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ABSTRACT 

We consider the access control problem in a system 
where users and information items are classified into 
security classes organized as a rooted tree, with the 
most privileged security class at the root. In prac- 
tise we expect such a tree to be quite broad and 
shallow. It is also inevitable that new security 
classes will need to be added as the needs of the or- 
ganization evolve. We compare some cryptographic 
techniques which have been proposed in the litera- 
ture for solution of this problem. 

1. INTRODUCTION 

Let the users and information items in a computer 
or communication system be classified into a rooted 
tree of security classes SC,, SC,, . . . . SC,. The 
notation SCi>SCj means that SCi is a predecessor of 
SC. in the tree. Similarly SCi>SCi means that ei- 
the: SC=SC. or SC.>,%‘.. 
SC, co&s dCj 

If SCi>SC. we say that 
Ealh us’,, is assigned’to a security 

class called his clearance. And each item of infor- 
mation, be it a file or a message, is assigned to a 
security class called its sensitivity. Our requirement 
is that users with clearance SCi can read or create 
information items with sensitivity SCj if and only if 
SCi covers SCj That is the higher up a security 
class is in the tree the more privileged it is, with 
the most privileged class at the root. 

There are numerous examples of hierarchies where 
such a classification scheme for access control is use- 
ful. For instance, a corporate hierarchy with top 
management at the root and security classes at suc- 
cessive levels of the tree corresponding to divisions, 
departments and projects. A manager of a division 
will have clearance for the security class of that divi- 
sion and thereby the authorization to access infor- 
mation in all departments and projects within the 
division. Members of a project team on the other 
hand will be cleared only for that project and will 
be unable to access information concerning other 
projects including those within the same department. 

We expect that practical tree hierarchies in such 
applications will have at most a dozen levels or so. 

The fan-out at the non-leaf nodes is likely to larger 
say at most a few dozen. That is the tree is likely 
to be quite broad and somewhat shallow. It is in- 
evitable that a given hierarchy is likely to change 
over the course of time, for instance as new depart- 
ments and projects are created. We consider that 
any scheme for solving the protection and sharing 
problem in a hierarchy must be able to accom- 
modate changes in the hierarchy with minimal dis- 
ruption. This is a very important criterion, perhaps 
even the most important one, for evaluating a 
scheme. 

Restricting the hierarchy to a rooted tree no doubt 
excludes many partial orders. Nevertheless a rooted 
tree is an important and naturally occurring special 
case whose efficient implementation will certainly 
have practical benefit. It should of course be pos- 
sible to accommodate, at least “small”, deviations 
from a tree hierarchy at the cost of some additional 
effort. That is the mechanism should allow some 
flexibility while accommodating a tree hierarchy 
directly and efficiently. 

In this paper we consider a number of cryp- 
tographic schemes for solving the access control 
problem in a tree hierarchy. Basic cryptographic 
terminology and techniques used in these solutions 
are reviewed in section 2. In section 3 we describe 
and compare some proposals from the literature for 
this and related problems [l, 7, 8, 11, 12, 151. We 
have made no attempt to cover all published 
schemes since this is beyond the scope of this paper. 
The schemes discussed here just happen to be the 
ones which are personally most familiar. Section 4 
concludes the paper. 
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2. CRYPTOGRAPHIC BACKGROUND 

We assume that a conventional cryptosystem such 
as DES 14, 131 is available with enciphering and 
deciphering procedures E and D respectively. The 
notation 

u = EK(V) 

means that u is the result of enciphering v using the 

procedure E with key K. The deciphering procedure 
with key K is used to recover v, i.e. 

v = DK(u) 

Information items can be cryptographically 
protected by assigning a distinct key Ki to each 
security class SC2, to be used for encrypting and 
decrypting information classified in that class. When 
an information item x with sensitivity SC; is to be 
stored or transmitted in the system it is first 
encrypted with key K, to obtain 

Y = EY(x) 

The item is then stored or transmitted as the pair 
[name(SC,),y] where name(SCJ is the name of the 
security class SC, The purpose of appending the 
name of the security class to the encrypted form of 
an information item is to indicate how to decrypt 
the information. Only those users who somehow 
know Ki will be able to decrypt y to obtain x from 

x = DK/Y) 

Our access control problem will be solved if we can 
ensure that only those users whose security clearance 
covers SCi are able to know K, 

In the straightforward application of this idea a 
user with security clearance SC; is given keys for all 
security classes SC. covered by SC$ As observed by 
Akl and Taylor [lf the disadvantage of this solution 
is that a large number of keys are held by users 
with security clearances high up in the hierarchy. 
Moreover if new security classes are created, by 
growing branches in the existing tree, keys for these 
classes must be distributed to all users whose 
clearance covers these new classes. This is a non- 
trivial administrative task especially in a distributed 
environment. It is particularly awkward that keys 
for new security classes deep down in the tree will 
need to be distributed to users with high security 
clearance. 

In this paper we consider solutions to the key 
storage problem based on the idea that a user with 
security clearance SC, needs to store only the key 
Kc Keys for security classes SCi covered by SC, are 

generated from Ki as needed. In this sense the key 
Ki for security class SC; can be viewed as a master 
key for all security classes covered by SC; in the 
tree. It is desirable that the size of Ki be the same 
for all security classes, or at least be of the same or- 
der. Otherwise we can define Ki to include all keys 
for security classes covered by SC,. The challenge is 
to find a method by which it is easy to compute 
keys for security classes covered by SCi but it is in- 
tractable to compute keys for classes not covered by 
sci. 

In the next section we review and compare some 
cryptographic solutions for the key storage problem 
based on one-way functions. A one-way function is 
easy to compute but computationally difficult to in- 
vert. The use of one-way functions to conceal infor- 
mation was first proposed for storing passwords in a 
computer system (6, 10, 14, IS] and this has now 
become a fairly standard practice. Their use for 
safeguarding cryptographic keys was suggested by 
Gudes [8] and has been applied in a number of dif- 
ferent contexts [ 1, 2, 3, 7, 9, 11, 121. 

To understand the use of one-way functions in 
generating and safeguarding cryptographic keys it is 
convenient to first consider the simple case where 
the security classes are totally ordered, i.e. when 
sc,>sc,>...>sc,. Akl and Taylor [l] describe the 
following solution for this case. The key K1 for SC1 
is arbitrarily selected. Keys for the other security 
classes are iteratively generated by 

Ki+l = f(Ki), i=l...n-1 

where f is a publicly known one-way function. A 
user with security clearance SCi is given the key Ki. 
He can then easily compute the key Ef3 for all 
security classes covered by SC< However, it is com- 
putationally infeasible to compute Kj for a security 
class SCj>SCi since this requires inversion of a one- 
way function. 

It is generally accepted that a good cryptosystem 
can be used to implement a one-way function. For 
instance the function f(x)=Ez(x) is one candidate. 
Here x is encrypted using itself as the key. Another 
possibility, often cited in the literature, is to to 

encrypt some fixed and publicly known constant c 
using x as the key, i.e. f(x)=E&c). In this case 
computing the inverse of f(x) would amount to com- 
puting the key x given that c encrypts as f(x). This 
is a known plaintext attack from which good cryp- 
tosystems are expected to be immune. One-way 
functions constructed from block encryption al- 
gorithms such as DES have the additional property 
that they operate on fixed length blocks. For the 
most part we can assume that x fits within one 
block of b bits. Then f(x) requires no more than b 
bits. 
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3. SOME CRYPTOGRAPHIC SOLUTIONS 

We now consider three schemes for solving the key 
storage problem all of which use one-way functions 
but in very different ways. The one-way functions 
used are of course assumed to be publicly available. 
Pragmatic issues regarding the application of these 
schemes are discussed in context of a broad and 
shallow tree. We also consider how these schemes 
will handle addition of a new subtree of security 
classes. 

Section 3.1 describes a solution based on a 
parameterized family of one-way functions [15]. This 
scheme requires no public information other the 
definition of this family. It has the significant ad- 
vantage that changes to the hierarchy are con- 
veniently accommodated. We show that a broad 
and shallow tree is a particularly good case for this 
scheme. Section 3.2 consider solutions based on 
cryptographic sealing [i’, 81. The idea is that keys 
for the immediate children of SCi are encrypted 
using K; and their encrypted forms are made 
publicly available as sealed keys. Various methods of 
applying this scheme are discussed. Finally section 
3.3 discusses a scheme based on modular 
ezponentiation [l, 11, 121 which solves the problem 
for hierarchies which are arbitrary partial orders. A 
major drawback however is that addition of new 
security classes may require recomputation of the 
keys for a large fraction of the existing classes. It is 
shown that a broad and shallow tree is a par- 
ticularly bad case for this scheme. 

3.1. A FAMILY OF ONE-WAY FUNCTIONS 

As mentioned earlier, a well known method for 
constructing a one-way function is to encrypt some 
fixed and publicly known constant c using x as the 
key, i.e. f[x)=E,(c). We generalize this to obtain a 
family of one-way functions by replacing the constant 
by a parameter p, that is f,(x)=E,(p). Now com- 
puting the inverse of f,(x) amounts to computing the 
key x given that p encrypt: as j(x). So this is a 
known plaintext attack wl.~h is infeasible for secure 
cryptosystems. Hence f,(x) is a one-way function for 
every p. We say the collection of functions f&x) is 
a parameterized family of one-way functions. 

Given such a publicly known family of one-way 
functions, the keys for the security classes are 
generated as follows. 

1. For the security class at the root assign 
an arbitrary key. 

2. If SCj is an immediate child of SCi in the 

tree let Kj=f~,,,(~~~)(Ki)=~~~~~ume(SCj)). 

A user with security clearance SC; is given the key 
Kc Since the family of one-way functions is publicly 
known and the names of the security classes are 
public, he can easily compute the key Kj for all 
security classes SCj covered by SC; However it is 
computationally infeasible to compute Kj for a 
security class SCj>SC; since this amounts to the in- 
version of one or more one-way functions. 

Finally it should be computationally infeasible to 
compute Kj from Ki for SCj incomparable with SC, 
To see what this entails consider the simple case 
where SCi and SC3 are immediate children of SC,. 
Then 

Ki=EK,(name(SCi)) 

Kj=EKk(name(SCj)) 

By the assumed security of the cryptosystem it is in- 
feasible to compute Ki from Ki by solving the known 
plaintext problem of the former equation to derive 
Kk and then using the latter equation to compute 
K3. For a strong cryptosystem we believe it can be 

safely assumed that there will also be no other tract- 

able method of computing Kj from K, in this situa- 
tion. Moreover even if we know the keys for a large 
number of siblings it will be infeasible to compute 
the keys for a sibling outside the known set. That 
is collusion among the siblings is infeasible. Similar 
considerations apply to incomparable classes which 
are not siblings. 

This scheme accommodates hierarchical names for 
the security classes quite readily. With hierarchical 
names the immediate children of a security class 
have distinct names but children of different security 
classes may have the same name. When generating 
keys for the security classes it is necessary that the 
immediate children of SCi get distinct keys. So the 
name used in our family of one way functions 
EK(name(SC)) need only be the last field in the 
unique pathname of SC in the tree hierarchy. Thus 
the well known benefits of hierarchical names are 
available in this scheme. 

To estimate the computational overhead of this 
scheme consider a tree hierarchy with 11 levels. A 
user with clearance for the root will need up to 10 
applications of the encryption algorithm to derive a 
key for a security class at a leaf. If the same cryp- 
tosystem is also used for enciphering and deciphering 
information items this represents an overhead of 
lO*b bits for each message or file, where b is the 
block size of the cryptosystem. For DES b=8 
(assuming there is a parity bit .on each byte) so the 
overhead is effectively 80 bytes per information item. 
For a large file with say 8000 bytes this overhead is 
a negligible 0.1%. For a very small 80 byte file on 
the other hand the overhead is 100%. In practice 
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we could also cache the recently derived keys so this 
overhead gets amortized over a number of files and 
messages rather than being incurred for each infor- 
mation item. In any case these numbers suggest 
that the overhead is quite tolerable and would 
hardly be the limiting factor in application of this 
scheme. 

3.2. SEALED KEYS 

Gudes [8] discusses a solution for the rooted tree 
case in which for each security class SC, we have a 

publicly available sealed key. Sealed keys are 
generated as follows. 

1. Select an arbitrary and distinct key K, for 
each SC,. 

2. gcd {t,]SC,~SCi} does not divide t; 

A random secret key K, and a secret pair of large 
primes p and q are selected whose product M is 
made available publicly. The security class SCi is 
assigned the key 

K, = K2 mod M 

2. The sealed key for SC, is E, (KJ where 
SCk is the parent of SC, in th& hierarchy. 
(The root has no sealed key.) 

Thus knowledge of a key for a security class permits 
decryption of the sealed keys for the children of that 
class. By repeating this procedure a user who has 
clearance for SC, can decrypt the sealed keys for 
every SCj, such that SGi>SC~ The computational 
overhead in computing these keys is exactly the 
same as in the scheme of section 3.1. Addition of a 
new security class as a leaf in the existing hierarchy 
is easily accommodated by computing and making 
available its sealed key. 

Keys for security classes covered by SC, are easily 
computed as follows. 

Kj = Kj mod M = K;1 
t Jti 

mod M 

If SGi~SGj by the first property tilt; is not an in- 
teger and the computation of KJ from Ki is con- 
sidered intractable provided M cannot be factored. 
This requires that p and q have approximately a 
hundred decimal digits each. The second property 
prevents collusion among users in breaking the 
scheme. Akl and Taylor propose the following 
method for assigning ti’s. 

A major issue in applying this idea is how to store 
the sealed keys. The sealed keys can be distributed 
publicly, which requires n*b bits with n security 
classes and a cryptosystem with block size b. In a 
distributed system the sealed keys may need to be 
replicated at multiple sites. When new security 
classes are created it will be necessary to update this 
information at all sites. At the cost of some storage 
overhead we can store the sealed keys for all ances- 
tors of SC, in every file or message of sensitivity 
SC,. This approach has the advantage that the 
sealed keys needed to derive Ki are immediately 
available. The only additional information needed is 
one of the keys for the ancestors of SC,. The latter 
solution is particularly usable in context of a shallow 
broad tree, with new security classes being added 
ever so often. 

3.3. MODULAR EXPONENTIATION 

Akl and Taylor [l] describe a mathematically 
elegant solution for the general case where the 
hierarchy on security classes is an arbitrary partial 
ordering. In their method a publicly known integer 
ti is assigned to each security class SC; with the fol- 
lowing properties. 

1. ti divides tj H SC,>SCj 

1. Assign a distinct prime pi to each SCi 

2. Let ti = II {pilSCi~SC3} 

These t/s grow very rapidly with increasing number 
of security classes, making it somewhat questionable 
whether the method is practical. For n security 
classes the value of these t;‘s are O((nlogZn)“) which 
requires O(nlog2n). The time requirement for com- 
puting a derived key is O(nlogln) multiplications [l]. 

Since the ti’s are public we require a total of 
O(n210g2n) bits of public information. With n=lOO 
this is =70K bits, which is sizable but not in- 
tolerable. If n=lOOO we require a total of =lOM 
bits. An alternative to making all t,‘s publicly avail- 
able is to append ti to each encrypted information 
item of sensitivity SC; Each file or message then 
carried with it the information needed to decrypt it. 
With a hundred security classes this represents an 
overhead of ~700 bits per information item. 

A broad and shallow tree is a particularly bad case 
for the scheme of Akl and Taylor since such a tree 
will have a large number of leaves, each of which is 
incomparable with all other security classes. The 
largest t;‘s will occur at the leaves and there wil1 be 

many of them. The biggest drawback of the Akl 
and Taylor scheme is that if a new security class is 
added to the tree the ti’s and Ki’s for existing 
security classes which do not cover the new class 
will need to be recomputed. If a new leaf is added 
to a broad and shallow tree this will involve a large 
fraction of the existing security classes. For instance 
in a tree with divisions, departments and projects at 
successive levels the introduction of a new project 
will require recomputation of the keys for all other 
projects. It is particularly unfortunate that it will 
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also require recomputation of the keys for all depart- 
ments and divisions to which the new project does 
not belong. To avoid recomputation of the keys 
when a new leaf is added, we might attempt to in- 
itially set up a sufficient number of security classes 
for a large number of divisions, departments and 
projects and allocate these to new security classes as 
they get created. 

MacKinnon et al (11, 121 describe improvements to 
the Akl and Taylor scheme which generate smaller 
ti’s and show that these methods are optimal in 
generating the smallest values of the t;‘s. The major 
improvement is that instead of assigning a distinct 
prime to each security class, they first decompose 
the hierarchy into disjoint chains (linear orderings) 
and assign a distinct prime only to each chain. The 
classes in each chain are assigned increasing powers 
of the prime assigned to the chain. Dilworth [5] has 
shown that the minimal number of chains needed to 
a decompose a hierarchy in this manner is equal to 

the maximum size of an anti-chain (a set of elements 
which are mutually incomparable). In a tree this 
equals the number of leaves which in a broad and 
shallow tree is going to be large. So in our context 
the optimizations of MacKinnon et al do not appear 
to have much impact. Moreover changes in the 
hierarchy are not a part of their criteria so these 
methods continue to require reassignment of keys 
whenever the hierarchy is changed [12]. 

4. CONCLUSION 

We have focused on cryptographic techniques for 
access control in the special case of a tree hierarchy. 

We expect these trees are likely to be quite broad 
and shallow in practise. We also consider it in- 
evitable that new subtrees will need to be added as 
the requirements of the organization change. 

We have reviewed and compared three techniques 
which use one-way functions in different ways for 
solving this problem. The technique based on 
parameterized one-way functions [ 151 requires no 
public information, other than the one-way functions. 
Changes in the hierarchy are conveniently accom- 
modated. The other two techniques require quite 
substantial amount of public information in addition 
to the one-way functions, although this is smaller 
and increases linearly for sealed keys. The technique 
based on sealing key records ]S] can accommodate 
changes in the hierarchy conveniently. The tech- 
nique based on exponentiation ]l] cannot handle 
changes in the hierarchy dynamically. There are 
other published techniques [2, 3, 7, 9] which we have 
not been able to cover due to lack of time and their 
omission is in no way intended as a negative com- 
ment. 
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