.

5.2.1 Reduction to RBAC constraint mining
In this approach, we identify inputs of a mutual exclusive

min rule mining algorithm and reduce them to the inputs of
anti-Apriori. Then, we collect the outputs from anti-Apriori
algorithm and construct min rules.

Inputs of a min rule mining algorithm: In CVRM, each
mutual exclusive min rule is restricted to specify a mutual
exclusive relation between one value of an attribute of vir-
tual resources of a particular class with another value of an
attribute of virtual resources of another class. For given
Rtnt,ci,cj , VRtnt,ci , VRtnt,cj , and for each attp ∈ ATTRci

tnt and

for each attq ∈ ATTR
cj
tnt, the inputs for a mutual exclusive

min rule algorithm are VRtnt,ci , VRtnt,cj , Rtnt,ci,cj , attp, attq,
SCOPEattp and SCOPEattq .

Inputs of anti-Apriori: The inputs of the anti-Apriori
algorithm are U, R, the user-role assignment matrix M (M
is a u×r dimension boolean matrix where u and r is the size
of U and R and for each ui ∈ U and rj ∈ R, M[ui][rj ]=1 if
rj ∈ user roles(ui) and 0 otherwise), matrix O where O=
M, minconf (minimum confidence) and minsup (minimum
support). The inputs of the min rule mining algorithm are
reduced to the anti-Apriori algorithm as follows.

1. U = VRtnt,ci×VRtnt,cj and R = SCOPEattp ∪ SCOPEattq .
Without loss of generality, we assume the values in
SCOPEattp and SCOPEattq are disjoint.

2. M is a |U| × |R| dimensional boolean matrix where,
for each u∈U and for each r ∈ R, M[u][r]=1 where
(vr1,vr2)=u and attp(vr1)=r or attq(vr2)=r. Also,
O=M.

3. minconf and minsup are the values specified by the
users.

Now, anti-Apriori generates constraints in following steps,

1. Scan M to find all combinations of Ri ⊆ R in a set F
where the support of Ri is greater than minsup.

2. Scan O to find all combinations of Ri ⊆ R in a set F
where the support is greater than minsup.

3. For each Ri ∈ F and for each Rj ∈ F, generate mutual
exclusive rules in the format of Ri→Rj if its confidence
is greater than minconf and store Ri→Rj in Rules.

min rule Creation from Output of anti-Apriori algo-
rithm: Output of anti-Apriori is a set of mutual exclusive
rules from which the min rules are constructed as follows,
for each Ri→Rj ∈ Rules, each valx ∈ Ri and valy ∈ Rj con-
struct a min rule attp(v1)=valx → attq(v2)6=valy where valx
∈ SCOPEattp and valy ∈ SCOPEattq .

Although, this approach constructs min rules, it lacks scal-
ability for the following reasons.
(1) Size of the input parameter U is multiplicative with re-
spective to the virtual resources of two different class since
it is created by the cross product of each pair of virtual re-
sources. It thereby makes the size of matrix M and O very
large, increasing the run-time complexity.
(2) Algorithm anti-Apriori is designed to identify relations
among all possible subset of roles, therefore, it needs mul-
tiple scans to database which is very costly. However, for
mining the min rules should require much simpler approach
since it only needs to identify relations between every two
values of two different attributes of the virtual resources.

5.2.2 Anti-Apriori for min rule mining (CVRM-Apriori)
We customize the anti-Apriori algorithm for mining mu-

tual exclusive min rules. For a given VRtnt,ci , VRtnt,cj , for

each attp ∈ ATTRci
tnt and for each attq ∈ ATTR

cj
tnt, a mu-

tual exclusive min rule between each valx ∈ SCOPEattp and
valy ∈ SCOPEattq holds for an already specified Rtnt,ci,cj if
it satisfies certain user-specified minsup and minconf. The
support and confidence of a min rule is calculated as follows,
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• We define a function called insideR
attp
tnt,ci,cj

that returns

a set of elements in Rtnt,ci,cj that has a value valx of
an attribute attp ∈ ATTRci

tnt. Formally,

insideR
attp
tnt,ci,cj

(valx)={(vr1,vr2) | (vr1,vr2) ∈Rtnt,ci,cj

∧ attp(vr1)=valx}.

• Another function called outsideR
attq
tnt,ci,cj

returns the

set of elements in Rtnt,ci,cj that does not have a value

valy of an attribute attq ∈ ATTR
cj
tnt. Formally,

outsideR
attq
tnt,ci,cj

(valy)={(vr1,vr2) | (vr1,vr2) ∈Rtnt,ci,cj

∧ attq(vr2)6=valy}.

• Now, a function called support
attp
tnt,ci,cj

calculates sup-

port of a value valx of an attribute attp ∈ ATTRci
tnt.

Formally,

support
attp
tnt,ci,cj

(valx) =
|insideR

attp
tnt,ci,cj

(valx)|

|Rtnt,ci,cj
| ,

that calculates the ratio of the number of tuples in
Rtnt,ci,cj that contain valx of the attribute attp ∈ ATTRci

tnt

with all tuples in Rtnt,ci,cj .

• Similarly, support
attq
tnt,ci,cj

(valy) =
|outsideRattq

tnt,ci,cj
(valy)|

|Rtnt,ci,cj
| ,

is another function that calculates the ratio of the num-
ber of tuples inRtnt,ci,cj that do not contain valy of the

attribute attq ∈ ATTR
cj
tnt with all tuples in Rtnt,ci,cj .

• Finally, a function called confidence
attp,attq
tnt,ci,cj

calculates

the confidence which is the ratio of the number of el-
ements in Rtnt,ci,cj that have a value valx of an at-
tribute attp ∈ ATTRci

tnt, but, simultaneously, do not
have a value valy of an attribute attq ∈ ATTR

cj
tnt with

the total number of elements in Rtnt,ci,cj that have a
value valx of an attribute attp ∈ ATTRci

tnt. Formally,

confidence
attp,attq
tnt,ci,cj

(valx,valy) =

|insideR
attp
tnt,ci,cj

(valx) ∩ outsideR
attq
tnt,ci,cj

(valy)|

|insideR
attp
tnt,ci,cj

(valx)|

Now, for a given Rtnt,ci,cj , for each attp ∈ ATTRci
tnt and

for each attq ∈ ATTR
cj
tnt, user specified min sup

attp,attq
tnt,ci,cj

and

min conf
attp,attq
tnt,ci,cj

, algorithm 1 constructs the min rules. In

algorithm 1, procedure Identify Frequency identifies each
attribute value valx ∈ SCOPEattp and each attribute value

valy ∈ SCOPEattq whose supports satisfy min sup
attp,attq
tnt,ci,cj

and returns them in sets F and F respectively. Now, the
Gen min rule procedure takes the sets F and F and for each
valx ∈ F and for each valy ∈ F constructs the min rules that

satisfy the value of min conf
attp,attq
tnt,ci,cj

. This algorithm over-

comes the scalability issues of anti-Apriori algorithm since
it only identifies relations between two values instead of two
subset of values of attributes, and F and F are specified
separately from the scopes of two different attributes.

5.3 Implementation and Analysis
We compare the performance of anit-Apriori and CVRM-

Apriori algorithms. We implemented and evaluated both the
mining algorithms, which are defined in 5.2, to construct
min rules for the add operation for VM-NET connectivity
relations. We define three attributes for VM and two at-
tributes for NET. The value of each attribute of the virtual

Algorithm 1 Apriori Algorithm for min rule Mining

1: procedure Identify Frequency(SCOPEattp ,SCOPEattq ,

min sup
attp,attq
tnt,ci,cj

)

2: F = {}, F={}
3: for all val ∈ SCOPEattp do

4: if support
attp
tnt,ci,cj

(val) ≥ min sup
attp,attq
tnt,ci,cj

then

5: Insert val into F
6: end if
7: end for
8: for all val ∈ SCOPEattq do

9: if support
attq
tnt,ci,cj

(val) ≥ min sup
attp,attq
tnt,ci,cj

then

10: Insert val into F
11: end if
12: end for
13: Return F and F
14: end procedure

15: procedure Gen min rule(F,F,min conf
attp,attq
tnt,ci,cj

)

16: for all valx ∈ F and valy ∈ F do

17: if confidence
attp,attq
tnt,ci,cj

(valx, valy) ≥
18: min conf

attp,attq
tnt,ci,cj

then

19: Create min rule(min rulei, valx, valy)
20: end if
21: end for
22: end procedure

resources is specified in their ‘meta’ information. We ran-
domly connect 10 NETs to VMs where each VM is assigned
to at-least 3 NETs. Then, we collect logs of VM-NET con-
nection from the nova database of DevStack and evaluate
both algorithms.

Our first experiment verifies scalability of the algorithms
when number of VMs increases. We gradually increase VMs
from 50 to 500 with a fixed size of scope of each attribute to
10 from which we randomly assign a value for each attribute
of VMs and NETs. Then, for each VM attribute and NET
attribute pair we separately execute both algorithms and
record time. We repeated this process 10 times for each
algorithm. Figure 8 shows the average execution time of
both algorithms where time of anti-Apriori is very high while
CVRM-apriori gives much better performance. For instance,
for 50 VMs the average time of anti-Apriori is 1.3s where it
is 14.2s for 500 VMs. On the other hand, in CVRM-Apriori,
it is 0.23s and 1.2s. The reason is that the size of U of
anti-Apriori is multiplicative with increasing number of VMs
where in CVRM-Apriori it is only additive.

In second experiment, we fixed the VMs to 100, however,
increase the scope of each VM attribute from 10 to 20 and
executed both algorithms. We also executed each of them 10
times and recorded the time. Figure 9 shows the evaluation
results. Note that, like experiment one, anti-Apriori gives
very poor performance with compare to CVRM-Aprior. For
instance, from 10 to 20 values in scope the required time
of anti-Apriori increases 1.3s where, in CVRM-Apriori, it
remains almost constant. The reason behind this is that
anti-Apriori calculates mutual exclusive relations for all the
combination of the values of two attributes which unnec-
essarily increases time since min rule only needs to capture
separate relations between each two values of attributes.

In general, CVRM-Apriori behaves similar to the 2-frequent
Apriori algorithm which requires exactly 2 scans over the
database, hence, the required run-time complexity of CVRM-
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Figure 8: Mining Time with Increasing No. of VMs

Apriori is as good as FP-growth algorithm, which is an ef-
ficient Apriori algorithm with FP-tree data structure. Also,
the accuracy of CVRM-Apriori is exactly same of the gen-
eral Apriori algorithm since it does not discard any items
from database for calculating the support and confidence.

6. RELATED WORK
Providing functionality to clients for resource-level per-

mission management has started to receive more attention
recently from cloud IaaS providers. However, this is pri-
marily for managing user or group privileges to access their
virtual resources. AWS Identity and Access Management
(IAM) policies [1] now can construct fine-grained policies
to control users’ access to Subnets, VPCs, Security Groups
and also type of virtual machines they can create. Also,
the open source cloud platform OpenStack [3] has devel-
oped service called Keystone to manage users privilege to
access cloud resources using some type of role-based access
control. However, both platforms lack suitable mechanism
so that clients can systematically specify policy to manage
their virtual resources towards building a desired computing
environment that addresses security, scale, hpc, etc. This
increases various security threats for the running workloads
from different tenants in cloud IaaS system. For instance,
Shieh at al [26] shows that arbitrary sharing of network, in
cloud, may cause denial of service attack and performance
interferences. Wei et al [30] shows that uncontrolled snap-
shots and uses of images cause security risk for both creator
and user of images. Sivathanu et al [27] presents an experi-
mental analysis on I/O performance bottleneck when virtual
storages are placed arbitrarily in physical storage and shared
by random vms. Hence, different performance and security
issues exist in cloud IaaS for unorganized multiplexing of
resources and lack of controls, several of which are sum-
marized in [14, 16, 17]. Hashizume et al [16] discuss and
enumerates the security threats in cloud IaaS arising due to
sharing physical machine, using images from public reposi-
tory, sharing networks and storage, and also lack of proper
resource control mechanism. Recently, for improving these
scenarios, several efforts have been conducted by different
groups of researchers. For instance, several improvements
on shared network performance management have been pro-
posed [5, 6, 26]. CloudNaas [6] provides better management
of application-specific address spaces, middlebox traversal,
bandwidth reservation, etc. Shieh at al [26] gives a band-
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width allocation scheme that allows infrastructure providers
to define bandwidth sharing in cloud network with multiple
tenants. Sivathanu et al [27] identifies four different factors
that affects storage I/O performance and provides guidelines
and their experimental analysis to minimize I/O overhead.
Developing proper virtual machine placement algorithm also
recently drew attention from research community [10, 11, 13,
15, 21, 31] for improving different aspects, e.g. high perfor-
mance and load balancing. Present literature also contains
several processes on users authorization and access control
models for cloud IaaS that includes different RBAC models
for cloud IaaS [9, 12].

Our contribution, in this paper, is unique and different
than above described efforts. We aim to provide flexible
mechanism to capture different requirements of the tenants
to manage their virtual resources. Trusted virtual data cen-
ter (TVDc) [7] is closely related to our work, where they
assign virtual resources and users different colors where re-
sources with similar colors can be combined to build a com-
puting environment. Note that, color can be represented by
an attribute, hence, CVRM is a generalization of TVDc in
which resources are managed by multiple attributes.

7. CONCLUSIONS
We presented CVRM, the very first constraint specifica-

tion process that enables tenants to specify several virtual
resource management policies needed for production enter-
prise applications to run in IaaS clouds. CVRM can be
specified as part of a cloud deployment, and are installed in
the every cloud service provided by the IaaS providers.

We also identified that virtual-resource management poli-
cies can be discovered and constructed from log-file where it
is similar to the well-known frequent-itemsets mining prob-
lem in database system. We demonstrated a constraint
mining algorithm for CVRM where the algorithm leverages
standard Apriori algorithm from the data mining literature.
However, in this paper, we consider that the log-file is static
and noise-free. Also, we do not analyze whether the mined
constraints preserve semantic meaning with respective to the
configuration requirements of the tenant. An obvious future
work would be to identify various factors in IaaS that helps
mining the rule with semantic meaning. Also, it will be
interesting to determine noise in this system and develop
a more dynamic mining algorithm that can eliminate such
noises from the mining data.
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Figure 10: Constraints Specification for Hadoop Cluster

Appendix: CVRM for Hadoop Cluster Setup

We discuss the CVRM instantiation for a simple hadoop
cluster setup. The set TENANTS contains the tenant hadoop.
The classes of the virtual resources supported by CSP are
VM, NET, and RT and specified relations are between VM-
to-NET and NET-to-RT. The relations are represented as
Rhadoop,VM,NET and Rhadoop,NET,RT.

In this simple hadoop setup, we only define one attribute
for each virtual resources (shown in figure 10-A). Here, a
VM attribute nodeType represent the type of operations
a vm performs in hadoop cluster and figure 10-B shows
the scope of nodeType that is clientNode, nameNode, job-

Tracker, mapTask, reduceTask. Similarly, two attributes
netType and route are defined for NET and RT respectively.
Note that, other attributes can also defined for more com-
plex hadoop configuration management.

Followed by attribute specification of the resources, we
show two constraints for adding elements in each of the re-
lations (shown in figure 10-C). Here, for instance, constraint
δAdd
hadoop,NET,RT applies to the Add operation where it restricts

all the NETs except outerNet and clientNet to connect a RT
which has value outerRoute in route attribute. This con-
straint only allows clientNet to connect to outer internet.
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