
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1-4244-0429-0/06/$20.00 ©2006 IEEE 

ROBAC: SCALABLE ROLE AND 
ORGANIZATION BASED ACCESS CONTROL 

MODELS 

Zhixiong Zhang 
The College Board 

Reston, Virginia, USA 
jzhang@collegeboard.org 

 

Xinwen Zhang 
George Mason University 

Fairfax, Virginia, USA 
xzhang6@gmu.edu 

Ravi Sandhu 
George Mason University 
and TriCipher Inc., USA 
Fairfax, Virginia, USA 

sandhu@gmu.edu 
 
 

Abstract—In RBAC, roles are typically created based on job 
functions inside an organization. Traditional RBAC does not 
scale up well for modeling security policies spanning multiple 
organizations. To solve this problem, a family of extended RBAC 
models called Role and Organization Based Access Control 
(ROBAC) models is proposed and formalized in this paper. Two 
examples are used to motivate and demonstrate the usefulness of 
ROBAC. Comparison between ROBAC and other related RBAC 
models is given. We show that ROBAC can significantly reduce 
administration complexity for Web and Internet-based 
applications involving a large number of organizations. Some 
administrative issues for ROBAC are identified and discussed. 
Although the theoretical-expressive power of ROBAC is the same 
as that of RBAC, it is more succinct and intuitive to use ROBAC 
than to use RBAC when applications involve many organizations.  

Key words: access control, RBAC, role and organization based 
access control, ROBAC. 

I.  INTRODUCTION 
The adoption of RBAC in commercial software and 

enterprises has rapidly increased in recent years [7]. The 
complexity of an RBAC system can be defined on basis of the 
number of roles, the number of permissions, the size of the role 
hierarchy, the constraints on user-role and permission-role 
assignments, etc. [10]. For existing large-scale RBAC systems, 
the number of roles and the number of permissions are in the 
order of 1000s. Beyond that magnitude, the performance of 
RBAC may degrade and its management becomes too difficult 
to handle correctly.  

Several approaches have been proposed to scale up RBAC 
systems. Giuri and Iglio [3] extend RBAC by introducing the 
concept of role templates with parameterized privileges to 
achieve content-based access control. Thomas [14] proposes 
Team Based Access Control (TMAC) to scale up permission 
assignment with fine-grained run-time permission activation at 

the level of individual users and objects. Perwaiz and 
Sommerville [6] describe a mechanism for viewing role-
permission relationships in the context of organizational 
structures, which reduce the number of roles in an RBAC 
implementation. Sandhu and Park [12] apply the URA97 model 
in ABAC97 [8] to intranet web applications to achieve 
decentralized administration of user-role assignment. Park et al. 
[5] proposed a composite RBAC for large and complex 
organizations. 

Much of this previous work addresses RBAC in the context 
of a single organization and is mainly motivated by B2E 
(Business to Employee) applications. On the other hand, B2B 
(Business to Business) and B2C (Business to Consumer) 
applications often involve a large number of organizations such 
as corporations, schools, families, etc. Typically, users from 
different organizations with same role name have slightly 
different access privileges due to local variations in policy 
details.  Using traditional RBAC naively in these situations can 
result in an enormous number of roles and permissions, well 
into the order of millions. 

To address the RBAC scalability problem in such 
situations, a new family of models called Role and 
Organization Based Access Control (ROBAC) models is 
proposed and formalized in this paper. We emphasize that this 
paper is focused on the ROBAC model. Discussion of 
implementation issues is beyond the scope of this paper and 
will be covered in future publications. More specifically in the 
terminology of the recently introduced PEI framework [13], 
this paper focuses on the policy model layer while enforcement 
and implementation models are left for future publications.  

The rest of this paper is structured as follow. Section 2 
gives two motivating examples for ROBAC models. Formal 
definitions of ROBAC models are presented in Section 3. 
Some administrative issues are discussed in Section 4. Related 



work and a detail comparison between RBAC and ROBAC are 
given in Section 5. Section 6 summarizes this paper and 
presents future research directions. 

II. MOTIVATING EXAMPLES 
We begin with two motivating examples from B2B and 

B2C context respectively. These are abstracted from the 
authors experience with similar real-world applications. 

B2B example: This example considers access control 
policy for a web based report delivery system, which only 
allows authorized users to access specific reports. The users are 
educational professionals from schools, districts, and states in 
USA1. There are on the order of 10,000 schools participating in 
the system. Reports are classified into types based on 
sensitivity and nature of the content. Because some report types 
include privacy-sensitive data such as student test results and 
personal information, only an authorized user, say, School_1’s 
official, can view School_1’s reports but cannot view 
School_2’s reports.  There are many different types of reports, 
each of which may have up to three different levels of 
information (state level, district level, and school level). Some 
sample report types are listed in Table I. 

TABLE I.  SAMPLE REPORT TYPES IN B2B EXAMPLE 

Type A Report (school level, district level, and state level) 
Type B Report (school level only) 
Type C Report (school level only) 
Type D Report (school level only) 
Type E Report (school level and district level) 
Type F Report (district level and state level) 

… 
 

States, districts, and schools usually form a management 
hierarchy. Fig. 1 shows an example of a possible management 
hierarchy among states, districts, and schools. 

 

Figure 1.  A sample organization hierarchy 

   The informal description of some security policies of the 
system may include:  

                                                           
1 The stipulation of USA allows us to be more concrete and realistic about this 

example. 

• Users from a school are only allowed to access the 
reports related to this school. 

• Users from a district education office are allowed to 
access the reports related to this district and the schools 
under it. 

• Users from a state education office are allowed to 
access the reports related to this state and the districts 
and schools under it. 

• School principles can view type A and type B reports. 

• School teachers can view type B and type E reports. 

• Officials from a district’s board of education offices 
can view type A and type B reports but cannot view 
type D reports 

 

Under the above policies, an authorized school level user 
(say School_1 teacher) can only access certain types of the 
user’s own school’s reports, but is not allowed to access other 
types of reports, and, further, cannot access other school’s or 
any district or state level reports2. An authorized district level 
user can access certain types of the user’s own district’s reports 
(district level) and may also access the same types of its 
subordinate schools’ reports.  For example, an authorized 
District_1 official can access District_1’s district level Type_A 
reports and school level Type_A report for School_1 and 
School_2 since the School_1 and School_2 are under 
District_1.  

Assuming there are 10,000 organizations and 10 types of 
reports, if we use traditional RBAC (RBAC96 [9] or NIST-
RBAC [10]) to model this problem directly, we have to define 
about 100,000 (10,000 x 10) permissions because viewing 
School_1’s Type_A report is different from viewing 
School_2’s Type_A report. We also need to define 100,000 
different roles because a role that can view a 
School_1_Type_A report is different from a role that can view 
a School_2_Type_A report. Table II and Table III show some 
samples of the possible permissions and roles in this example. 

TABLE II.  SAMPLE PERMISSIONS IN B2B EXAMPLE(WITH RBAC) 

p1: View School_1 Type A Report 
p2: View School_2 Type A Report 
p3: View District_1 Type A Report 
… 

TABLE III.  SAMPLE ROLES IN B2B EXAMPLE(WITH RBAC) 

r1: School_1 Type A Report Viewer with permission p1. 

r2: School_2 Type A Report Viewer with permission p2. 

r3: District_1 Type A Report Viewer with permission p3. 

… 

 

                                                           
2 We are assuming that access not explicitly allowed by the stated policies is 

denied. 



Our goal here is not so much to define a complete and 
coherent policy for this example but rather to illustrate the 
issues and complexities involved. 

B2C example: Consider an online subscription-based 
tutoring system, where customers are families that have 
children in elementary schools. Parents pay subscription fees 
for their children and are authorized to create/update the 
family’s profile and view their children’s progress reports.  
Students that have subscribed to the service can take classes on 
the web and view their progress reports and family profiles. 
Here, family profiles and student’s progress reports need to be 
protected against unauthorized access. There are potentially 
millions of families, and even 10s or 100s of millions.  

The informal description of some security policies of this 
system may include:  

• Parents can only view their own children’s progress 
reports. 

• Parents can create/update/view their family’s profile. 

• A student can view his/her own progress report and 
view his/her family’s profile.  

    

Suppose we use traditional RBAC to support these policies. 
Because Family_1’s parent is only allowed to access 
Family_1’s profile and Family_1’s children’s progress reports, 
the Family_1’s parents have slightly different permissions from 
that of Family_2’s parents.  Table IV and Table V show some 
samples of the possible permissions and roles when using 
traditional RBAC in this B2C example. 

TABLE IV.  SAMPLE PERMISSIONS IN B2C EXAMPLE(WITH RBAC) 

p1: Update Family_1’s Profile 
p2: View Family_1’s Kids’ Progress Reports 
p3: View Family_1’s Profile 
p4: Update Family_2’s Profile 
p5: View Family_2’s Kids’ Progress Reports 
p6: View Family_2’s Profile 
…… 

TABLE V.  SAMPLE ROLES IN B2C EXAMPLE(WITH RBAC) 

r1: Family_1 Parents permission p1 and p2. 

r2: Family_1 Student permission p2 and p3.  

r3: Family_2 Parents permission p4 and p5. 

r4: Family_2 Student with permission p5 and p6. 

… 

 

We can see that the administrative complexity is very high 
in applying RBAC directly to the above two examples. These 
scenarios are quite typical for B2B and B2C applications. In 
practice, security and application engineers usually work 
around this problem by combining RBAC with other access 
control mechanisms such as context-based or attribute-based 
access control. The result is an ad hoc access control model 
with a specialized administrative tool for each application [4, 
11].    

 

III.     ROBAC MODELS 
To address the issue that traditional RBAC [9, 10] does not 

scale up well for applications involving multiple organizations 
where access privileges are based on both roles and 
organizations, we extend RBAC to ROBAC (Role and 
Organization Based Access Control) by basing access decision 
on both role and organization.  

The central idea behind ROBAC is quite simple. Instead of 
only using role related information, ROBAC utilizes both the 
role information and the organization information during the 
authorization process. Specifically, in ROBAC a user is 
assigned to role and organization pairs instead of roles only. 
Moreover, the permissions in ROBAC are defined as 
operations over object types instead of operations over objects 
only. A user can access an object if and only if the user is 
assigned to a role and organization pair, and the role has the 
right to access the object’s type and the organization “owns” 
the object. In the following sections, we show that the number 
of roles and permissions for the above B2B and B2C examples 
can be reduced significantly if we use ROBAC to model them. 
This demonstrates that ROBAC can reduce administrative 
complexity significantly for applications involving a large 
number of similar organizations.  

For easy comparison with traditional RBAC (RBAC96) [9], 
we define ROBAC models one by one based on the increasing 
security functionality of the models (ROBAC0, ROBAC1, 
ROBAC2, ROBAC3) in direct correspondence with the four 
models of well-known RBAC96 family (RBAC0, RBAC1, 
RBAC2, RBAC3). ROBAC0 is a base model. ROBAC1 is 
ROBAC0 plus role hierarchy and organization hierarchy. 
ROBAC2 is ROBAC0 plus constraints. ROBAC3 is ROBAC0 
plus role hierarchy, organization hierarchy and constraints. Fig. 
2 shows the relationship of the ROBAC models and Fig. 3 
portrays their essential characteristics. 

 

Figure 2.  Relationship among ROBAC models 

To make the paper concise, we only give the formal 
definitions for ROBAC0 and ROBAC1 here. Definitions for 
ROBAC2 and ROBAC3 can be similarly developed. 

Definition 1: ROBAC0 has the following components: 
• U -- a set of users (same as U in RBAC96);  
• S -- a set of sessions (same as S in RBAC96); 
• R -- a set of roles (same as R in RBAC96); 
• O -- a set of organizations; 



• Op -- a set of operations; 
• A -- a set of assets; 
• At -- a set of asset types; 
• P ⊆ Op × At  -- a set of permissions; 
• RO ⊆ R × O  --  a set of  applicable role and 

organization associations; 
• PA ⊆ P × R  --  a many-to-many permission-to-role 

assignment relation; 
• UA ⊆ U × RO  -- a many-to-many user-to-role-and-

organization assignment relation;  
• user: S → U -- a function mapping a session si to a 

single user user(si) (same as user in RBAC96); 
• atype: A → At  -- a function mapping an asset to its 

type; 

• aorg: A→ O  -- a function mapping an asset to the 
organization it belongs to;     

• assigned_role-orgs: U → 2RO  -- a function mapping 
a user to a set of role-organization pairs assigned to 
the user; assigned_role-orgs(u)  = { (r,o) | (u, (r,o)) ∈ 
UA }; 

• active_role-orgs: S → 2RO  -- a function mapping a 
session si to a set of active role-organization pairs;  
active_role-orgs(si)  ⊆ assigned_role-orgs(user(si)); 

• can_access(S, Op, A) -- a predicate defined as 
can_access(s, op, a) is true iff ∃ (r, o) ∈ active_role-
orgs(s) ∧ aorg(a) = o ∧ ((op, atype(a)), r) ∈ PA ; 

 

Figure 3.  A family of ROBAC models

Where the operations (Op) are similar to the operations or 
actions in some traditional RBAC [2]; the assets (A) are similar 
to objects; the active_role-orgs is used to model activation of 
role-organization pairs inside a session. Briefly, ROBAC0 
extends RBAC0 by:  

• introducing new sets: Organizations(O), Asset (A), 
Asset Types (At), Operations (Op), and Role-
Organization pairs (RO); 

• introducing new functions: atype, aorg, assigned_role-
orgs, active_role-orgs; 

• redefining permissions (P) and user to role assignment 
(UA); 

• introducing a predicate can_access(s, op, a). 

Predicate can_access(s, op, a) is true means that the session 
s or user user(s) can perform operation op on asset a during the 
session. The definition of can_access in ROBAC0 indicates 
that a user (user(s)) in a session s can perform an operation op 
over an asset a if and only if that the user has an active role and 
organization pair (r, o) in that session and the r has a 
permission to perform the op over the a’s type and the a is 
related to the o. 



Definition 2: ROBAC1 has the following components: 

• U, S, R, O, Op, A, At, P, RO, PA, UA, user, atype, 
aorg are same as those from ROBAC0. 

• OH ⊆ O ×  O  --  a partial order relation on O called 
organization hierarchy; 

• RH ⊆ R ×  R -- role hierarchy (same as RH in 
RBAC96);  

• assigned_role-orgs: U → 2RO  -- a function mapping 
a user to a set of role-organization pairs assigned to 
the user; assigned_role-orgs(u)  = { (r,o) | ∃r’ ≥ r ∧ 
∃o’ ≥ o ∧ (u, (r’,o’)) ∈ UA }; 

• active_role-orgs: S → 2RO  -- a function mapping 
each session si to a set of active role-organization 
pairs;  active_role-orgs(si)  ⊆ assigned_role-
orgs(user(si)); 

• can_access(S, Op, A) – a predicate defined as 
can_access(s, op, a) is true iff (r, o) ∈ active_role-
orgs(s) ∧ aorg(a) ≤ o ∧ ( ∃r’ ≤ r, ((op, atype(a)), r’) 
∈ PA ) ; 

 
ROBAC1 adds OH (organization hierarchy) and RH (role 

hierarchy) and changes assigned_role-orgs function and 
can_access predicate from ROBAC0.3 

The definition of can_access in ROBAC1 means that a user 
user(s) in a session s can perform an operation op over an asset 
a if and only if that the user has an active role and organization 
pair (r, o) in that session and the role r or any of its junior roles 
has a permission to perform the operation op over the asset a’s 
type and the asset a belongs to the organization o or any of its 
subordinate organizations.     

ROBAC2 is ROBAC0 plus constraints. In ROBAC, we can 
define constraints on the RO relation in addition to role 
activations (sessions), UA, and PA. There are two levels of 
constraints, global constraints and local constraints. We explain 
these two levels of constraints by using the most common UA 
constraints: separation of duty.  

Separation of duty (SOD) constraint I 

A separation of duty constraint I is an irreflexive binary 
relation on R (SOD ⊆ R x R), which is effective in all 
organizations. That is, if (ri, rj) ∈ SOD, then no user can be 
assigned to both ri and rj for each organization in O.  

Separation of duty constraint II 

A separation of duty constraint II is an irreflexive binary 
relation on RO (SOD ⊆ RO x RO), which is only effective in 
the specified organizations. That is, if ( (ri, ok), (rj, ol) ) ∈ SOD, 
then no user can be assigned to ri in organization ok and rj in 
organization ol.  

                                                           
3 In ROBAC1, assigned_role-orgs function and can_access predicate consider 
both role hierarchy and organization hierarchy. We could have finer 
classification of ROBAC models wherein only one of these hierarchies is 
allowed in two subcases of ROBAC1, one where organization hierarchies are 
allowed and one where role hierarchies are allowed. 
 

In Separation of duty constraint I, constraints are defined 
on role set R only. We call these kinds of constraints as global 
constraints since they apply to all organizations. In Separation 
of duty constraint II, constraints are defined on role and 
organization pair set RO. We call these kinds of constraints as 
local constraints since they only apply to specified 
organizations.  

The global static SOD in ROBAC means that the same 
individual user can never hold mutually exclusive roles within 
the same organization. The local static SOD in ROBAC means 
that the same individual user can never hold mutually exclusive 
role-organization pairs.  To model static SOD, the set UA and 
the function assigned_role-orgs needs to be modified to reflect 
the constraints.  

The global dynamic SOD in ROBAC means that the same 
individual user can never hold mutually exclusive roles for 
same organizations in a session. The local dynamic SOD in 
ROBAC means that the same individual user can never hold 
mutually exclusive role-organization pairs in a session. To 
model the dynamic SOD, the function active_role-orgs needs 
to be modified to reflect the constraints.  

A formal definition of ROBAC2 is omitted due to lack of 
space. 

ROBAC3 is the consolidated model of ROBAC1 and 
ROBAC2. ROBAC3 may have some additional constraints on 
role hierarchy (RH) and organization hierarchy (OH).   

For the aforementioned B2B example, we can use ROBAC1 
to model it very conveniently.  We show some ROBAC 
elements differing from those in RBAC as follows.  

• O= {State_1, State_2, District_1, District_2, District_3, 
School_1, School_2, School_3, School_4, …} 

• OH = {(State_1, District_1), (State_1, District_2), 
(District_1, School_1), (District_1, School_2), 
(District_ 2, School_3), (State_2, District_3), 
(District_3, School_4), …} 

• At = {Type_A_Report, Type_B_Report, …} 

• RO = { (r1, District_1),  (r2, District_1), (r1, 
School_1), (r2, School_2), (r3, School_1), (r4, 
School_1),  … }          

Possible permissions and roles are listed in Table VI and 
Table VII.  

TABLE VI.  SAMPLE PERMISSIONS IN B2B EXAMPLE (WITH ROBAC) 

p1: View Type A Report 
p2: View Type B Report 
p3: View Type C Report 
p4: View Type D Report 
… 

TABLE VII.  SAMPLE ROLES IN B2B EXAMPLE (WITH ROBAC) 

r1: Type A Report Viewer which has permission p1.  

r2: Type B Report Viewer which has permission p2. 

r3: Type C Report Viewer which has permission p3. 



r4: Type D Report Viewer which has permission p4. 

… 

 

Based on the security policies, r1 and r2 can have role-
organization pairs with all levels of organizations but r3 and r4 
can only have role-organization pairs with school level 
organizations.  

For the aforementioned B2C example, we can use 
ROBAC0. Possible permissions and roles are listed in Table 
VIII and Table IX. 

TABLE VIII.  SAMPLE PERMISSIONS IN B2C EXAMPLE (WITH ROBAC) 

p1: Update Family Profile 
p2: View Kid’s Progress Reports 
p3: View Family Profile 
… 

TABLE IX.  SAMPLE ROLES IN B2C EXAMPLE (WITH ROBAC) 

r1: Parent which has permission p1 and p2.  

r2: Student which has permission p2 and p3. 

… 

 
Comparing to RBAC, the number of roles and permissions 

in RODBC are reduced dramatically in the above B2B and 
B2C examples. The set of applicable role and organization 
pairs (RO) is a newly introduced concept in ROBAC. RO is 
normally constructed implicitly via some predefined rules. The 
size of RO may be large when there are a large number of 
organizations involved, but the administrative effort on RO is 
not big. We will discuss the administrative issues in the next 
section. This demonstrates that using ROBAC to model the 
above B2B and B2C examples is more succinct and intuitive 
than using RBAC.    

IV. ADMINISTRATIVE ISSUES IN ROBAC 
The access control for administrative tasks in ROBAC can 

be accomplished by using regular RBAC. The general 
approaches of ARBAC97 [8] and its variants can be used to 
administer ROBAC.  Here we highlight some difference and 
new features to demonstrate the benefits of using ROBAC from 
the administrative point of view.  

In a ROBAC system, O and OH are expected to be mostly 
static and change very slowly. They are typically available in 
advance and will not change frequently after the ROBAC is set 
up. So the major administrative effort is on the permission-to-
role assignment and user-to-role-and-organization assignment. 

A. Permission-to-role Assignment 
In traditional RBAC, permissions are normally defined as 

operations over objects [2]. In ROBAC, permissions are 
defined as operations over asset (object) types.  

In the aforementioned B2B example, ROBAC only creates 
one role called Type_A_Report_Viewer which has one 
permission called View_Type_A_Report for viewing type A 
report, but a traditional RBAC needs to create a role for each 

organization’s type A report viewer, such as 
School_1_Type_A_Report_Viewer which has 
View_School_1_Type_A_Report permission, and 
School_2_Type_A_Report_Viewer which has 
View_School_2_Type_A_Report permission, etc.  

In the B2C example, ROBAC only creates two roles (parent 
and student) instead of a parent role and a student role for each 
family in the traditional RBAC. Permissions in ROBAC are 
defined as a subset of Op x AT while permissions in traditional 
RBAC are defined as a subset of Op x A. Normally, |AT| is 
much smaller than |A|. In the above B2B example,  

|A| ≈ 10,000 × |AT| 

So the number of roles and permissions in ROBAC is much 
smaller than that in RBAC.  

After defining the roles and permissions in ROBAC, 
PRA97 [8] can be used to perform Permission-to-Role 
assignment. Under the situations similar to the above two 
examples, the administrative complexity in Permission-to-Role 
assignment is significantly reduced because of the reduction of 
the number of roles and permissions in ROBAC,        

B. User-to-role-and-organization Assignment 
Sandhu and Park [12] address User-to-Role assignment for 

intranet web applications by applying the URA97 model. For 
intranet web applications, we normally know user identifiers in 
advance but it is not always true for Internet-based web 
applications. We cannot apply URA97 model when the user 
identifiers are not available to security administrators in 
advance. Because there are a very large number of users, we 
use indirect user to role-organization assignment (IUROA) 
methods. The basic idea is that assigning a user to role-
organization pairs is based on something that the user knows 
and/or holds. We also utilize some approaches in Rule-based 
RBAC [1] to perform automatic user-role assignment based on 
user attributes. The detailed discussion of IUROA belongs to 
implementation models in the PEI framework and is out of 
scope of this paper.  

As the decision logic (can_access predicate) in ROBAC is 
deterministic, we believe that it is viable to develop a general-
purpose authorization engine and an administration tool based 
on our proposed ROBAC models.  

C. Role-Organization Pairs Administration  
The size of RO in ROBAC may become large if there are a 

large number of organizations involved. Instead of creating RO 
explicitly, we can define RO implicitly by using some rules. 
For example, in the aforementioned B2B example, we use the 
following rules to establish RO implicitly: 

• r1 (Type A Report Viewer) and r2 (Type B Report 
Viewer) can associate with any organizations. 

• r3 (Type C Report Viewer) and r4 (Type D Report 
Viewer) can only associate with school type 
organizations. 



For the B2C example, we allow any role associate to any 
organization. While the size of RO may be large but the 
administrative work for RO is small. 

V. DISCUSSION AND RELATED WORK 
The organization concept in ROBAC introduces a powerful 

abstraction that can be coupled quite naturally with the 
traditional concept of roles. For example, we can treat the 
divisions or project teams in an enterprise as organizations. So 
ROBAC can be used in many B2E applications. Because 
ROBAC performs access control based on both roles and 
association relations between users and protected resources 
(assets), it is suitable to model privacy-related policies. 

In this section we first compare ROBAC with RBAC96, 
then with some existing access control models which extend 
RBAC with similar motivations to ROBAC to some degree.    

A.        Comparison with RBAC96 
Fig. 4 shows the traditional RBAC96 model [9]. 

 

Figure 4.  RBAC96 Model [9] 

From Fig. 3 and Fig. 4, we can see that permissions in the 
RBAC96 are very abstract while permissions in ROBAC are 
more concrete. Users in RBAC96 are assigned to roles while 
users in ROBAC are assigned to role-organization pairs. 
Detailed comparison between these two models is listed in 
Table X. 

TABLE X.  COMPARISON BETWEEN RBAC AND ROBAC (WITH N 
ORGANIZATIONS AND M ASSET TYPES) 

 RBAC ROBAC 
Number of 
permissions 

N×M M 

Number of roles N×M M 
Organization 

hierarchy 
N/A Yes 

Role hierarchy Yes Yes 
Constraints Yes Yes 

User-role-(org) 
assignment 

URA97 URA97+IUROA 

Permission-role 
assignment 

PRA97 PRA97 

Role 
administration 

RRA97 RRA97 

Number of role-
org pairs 

N/A ≤ N×M 

Role-org pairs 
administration 

N/A Implicitly and rule based 

 

It is obvious that for any RBAC model, we can construct a 
ROBAC model with only one organization and make all assets 
belong to the organization and define a one-to-one mapping 
between assets (A) and asset types (At). The constructed 
ROBAC has the same security behavior as the original RBAC.  
So ROBAC inherits all RBAC’s benefits such as policy 
neutrality, principle of least privilege, separation of duty, and 
easy management. 

Similarly, for any ROBAC model, we can construct an 
equivalent RBAC model. Although these two facts imply the 
same theoretical-expressive power between ROBAC and 
RBAC, the practical benefits of using ROBAC over RBAC for 
applications involving a large number of similar organizations 
are obvious. 

B.      Comparison with Role Templates 
In the perspective of restricting access to a subset of 

contents, the role templates [3] proposed by Giuri and Iglio has 
similar effectiveness as ROBAC. In a role template, a 
parameterized privilege is defined as (am, o, exp(v1, …, vn) ) 
where am is an access mode (same as an operation in ROBAC) 
that can be performed on object o which is similar to the asset 
concept in ROBAC. The exp(v1, …, vn) is a logical expression 
with unbound variables v1, …vn.  The parameterized privilege 
means to perform operation am over o while exp(v1, …, vn) is 
true. The unbound variables in the parameters of the 
corresponding role template need to be bound when a role is 
assigned to a user. Although role templates can model security 
policies in our B2C example by defining organization, objects, 
and users as unbound variables and “belong to” as a logical 
expression, the approach is not so straightforward as with 
ROBAC.   

Because the values of the variables in role templates are un-
structured, it is difficult to use role templates to model the B2B 
example aforementioned. In general, role templates can achieve 
the modeling capability of ROBAC0 with similar complexity, 
but it is very difficult for role templates to achieve the 
modeling capability of ROBAC1 due to the flexibility 
introduced by organization hierarchies used in these ROBAC 
models. We believe that administrative tasks in ROBAC are 
much simpler than those in role templates approach.  

C. Comparison with Team-based Access Control (TMAC) 
In TMAC [14], the notion of “team” is proposed as an 

abstraction that groups users in specific roles with the objective 
of accomplishing a specific task or goal. As recognized by the 
author, it is very difficult for traditional RBAC to enforce the 
following two requirements at same time: scalable permission 



assignment and fine-grained, run-time permission activation at 
the level of individual users and objects. The notion of “team” 
in TMAC and the notion of “organization” in ROBAC are 
different. Team in TMAC or C-TMAC [4] represents a group 
of users and has roles and permissions derived from the roles 
and permissions of the users in the group while organization in 
ROBAC does not have roles or permissions. The teams in 
TMAC are flat while the organizations in ROBAC can be 
structured. In TMAC, an access decision is based on a team’s 
permissions, the user’s contexts, and the object’s contexts, 
while in ROBAC a decision is based on user’s roles and the 
indirect association between the user and the assets via 
organizations. Both TMAC and ROBAC realize the importance 
to distinguish object (asset) type and object instance (asset) for 
scalable permission assignment in RBAC.  With TMAC we 
find that it is possible to model the B2C example, but it is very 
complex to model the B2B example due to the presence of 
organization hierarchy.  

Further, we can simulate most components (except for the 
special role team header) of TMAC with a ROBAC0 model 
directly. For the team header role in TMAC, we can simply 
create a role in ROBAC to model it.   

D.   Comparison with Organizational Units 
Perwaiz and Sommerville [6] utilize organizational context 

to restrict the permissions of roles. An organization unit (OU) 
in their paper has its own permissions. The maximum 
permissions of a role in an organization unit are the intersection 
of the role’s permissions and the organization unit’s 
permissions. So the OU in Perwaiz’s approach is more like the 
“team” notion in the TMAC than to the “organization” in 
ROBAC, since an organization in ROBAC does not associate 
with permissions.  The access control decision process in 
ROBAC is also different from that in [6]. In the perspective of 
reducing the number of roles in RBAC, Perwaiz and 
Sommerville’s approach has some similar effect of ROBAC. 
But the administration of ROBAC is simpler since permissions 
are not assigned to organizations.   

E. Comparison with Organization Entity in Credential Based 
Access Control 
Biskup and Wortmann [15] discussed a credential-based 

implementation of compound access control policies. In which, 
they introduce a concept called "organizational entity" which is 
a collection of objects (assets) those may belong to different 
owners. Organizational entities contain at least one object and 
can be both overlapping and nested. For each organization 
entity, there is a unique controller who performs administrative 
works on the organization entity. The controller explicitly 
states grantees or he implicitly states them with the help of 
assigners (trusted agents). The controller also acts as verifier to 
regulate actual access requests concerning his organizational 
entity. The permissions or capability or interface are defined in 
the form of <o, a> (perform an action a over object o) which is 
similar to the permission defined in traditional RBAC [2]. The 
organization entity in [15] acts like a namespace while the 
organization in ROBAC acts as an indirect association between 
users and assets (objects). The access decision logic in [15] is 
also quite different from the access decision logic in ROBAC. 

Credentials based approaches can be used to implement 
IUROA (Indirect User to Role and Organization Assignment) 
in ROBAC by assigning user to role-organization pairs based 
on the credentials the user holds.  

VI. CONCLUSIONS AND FUTURE WORK 
A family of extended RBAC models called Role and 

Organization Based Access Control (ROBAC) models is 
proposed and formalized in this paper. The motivation behind 
ROBAC is to scale up RBAC for B2B and B2C applications 
where a large number of organizations are involved. The 
advantages of ROBAC models over traditional RBAC models 
are shown via two examples. Some administrative issues in the 
context of ROBAC have been discussed. A comparison 
between RBAC and ROBAC has been given. We show that the 
benefits of using ROBAC increases in proportion to the 
number of organizations involved. We claim that ROBAC is 
more intuitive and succinct than many RBAC variants when 
used for scenarios involving a large number of organizations.  

A partial implementation of a ROBAC1 model has been 
successfully used as an authorization engine, which provides 
authorization services for multiple web applications on Internet 
[16]. The enforcement and implementation aspects of ROBAC 
will be explored in future work.   

REFERENCES 
[1] [1] Mohammad Abdullah Al-Kahtani, "A Family of Models for Rule-

Based User-Role Assignment", PhD Dissertation, George Mason 
University, Spring 2004. 

[2] [2] David F. Ferraiolo, John F. Barkley, D. Richard Kuhn, “A role-based 
access control model and reference implementation within a corporate 
intranet,” ACM Transactions on Information and System Security 
(TISSEC),  Volume 2 Issue 1, February 1999. 

[3] [3] Luigi Giuri and Pietro Iglio, “Role Templates for Content-Based 
Access Control”, Proceedings of Second ACM Workshop on Role-
Based Access Control, November 1997. 

[4] [4] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and 
Roshan K. Thomas, " Flexible Team-Based Access Control Using 
Contexts",  SACMAT’01, May 3-4, 2001, Chantilly, Vriginia, USA.  

[5] [5] Joon S. Park, Keith P. Costello, Teresa M. Neven, Josh A. 
Diosomito, “A Composite RBAC Approach for Large, Complex 
Organizations”, SACMAT'04, June 2-4, 2004, Yorktown Heights, New 
York, USA. 

[6] [6] Najam Perwaiz and Ian Sommerville, “Structured Management of 
Role-Permission Relationships”, SACMAT’01, May 3-4, 2001, 
Chantilly, Vriginia, USA.  

[7] [7] RTI International, “The Economic Impact of Role-Based Access 
Control”, March 2002, http://www.nist.gov/director/prog-ofc/report02-
1.pdf  

[8] [8] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer, The 
ARBAC97 Model for Role-Based Administration of Roles, ACM 
Transactions on Information and Systems Security, Volume 2, Number, 
February 1999.  

[9] [9] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles Youman, 
Role-Based Access Control Models, IEEE Computer, Volume 29, 
Number 2, February 1996. 

[10] [10] Ravi Sandhu, David Ferraiolo, and Richard Kuhn, The NIST Model 
for Role-Based Access Control: Towards A Unified Standard, National 
Institute of Standards and Technology, December 2000, 
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf 

[11] [11] Andreas Schaad, Jonathan Moffett, Jeremy Jacob, “The Role-Based 
Access Control System of a European Bank: A Case Study and 
Discussion”, SACMAT’01, May 3-4, 2001, Chantilly, Vriginia, USA.   



[12] [12]  Ravi Sandhu , Joon S. Park, Decentralized user-role assignment for 
Web-based intranets, Proceedings of the third ACM workshop on Role-
based access control, p.1-12, October 22-23, 1998, Fairfax, Virginia, 
United States 

[13] [13] Ravi Sandhu, Kumar Ranganathan, and Xinwen Zhang, “Secure 
Information Sharing Enabled by Tusted Computing and PEI Models”, 
ASIACCS ’06, March 2006, Taipei, Taiwan. 

[14] [14] R.K. Thomas, “Team-Based Access Control (TMAC): A Primitive 
for Applying Role-Based Access Controls in Collaborative 
Environments”, Proceedings of the Second ACM workshop on Role-
based Access Control, Fairfax, VA, USA, 1997. 

[15] [15] Joachim Biskup and Sandra Wortmann, "Towards a credential-
based implementation of compound access control policies", 
Proceedings of the ninth ACM symposium on Access control models 
and technologies, June 2004 

[16] [16] The College Board web site for professional customers, 
https://epl.collegeboard.com/epl/goHome.do 


