
A Framework for Risk-Aware
Role Based Access Control

Khalid Zaman Bijon∗, Ram Krishnan† and Ravi Sandhu∗
∗Institute for Cyber Security & Department of Computer Science

†Institute for Cyber Security & Department of Electrical and Computer Engineering
University of Texas at San Antonio

Abstract—Over the years, role based access control (RBAC)
has remained a dominant form of access control both in the
industry and academia. More recently, the need for risk aware-
ness in access control has received considerable attention in the
research community in light of issues such as insider threats.
Although RBAC facilitates risk mitigation via features such
as constraints (e.g. static and dynamic separation of duty), a
quantified approach of risk awareness/mitigation has emerged
as a promising research theme due to its inherent flexibility.
In this approach, risk/cost metrics are computed for various
entities involved in access control such as users and objects and
a risk threshold limits the permissions that can be exercised. The
quantified approach accommodates dynamism in access decisions
based on contexts/situations such as an employee accessing a
sensitive file using a work computer versus accessing using her
own device. In this paper, we analyze the difference between the
traditional constraint-based risk mitigation and the recent quan-
tified risk-aware approaches in RBAC and propose a framework
for introducing risk-awareness in RBAC models that incorporates
quantified-risk. We also provide a formal specification of an
adaptive risk-aware RBAC model by enhancing the NIST core
RBAC model.

Keywords: Access Control, Policy, RBAC, Risk

I. INTRODUCTION

The concept of constraints-based risk mitigation has been
well-studied in role based access control (RBAC) models. For
instance, separation of duty and role cardinality constraints
of RBAC are all concerned about risk mitigation. Generally,
constraints are static in nature as they are predefined policies
that always give the same outcome regardless of the situation.
Such a static risk mitigation approach fails to adapt to varied
and changing circumstances under which access decisions are
made in modern systems. We call the constraints-based risk
mitigation approach as “traditional” risk-awareness approach.

Recently, a quantified approach to risk-awareness in access
control has drawn much attention as the need for agile and
dynamic access control has emerged. Several works have
been published in this arena [6]–[8], [15], [18]–[20], mainly
attempting to assess and utilize risk metrics in different access
control systems. A quantified risk-aware access control system
differs from the traditional ones in that it permits/denies access
requests dynamically based on estimated risk instead of the
predefined ones which always give the same outcome. In
quantified risk-aware access control, risk is represented as a
metric where, for example, the higher its value associated
with a user, the higher the chances that the user will perform
inappropriate actions. (Consequently, an access request involv-
ing a user or a resource with a higher risk-value poses more

security threat/risk to the system than a request by a user or
for a resource with a lower risk value.) Although a number of
works have investigated quantified risk in RBAC [4], [6], [20],
a systematic analysis of various components in RBAC that
can utilize risk has not been performed. According to [19], a
practical quantified risk-aware access control system should
have a risk assessment process relevant to the context of
the application as well as proper utilization of the estimated
risk for granting or denying access requests. Risk assessment
and utilization are equally important for a risk-aware access
control system. Risk assessment process could be of different
types (e.g. probabilistic) that best suits the system context
and different factors of the system can influence this process.
On the other hand, risk utilization process determines how
estimated risk can influence decision making process of an
access control system. Assessment of the risk is beyond
the scope of this paper, rather, it is solely focused on risk
utilization processes in RBAC by assuming that the value of
risk is somehow computed and readily available.

In this paper, we propose a framework for risk-aware RBAC
models. We identify the components of RBAC that can be
made risk-aware and hence require changes in how they behave
and interact with other components. We also analyze the
basic distinction between traditional and quantified approach
of risk-awareness in RBAC. We identify two types of quantified
risk, i.e. non-adaptive and adaptive, and analyze the necessary
functionalities for utilizing them in an RBAC system. Finally,
we formalize the adaptive risk-aware RBAC by enhancing the
NIST Core RBAC model.

The remainder of the paper is organized as follows.
Section II presents our proposed framework for risk-aware
RBAC. The formal specification of adaptive risk-aware RBAC
is presented in Section III. Section IV discusses related work.
We conclude in Section V.

II. THE FRAMEWORK FOR RISK-AWARE RBAC

This section presents the framework for risk-aware RBAC.
In this framework, the risk-aware components of RBAC are
identified around which different approaches of utilizing risk-
awareness can be developed. Then it presents the necessary
elements in order to support both traditional and quantified
risk-awareness in RBAC. Finally, it discusses the differences
between these two approaches.

A. Risk-Aware RBAC Components

Fig 2 shows the components of RBAC that can be risk-
aware. We discuss details of each component below:

978-1-4799-0895-0/13/$31.00 ©2013 IEEE

6th Symposium on Security Analytics and Automation 2013

462

Fig. 1: Risk-Aware RBAC Components

• User-Role Assignment (URA): In RBAC, a role is
a collection of permissions and a user is assigned
one or more roles so they can perform particular
tasks. Different users need to perform different tasks
in an organization; hence permissions assigned to
various roles often varies. For instance, in a banking
organization, permissions of the “manager” and the
“teller” role are not same. An organization needs to
develop processes to prevent users from obtaining
certain roles which are unauthorized or risky in a
particular situation. In RBAC, the URA component
is concerned about user-role assignments. In order to
mitigate the risks of a user obtaining inappropriate
roles, the URA component should be risk-aware.

• Permission-Role Assignment (PRA): In RBAC, per-
missions are assigned to roles and roles to users. A
combination of permissions can be very powerful,
consequently, might pose a significant risk to the sys-
tem. Hence, these permissions should not be assigned
to the same role. Also, assigning certain users to
a particular role might might impose restrictions on
the kind of permissions that can be assigned to that
role. In RBAC, PRA provides the functionalities for
permission-role assignment. Therefore, PRA should
be risk-aware.

• Session: In RBAC, users need to create a session and
activate one or more of their assigned roles to exercise
certain privileges. Hence, the access capability of a
user at a particular time is determined by the acti-
vated roles in their sessions. A certain combination of
activated roles can be very risky for the system. Also,
a user’s different sessions in different situations, i.e.
place, time, can pose different security risks to the
system. For instance, a user’s session from home may
be considered as more risky than her session from of-
fice. Therefore, role activation/deactivation processes
in RBAC sessions should be appropriate to address
a particular risk and a proper risk-aware approach
should be developed around this.

Note that an organization might develop a particular risk-
aware approach to one or more of these components based on
their requirements. Besides these three components in RBAC,
role-hierarchy and constraints specification can also be risk-
aware. Role-hierarchy provides mechanism to determine which

Fig. 2: Traditional Risk-Aware RBAC

permission a senior role should inherit from a number of junior
roles. A combination of permissions from multiple junior roles
can be very risky, hence, a particular risk-aware approach can
be developed around this component to handle these issues.
Similarly, for instance, a risk-aware approach can be developed
around constraints to determine which constraint should apply
in a particular situation.

B. Types of Risk-Awareness in RBAC

A discussed earlier, in RBAC, risk-awareness can be cat-
egorized into two types. One is the traditional approach in
which risk is basically mitigated by specifying and enforcing
constraints on the above identified risk-aware components. The
other is a quantified approach where the value of risk of a
certain risk-aware component is estimated that dynamically re-
stricts certain activities. In the following, we discuss both types
of risk-awareness and also analyze their basic differences.

• Traditional Risk-Awareness:
Traditionally risk-awareness in access control systems
are constraints driven. Fig 2 shows the components
of the traditional risk-aware RBAC. Here, the func-
tionality of the Risk-Engine is to specify and enforce
constraints. Basically, the constraints are specified for
each risk-aware component of the RBAC model, i.e.
URA, PRA and sessions, and enforced. The purpose of
the risk-engine is to specify and enforce the constraints
to exercise certain policies dealing with risk, e.g. static
separation of duty (SSOD), dynamic separation of
duty (DSOD), etc. SSOD policies are specified for
restricting certain conflicting roles to be assigned to
a user, while the DSOD policies are specified for
restricting certain roles to be simultaneously acti-
vated in one or more sessions of a user. Therefore,
constraints implementing SSOD policies are applied
to the functionalities of URA and constraints that
implement DSOD policies are applied to the function-
alities of sessions (i.e. role activation/deactivation). A
considerable amount of literature exists on constraint
specifications in RBAC [1], [10], [11], [17], [23], [24],
[24]. As an example, RCL-2000 [1] gives a constraints
specification language for specifying SSOD, DSOD
and other constraints for the risk-aware components

6th Symposium on Security Analytics and Automation 2013

463

Fig. 3: Non-Adaptive Quantified Risk-Aware RBAC Session

of RBAC. Besides specifying constraints on user-role
assignments and role activation/deactivation, RCL-
2000 can also specify constraints on permission-role
assignment to restrict certain conflicting permissions
to be assigned to a role. Thus this type of constraint
is applied to the PRA component of RBAC. Note
that once constraints are specified, they remain the
same unless an administrative user explicitly changes
them. Thus during this period, the RBAC authorization
policies would make the same decision regardless of
the system’s situation.

• Quantified Risk-Awareness: In the quantified ap-
proach, risk is represented as a metric where, for ex-
ample, a higher value is more risky than the lower one.
An estimated risk value helps the system to dynam-
ically make decisions for the operations of the risk-
aware components of RBAC. Fig 3 shows the compo-
nents of the risk-aware RBAC sessions. As shown, for
each user session ‘risk-threshold’ is estimated. Each
permission is assigned a risk value, consequently, risk
of a role is determined by combining its assigned per-
mission risks. The session ‘risk-threshold’ and the risk
of the roles are then compared to make decisions on
role activation/deactivation within a session. Several
approaches [6], [20] have been published in literature
for calculating risk of roles and permissions. Similarly,
the value of session ‘risk-threshold’ can be calculated
and Fig 3 shows examples of risk-factors that might
influence the estimated value. Similarly, a risk engine
can be developed for the other risk-aware components:
URA and PRA. For instance, for a quantified risk-
aware URA, a ‘risk-threshold’ can be estimated for
each user that is compared with risk of roles in order
to determine which role that user can be assigned to.
Similar to sessions, calculation of user ‘risk-threshold’
can be affected by several risk-factors. The quantified

risk-aware approach can be further categorized into
two types: non-adaptive and adaptive.

Non-Adaptive Approach: In this approach, a risk
value is estimated for a risk-aware component of
RBAC and operations supported by that component
are permitted/denied dynamically based on the risk
value. Fig 3 shows the elements of the non-adaptive
approach of the risk-aware RBAC session component.
A ‘risk-threshold’ value is dynamically computed for
each user session during the session creation. This
computation might be influenced by a number of risk
factors. Hence, the value of ‘risk-threshold’ varies
for each user session depending on the values of
the risk factors in that situation. The system needs
to find proper ‘risk-threshold’ estimation process to
combine risk-factors for computing a quantified ‘risk-
threshold’ value. In Fig 3, the Risk-Engine contains a
risk threshold estimation function that estimates
the ‘risk-threshold’ value of each session when it
is created by the user. Note that, the computation
algorithm is context dependent. The Risk-Engine also
contains risk threshold assignment function that
assigns the value to each user session. There are also
two functions called permission risk estimation
and permission risk assignment to calculate and
assign risk value for each permission. A function
called role risk calculation calculates the risk value
of each role based on the assigned permissions to that
role. In an RBACsession, a user needs to activate one
or more roles to exercise certain permissions available
to that user. Activation request for certain roles are
authorized by the system by comparing session ‘risk-
threshold’ and the risk value of the respective roles.
The total risk of a session is determined by accumu-
lated risks of the activated roles within a session and
this risk value need to be always below the session

6th Symposium on Security Analytics and Automation 2013

464

Fig. 4: Adaptive Quantified Risk-Aware RBAC Session

‘risk-threshold’. Hence, certain role activation might
cause deactivation of already activated roles from
the session. Therefore, a user’s access capability is
dynamically determined based on the estimated ‘risk-
threshold’ of the session. A framework for role activa-
tion/deactivation process within a risk-aware session
is discussed in [4]. Note that, ‘risk-threshold’ value
of each session is estimated during session creation
time which remains unchanged throughout the life of
that session. However, it might vary across different
or subsequent sessions of a user.
Similarly, for a quantified risk-aware URA, the Risk-
Engine should contain risk threshold estimation
and risk threshold assignment functions to calcu-
late ‘risk-threshold’ of each user to determine how
risky the user is for the system. Now, authorization
decision on user-role assignment is determined based
on user ‘risk-threshold’ and risk of the respective
roles. Role can also be assigned with a ‘risk-threshold’
based on several risk-factors, e.g. number of users
assigned to it, time of the day, etc. Thus, for a
quantified risk-aware PRA, the Risk-Engine should
have proper risk threshold estimation function for
a role ‘risk-threshold’ value calculation and assigning
permissions to that role is restricted by that the value.

Adaptive Approach: In the adaptive approach, esti-
mated risk in various RBAC components can change
frequently. There is an additional activity monitoring
process in order to detect any abnormal behavior

or incident in the system. On successful detection,
the estimated ‘risk-threshold’ should be automatically
lowered to stop certain risky operations. In some cases,
the threshold can be increased to grant more permis-
sions when the estimated risk is low. Fig 4, shows the
elements of an adaptive approach of quantified risk-
aware RBAC session. It requires a continuous monitor-
ing process of users activities within a session and also
a anomaly detection mechanism. If the system iden-
tifies any abnormal/malicious behaviors, the session
‘risk-threshold’ should be decreased appropriately to
stop those malicious activities. For this purpose, in
addition to the functionalities of the non-adaptive
risk-aware session, Risk-Engine should also contain
a function called risk threshold re estimation in
order to estimate a new ‘risk-threshold’ value and
overwrite the previous one. In this process, a system
automated role deactivation process is required
to stop certain risky user activities once the ‘risk-
threshold’ value decreases by deactivating certain
roles. (When ‘risk-threshold’ decreases, the system
may automate re-activation of those roles.) Formal
specification of these functionalities are presented in
section III. Note that, the basic difference between
adaptive and non-adaptive approach is that the adap-
tive process needs a system monitoring process and the
Risk-Engine adaptively adjusts ‘risk-threshold’ based
on users’ activities during sessions and system context.
While, non-adaptive approach can only calculate risk
during each session creation and does not have run-

6th Symposium on Security Analytics and Automation 2013

465

time monitoring and anomaly detection capability. The
Risk-Engine of an adaptive risk-aware session, hence,
is more complex than the non-adaptive one.

Similar to session, in URA and PRA, Risk-
Engines should have monitoring and anomaly detection
mechanism as well as risk threshold re estimation
process for users and roles respectively. Also, they
should have system automated role revocation and
automated permission revocation to automatically revoke
roles and permissions from users and roles respectively.

The basic difference between traditional and quantified
risk-aware approaches is that there is no explicit notion of
the risk-value in traditional approach, while, the quantified
approach has. In traditional approach, the administrative users
identify the risky operations for certain users in the system and
generate and enforce constraints to restrict these operations.
Hence, risk-awareness in this approach is somehow static since
a generated constraint always gives same decision on a request
in every situation unless that constraint is further modified.
Even though DSOD constraints involve users’ activities in
a session for it’s decision making process, the restricting
pattern is always same for a DSOD constraint across every-
user sessions. For instance, if a DSOD constraint restricts that
a user cannot activate two roles simultaneously in a session,
this constraint will apply equally on all user-sessions which are
created in different situations, e.g. time, place, etc. On the other
hand, quantified risk-aware approach has explicit notion of risk
value (‘risk-threshold’) which is estimated using particular for-
mulas/processes. Hence, administrative users need to develop
a proper ‘risk-threshold’ estimation process suitable for their
context and the system dynamically calculate the value for
a risk-aware component. This approach is more dynamic as
‘risk-threshold’ can vary based on situations and risk-factors,
hence, the user activities are restricted by the ‘risk-threshold’
also varies. In addition to that, the adaptive quantified risk-
awareness provides more automation in which the system can
monitor and stop certain risky activities of the users.

III. FORMAL SPECIFICATIONS

We provide a formal specification of the functionalities for
an adaptive risk-aware RBAC session. Our formal specification
extends the NIST Core RBAC model [11]. A non-adaptive
risk-aware RBAC session already formalized in [4] where
user interacts with the system in permission-level. Here, our
formal specification is developed in similar fashion where
user interacts with the system in role-level. Similar to NIST
Core RBAC model, the users explicitly request the system to
activate a role. Also, user can explicitly deactivate an activated
role from a session. Besides, our model introduces a system
automated role deactivation process that tries to deactivate
certain roles when the session risk threshold changes. A
session monitoring function is also developed to check if the
session risk threshold changes at a particular time so that
it can call the deactivation function for deactivating necessary
roles from the session.

A. Overview of NIST Core RBAC

Core RBAC provides a fundamental set of elements, re-
lations and functions required for a basic RBAC system.

Fig. 5: Core RBAC

These elements are shown in The set of elements contain
users (USERS), roles (ROLES), operations (OPS), objects
(OBJ) and permissions (PRMS). There are many-to-many
mapping relations such as user-to-role (UA) and permission-
to-role (PA) assignment relations. PRMS = 2OPS×OBJ , is
a set of permissions in which each (OPS,OBJ) pair indicates
an operation that could be performed on an object. The Core
RBAC model also includes a set of sessions (SESSIONS)
where each session is a mapping between a user and an
activated subset of roles that are assigned to the user. Each
session maps one user to a set of roles, that is, a user
establishes a session during which the user activates some
subset of roles that he or she is assigned. Each session is
associated with a single user and each user is associated with
one or more sessions. A session roles function gives the roles
activated in the session and a user sessions function gives
the set of sessions that are associated with a user. Details of the
relation and functional specification of this model are provided
in [11]. In the following section, we only discuss the additional
and modified functions and elements of NIST core RBAC that
are required for our adaptive risk-aware session model.

B. Specification of NIST Core RBAC Adaptive Risk-Aware
Session Model

In this model, each permission is associated with a risk
value that is indicative of damages that a system incurs in case
of compromise. Since developing a function that calculates risk
of each permission is application-context specific we assume
that the risk value of each permission is already estimated and
available. For simplicity, the risk of a role is considered as the
sum of all permissions assigned to it. However more nuanced
approaches for calculating a role risk can be employed. Here
a user creates a session and tries to activate necessary roles
in order to perform certain tasks. During session creation, the
system calculates session risk threshold and only activates
user requested roles that satisfy the session risk threshold.
Similar to the permission risk, we assume a function exists for
calculating risk threshold of each session. Both permission
risk and risk threshold are positive real numbers (R≥0). We
formally define:

• assigned risk : PRMS → R≥0, a mapping of
permission p to a positive real value, which gives the
risk assigned to a permission.

• risk threshold: SESSIONS → R≥0, a mapping
of session s to a positive real number that gives the
maximum risk the session could contain.

6th Symposium on Security Analytics and Automation 2013

466

• session risk: SESSIONS → R≥0, a mapping of
session s to a positive real number that gives the
present risk value of the session.

We assume that the above three pieces of information are
always available in our model. It also contains administrative
functions to create and maintain elements and system
functions for session activity management. In the following,
we formally specify these functions. Note that, in this model
a user can only call the CreateSession and AddActiveRole
functions. All the other functions are administrative/system
functions. Since it is an adaptive model, role deactivation is
automatically taken care of by the system. In the function
parameter, NAME is an abstract data type whose elements
represent identifiers of various entities in the RBAC system.

AssignRisk: This administrative function assigns a risk value
to a permission.

1: function AssignRisk(ops, obj : NAME, risk : R≥0)
2: if ops ∈ OPS and obj ∈ OBJ then
3: assigned risk′(ops, obj)← risk
4: end if
5: end function

RoleRisk: This function returns estimated risk of a role. It
takes role as an input and returns the sum of its assigned
permissions’ risk.

1: function RoleRisk(role : NAME, result : R≥0)
2: /*The value of result is initially 0*/
3: if role ∈ ROLES then
4: for all ops ∈ OPS and obj ∈ OBJ do
5: if ((ops, obj) 7→ role) ∈ PA then
6: result′ ← result+ assigned risk(ops, obj)
7: end if
8: end for
9: end if

10: end function

CreateSession: A user creates a session using this function.
Initially the session does not contain any role. It utilizes
an Eval RT function to calculate the risk threshold based
on the user involved and system context. The functionality
of Eval RT should be application specific, thus, we do
not specify the details of this function. The session risk
contains the sum of activated roles’ risk in the session which
is initially 0.

1: function CreateSession(user : NAME, session : NAME)
2: if user ∈ USERS and session /∈ SESSIONS then
3: SESSIONS′ ← SESSIONS ∪ {session}
4: user sessions′(user)← user sessions(user)
5: ∪ {session}
6: risk threshold′(session)← Eval RT(session,user)
7: session risk′(session)← 0
8: end if
9: end function

AddActiveRole: Similar to RBAC0, this function is explicitly
invoked by a user where the user explicitly mentions a role
to activate. First, the function checks assigned users set to
find if the role is authorized for the user. If there is no such
role, it returns false as activation failure. If the role is present
and can be activated within the session risk threshold, it

activates the role and returns true. Alternatively, requested
role can be authorized for the user and its risk value is also
less than the session’s risk threshold, however, its addition
would exceed the session risk due to already activated roles
in the session. In such cases, the Deactivation function is
called for deactivating already activated roles for decreasing
the session risk below risk threshold and after necessary
deactivation, the system activates the selected role and returns
true, otherwise, returns false.

1: function AddActiveRole(user, session, role : NAME,
result : BOOL)

2: if session∈SESSIONS and role∈ROLES and
3: user∈USERS then
4: /* if requested role activation satisfies the session
5: risk threshold the role is activated */
6: if session risk(session)+ RoleRisk(r)
7: ≤ risk threshold(session) then
8: session roles′(session)←
9: session roles(session) ∪ {role}

10: session risk′(session)←
11: session risk(session) +RoleRisk(role)
12: result← true; return
13: else if RoleRisk(role) ≤ risk threshold(session)

then /*Call Deactivation function to check if the role can
14: be activated with deactivation of certain roles*/
15: if Deactivation(session, role) = true then
16: session roles′(session)←
17: session roles(session) ∪ {role}
18: session risk′(session)←
19: session risk(session) +RoleRisk(role)
20: result← true; return
21: end if
22: end if
23: end if
24: result← false
25: end function

Deactivation: This function deactivates the roles from the
session to activate the requested role. It displays activated
roles of the session to user and the user selects a role from
them to deactivate. This function then deactivates the selected
role and continues this process until the session risk reduces
below to risk threshold of the session for activating the
role. On successful required deactivations, it returns true
and false otherwise. Note that, user can abort this process
by selecting null in DeactivationSelect and this function
will return a false. This function can not be invoked by users.

1: function Deactivation(session, role : NAME,
result : BOOL)

2: if session∈SESSIONS then
3: roleOptions← session roles(session) /*Set of roles

to display, initially all activated roles of the session*/
4: while session risk(session) + Rolerisk(role) ≥

risk threshold(session) or roleOptions ̸= {ϕ} do
5: /*Call DeactivationSelect to get one selected role from

roleOptions by user to deactivate*/
6: r = DeactivationSelect(roleOptions)
7: if r ∈ session roles(session) then
8: session roles′(session)←
9: session roles(session)− {r}

10: session risk′(session)←
11: session risk(session)-RoleRisk(r)
12: roleOptins′ = roleOptins− {r}
13: else if r = null then

6th Symposium on Security Analytics and Automation 2013

467

14: break
15: end if
16: end while
17: result← true; return
18: end if
19: result← false
20: end function

SActivityMonitor: This is one of the core system functions
for an adaptive risk-aware session. System needs to call this
function continuously during the entire life-cycle of a user
session. This function first calls a session activity detection
function SADetection to check if there is anything abnormal
happening. The functionality of SADetection is application
domain specific and beyond our scope. SADetection returns
false if something is wrong and returns true otherwise.
If it returns false, the function re-estimates the session
risk threshold by calling RE Eval RT and overwrites
the current risk threshold. It then calls system automated
deactivation function SADeactivation to deactivate certain
roles from the session.

1: function SActivityMonitor(user : NAME, session :
NAME)

2: if user ∈ USERS and session /∈ SESSIONS then
3: if SADetection(session, user) = False then
4: risk threshold(session) ←
5: RE Eval RT (session, user)
6: SADeactivation(session)
7: end if
8: end if
9: end function

SADeactivation: This function is called by SActivityMonitor
each time the risk threshold of a session changes due to any
abnormal behavior detection in the system. SADeactivation
first calls IdentifyAffRoles function that returns a set of
roles subset of which needs to deactivate in order to keep
session risk within risk threshold. The system can
implement any algorithm for IdentifyAffRoles to identify
risky roles and this function should be able to select the
set of roles in which deactivating subset or all of them
should reduce session risk below to the risk threshold
of the session. Then, the roles are displayed to the user and
user keep selecting roles for deactivation from the set. This
process continues until the session risk reduces below to
the risk threshold of the session.

1: function SADeactivation(session : NAME)
2: if session∈SESSIONS then
3: roleOptions← {∅} /*Set of roles to display, initially
4: empty set*/
5: /*call IdentifyAffRole to create roleOptions that
6: contains the roles need to be deactivated*/
7: roleOptions = IdentifyAffRoles(session)
8: while risk threshold(session) ≤

session risk(session) or roleOptions ̸= {ϕ} do
9: /*Call DeactivationSelect to get one selected role from

roleOptions by user to deactivate*/
10: r = DeactivationSelect(roleOptions)
11: if r ∈ session roles(session) then
12: session roles′(session)←
13: session roles(session)− {r}
14: session risk′(session)←
15: session risk(session)-RoleRisk(r)

16: roleOptins′ = roleOptins− {r}
17: else if r = null then
18: Continue
19: end if
20: end while
21: end if
22: end function

IV. RELATED WORKS

Traditional Risk-Aware Approaches(Constraints): Sev-
eral authors have focussed on issues in constraints specification
in access control systems primarily in RBAC. Constraints in
RBAC are often characterized as static separation of duty
(SSOD) and dynamic separation of duty (DSOD). These two
issues were addressed back to late 1980’s when Clark et
al [9] introduced SSOD and Sandhu [21] DSOD. A number of
attempts have been initiated afterwards to identify numerous
forms of SSOD and DSOD policies [10], [24] and to specify
them formally [12], [13] in RBAC systems. The RCL-2000
language for specifying these policies in a comprehensive way
was proposed by Ahn et al [1]. Recently, Jin et al [14] proposed
an attribute based access control model in which they provide
an authorization policy specification language that could also
specify constraints on attribute assignment. However, their
constraints specification focuses on what values the attributes
of subjects and objects may take given that users are currently
assigned with particular attribute values. More Recently, Bijon
et al [5] proposed an attribute based constraint specification
language that can generate constraints on attribute assignments
to entities based on intrinsic relationship among attributes.
Besides RBAC, the traditional concept of risk-awareness has
been well-studied in different access control systems includ-
ing lattice-based access control (LBAC). In LBAC, strict ⋆
and liberal ⋆ properties [22] are all conceptually related to
the risk-awareness in a system. Also, chinese-wall [22], the
ethical barrier between organizations with conflict-of-interest,
is another popular risk mitigation approach in LBAC. Recently,
two different approaches has been proposed to mitigating risk
in LBAC when organizations need to collaborate with outside
specialist for ceratin reasons [2], [3].

Quantified Risk-Aware Approaches: Several approaches
have been proposed for combining risk issues in different
access control systems. Kandala et al [15] provide a frame-
work that identifies different risk components for a dynamic
access control environment. The Jason report [19] proposes
three core principles for a risk-aware access control system:
measuring risk, identifying tolerance levels of risk and con-
trolling information sharing. Cheng et al [8] give a model to
quantify risk for access control and provide an example for
multilevel information sharing. Ni et al [18] propose a model
for estimating risk and induce fuzziness in the access control
decision of the Bell-Lapadula model. Moloy et al [16] propose
a risk-benefit approach for avoiding communication overhead
in distributed access control. All of these models mostly focus
on how to estimate risk. In contrast, our work focusses on
how to utilize such risk measures in different risk-aware RBAC
components. Recently, a quantified risk-aware RBACsessions
and role activation/deactivation framework have been proposed
in [4]. There are also other approaches to achieve automated
threat response in dynamically changing environments.

6th Symposium on Security Analytics and Automation 2013

468

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a framework for risk-aware
role based access control (RBAC) models. There are two
basic requirements for developing a risk-aware RBAC
model: 1. Identify components which can be risk-aware
and thereby utilize risk metrics for various purposes and
2. Select a particular risk-aware approach and its necessary
functionalities. We identify that in RBAC sessions, user-role
assignment and permission-role assignment processes are
the main risk-aware components. We also showed that
risk-awareness can be of two types: traditional and quantified
approaches. The former is the conventional constraint driven
approach, while the latter is a risk metric driven approach.
Furthermore, the quantified approach are of two types: non-
adaptive and adaptive and develop necessary functionalities
for them. Finally, we formalized the functionalities of adaptive
risk-aware RBAC sessions by extending NIST standard RBAC.
In the future, we plan to investigate introducing quantified
risk-awareness in more general models such as attribute-based
access control.

Acknowledgement. This work is partially supported by
the NSF (CNS-1111925) and AFOSR MURI grants (FA9550-
08-1-0265).

REFERENCES

[1] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints
specification. ACM Trans. Inf. Syst. Secur., 3(4):207–226, November
2000.

[2] Khalid Bijon, Ravi Sandhu, and Ram Krishnan. A group-centric model
for collaboration with expedient insiders in multilevel systems. In
International Symp. on Security in Collaboration Technologies and
Systems, 2012.

[3] Khalid Zaman Bijon, Tahmina Ahmed, Ravi Sandhu, and Ram Krish-
nan. A lattice interpretation of group-centric collaboration with expe-
dient insiders. In Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom), 2012 8th International Conference
on, pages 200–209. IEEE, 2012.

[4] Khalid Zaman Bijon, Ram Krishnan, and Ravi Sandhu. Risk-aware
RBAC sessions. In Information Systems Security, pages 59–74.
Springer, 2012.

[5] Khalid Zaman Bijon, Ram Krishnan, and Ravi Sandhu. Towards an
attribute based constraints specfication language. In Privacy, Security,
Risk and Trust (PASSAT), 2012 International Conference on and 2012
International Confernece on Social Computing (SocialCom). IEEE,
2013.

[6] L Chen and J Crampton. Risk-aware role-based access control. In 7th
International Workshop on Security and Trust Management, 2011.

[7] Liang Chen, Luca Gasparini, and Timothy J Norman. XACML and
risk-aware access control. Resource, 2(10):3–5, 2013.

[8] Pau-Chen Cheng, P. Rohatgi, C. Keser, P.A. Karger, G.M. Wagner, and
A.S. Reninger. Fuzzy multi-level security: An experiment on quantified
risk-adaptive access control. In Security and Privacy, 2007., pages 222
–230, may 2007.

[9] David D. Clark and David R. Wilson. A Comparison of Commercial
and Military Computer Security Policies. In Proc. of the IEEE S&P,
1987.

[10] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access
control (RBAC): Features and motivations. In 1th Annual Computer
Security Application Conference, pages 241–248. IEEE, 1995.

[11] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based
access control. ACM Tran. Inf. Sys. Sec., 2001.

[12] Virgil D Gligor et al. On the formal definition of separation-of-duty
policies and their composition. In Security & Privacy. IEEE, 1998.

[13] Trent Jaeger. On the increasing importance of constraints. In fourth
ACM workshop on Role-based access control, pages 33–42. ACM,
1999.

[14] Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified Attribute-Based
Access Control Model Covering DAC, MAC and RBAC. In DBSec,
2012.

[15] S. Kandala, R. Sandhu, and V. Bhamidipati. An attribute based
framework for risk-adaptive access control models. In Avail., Reliab.
and Sec. (ARES), aug. 2011.

[16] Ian Molloy, Luke Dickens, Charles Morisset, Pau-Chen Cheng, Jorge
Lobo, and Alessandra Russo. Risk-based security decisions under
uncertainty. CODASPY ’12, 2012.

[17] Michael J Nash and Keith R Poland. Some conundrums concerning
separation of duty. In Research in Security and Privacy, pages 201–
207. IEEE, 1990.

[18] Qun Ni, Elisa Bertino, and Jorge Lobo. Risk-based access control
systems built on fuzzy inferences. ASIACCS ’10, pages 250–260, New
York, NY, USA, 2010. ACM.

[19] MITRE Corporation Jason Program Office. Horizontal integration:
Broader access models for realizing information dominance. Technical
Report JSR-04-132, MITRE Corporation, 2004.

[20] F. Salim, J. Reid, E. Dawson, and U. Dulleck. An approach to access
control under uncertainty. In Avail., Reliab. and Sec. (ARES), pages 1
–8, aug. 2011.

[21] Ravi Sandhu. Transaction control expressions for separation of duties.
In Proc. of the 4th ACSAC, 1988.

[22] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11), 1993.

[23] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based
access control models. Computer, 29(2):38 –47, feb 1996.

[24] Richard T Simon and Mary Ellen Zurko. Separation of duty in role-
based environments. In CSFW, pages 183–194. IEEE, 1997.

6th Symposium on Security Analytics and Automation 2013

469

