
A Group-Centric Model for Collaboration with
Expedient Insiders in Multilevel Systems

Khalid Zaman Bijon∗, Ravi Sandhu∗ and Ram Krishnan†
∗Institute for Cyber Security & Department of Computer Science

†Institute for Cyber Security & Department of Electrical and Computer Engineering
University of Texas at San Antonio

Abstract—An authorization model for group-centric
organizational collaboration has been recently proposed
wherein multiple organizations may collaborate via groups [3].
Each group is independent of all others and adheres to the
formal semantics of Group-Centric Secure Information Sharing
models (g-SIS) [2], [4]. Motivated by [3], in this paper, we
develop a model for group-centric collaboration in which
an organization forms groups to collaborate with outside
consultants on specific projects. A core principle is that such
outsiders cannot fit in the existing organizational access control
structure as they are not “true insiders” but rather “expedient
insiders.” In our proposed model, each group duplicates the
organizational access control structure in an identical but
separate copy—initially without any assignment of users or
objects. The group is then populated and maintained by
bringing selected true insiders, expedient insiders, and objects
together to enable collaboration. The formal model consists
of administrative and operational parts covering the complete
life-cycle. While the general concepts are applicable regardless
of the specific models used for the organizational access
control structure, to be concrete we consider the specific case
of multilevel systems that enforce lattice-based access control [7].

Keywords- Group Centric Collaboration; Information Shar-
ing; Lattice Based Access Control;

I. INTRODUCTION

Organizational collaboration with outsiders, such as domain
specialists and other experts, is commonplace in practice today.
During the period of collaboration, such outsiders are assigned
necessary privileges to access sensitive information objects
of the organization to meaningfully contribute to the project.
Currently, there is no well-accepted model for this type of
information sharing or privilege management. Consequently
such sharing is often ad hoc. With the anticipated increase in
such collaborations the need for rigorous models in this arena
will also increase. In this paper we develop a formal model for
this purpose. A core principle of the model is that outsiders
should never be granted authorization credentials, such as
security clearances or roles, identical to those granted to the
organization’s employees. As such these outside collaborators
are not “true insiders” but rather “expedient insiders” who
should receive much more limited privileges.

Most organizations maintain an access control structure that
best fits their requirements to control information flow among
true insiders. One such organizational structure is the lattice-
based model (also commonly known as multilevel security or

mandatory access control). In a lattice-based model, persons
are cleared and objects are classified in different security
classes, such as Top-Secret (TS), Secret (S), Confidential (C)
and Unclassified (U). Here information flows in a total or
linear ordering of those security classes where TS > S > C >
U (more generally security classes are partially ordered). For
example, a member with clearance to a point of lattice, e.g. S,
may only get access to an object that is classified as same or
lower level, i.e. S, C or U. This information sharing is based
on the long-term relationship between the organization and its
members as well as members’ responsibility, trustworthiness
and accountability. Thus, this inner organizational structure
does not work properly for those collaborative outsiders as
they are transient rather than persistent. They do not have
same accountability as the regular members have, nor do they
posses the same level of trustworthiness. In other word, these
outsiders do not fit to the regular organizational structure
because they are not true insiders but expedient insiders.
Usually, organizations need to share only selected information
for the purpose of a collaboration, therefore, allowing those
expedient insiders in regular organizational framework might
unnecessarily expose sensitive information.

In this paper, we focus on collaboration between a single
organization and outside independent consultants. We analyze
several different processes to establish this collaboration and
demonstrate that the Group-Centric concept is appropriate for
this purpose. Group-Centric sharing was introduced in [4]
where the primary focus was on the temporal semantics
of group operations. In a group, users may join, leave or
re-join and objects may be added, removed and re-added.
User’s access to an object depends on the temporal ordering
of these events. However, [4] deliberately does not specify
administrative aspects such as who authorizes these operation,
who manages the membership, etc.

In [3], a model for group centric collaboration in inter-
organizational scenarios was introduced consisting of admin-
istrative and operational components. Three distinct collab-
orative scenarios are discussed, viz., bilateral organizational
collaboration, unilateral organizational collaboration and qual-
ified open collaboration. In bilateral collaboration, two or more
organizations collaborate with each other for some common
purposes such as developing intellectual property. In unilateral
collaboration, there is a single central organization which



collaborates with external parties on its own terms. The main
contribution of [3] was to provide a complete model for
bilateral collaboration. Their proposed group model does not
incorporate any hierarchical access control structure.

The main contribution of our paper is to provide a group-
centric model for unilateral organizational collaboration, par-
ticularly for collaboration with external individuals. Each col-
laboration group incorporates the organizational access control
structure. For simplicity and concreteness, we assume that this
structure is a security lattice with one-directional information
flow [7]. More specifically we assume that the usual simple-
security property applies for read operations and that the
strict form of the star-property applies for write operations,
wherein write is only permitted at the security level of the
subject attempting the write. Our model can be easily extended
to other access control structures such as role-based access
control, attribute based access control, etc. In our model, a
established group uses the identical security lattice as the
underlying organization but with different users and objects.

The remainder of this paper is as follows. Section II
discusses different processes to establish collaboration groups.
A model for collaboration with expedient insiders is formally
specified in section III and section IV gives our conclusions.

II. DIFFERENT PROCESSES FOR ORGANIZATIONAL
COLLABORATION WITH OUTSIDERS

In this section we first outline a collaboration scenario with
outsiders and then analyze three different processes to integrate
this collaboration with an organization.

Consider a scenario where an organization Org with sensi-
tive information, such as a defense contractor, needs to consult
with outside specialists for a specific reason R. E is a set
of consultants providing service for R and the organization
may want to collaborate with some of them. Let Org select
a set of true insiders T and a set of consultants (expedient
insiders) C for this collaboration. Members in T and C might
change over time based on fluctuating purpose and state of the
collaboration. In such a collaboration Org is the ultimate stake
holder and consultants are only compensated for their service.
Organization also needs to select objects and grant necessary
access to the users in T and C. This authorization process
should be efficient and able to protect unauthorized disclosure
of sensitive information. Therefore, the main challenge is to
fit the consultants in a particular place in the organizational
framework where they only get access to the necessary doc-
uments and their presence does not unnecessarily affect other
sections of the organization. Below we discuss three different
possible processes towards this goal.

A. Assign Outsiders at a Point in Organizational Structure

One possibility is to place an expedient insider at a suitable
point in the already existing organizational structure. In a
lattice structure this amounts to temporarily assigning the

expedient insider a clearance equal to one of the labels in
the lattice. There are a number of drawbacks to this approach.
Firstly, only a subset of information accessible by true insiders
at a given clearance might be necessary for a collaboration.
Therefore, the expedient insider may obtain access to other
sensitive information which is not relevant to the purpose
of the collaboration. Again, presence of an expedient insider
on equal footing as true insiders may create ambiguity and
concern for other true insiders unnecessarily impacting the
regular information flow of the organization.

A possible extension of this approach is to modify the lattice
to incorporate additional security labels which are reserved
for collaborating true insiders and expedient insiders. We
believe this runs counter to the culture of access control where
security architects would strongly prefer a stable structure.
Nevertheless this approach may be of theoretical interest.

B. Individual Sharing Collaboration

An organization may collaborate with outsiders individually
and separately without assigning them a clearance in the
lattice. During collaboration phase, the organization may share
some objects with each individual on a need-to-know basis
with risk-benefit judgement. This is perhaps the simplest
approach for such collaborations. The main problem here
is scalability. This procedure may be effective for micro-
collaboration where a single collaborator is enough. However,
it fails to provide service for large scale collaboration because
this collaboration might need a number of consultants. In large
scale collaboration, each collaborator might get same sets or
some common subsets of objects. Maintaining consistency
amongst these may be difficult, so some consultants are
inadvertently denied essential information while others get too
much. As new or replacement consultants are brought on board
mistakes may be made in providing necessary information
to them. Organizations often split a big project into several
small parts and each part may need different consultants. If the
collaboration is organized as individualized sharing it may be
difficult to merge scattered results to generate a final product.

C. Group-Centric Collaboration

The Group-Centric approach for inter-organizational collab-
oration was proposed in [3] where an authorization model was
introduced for collaboration groups formed by organizations
with common interests. Our analysis indicates that this Group-
Centric approach is also suitable for collaboration with out-
siders for a number of reasons. An organization can establish
a group for the purpose of collaboration and bring necessary
objects, selected true insiders and expedient insiders together
in the group. Note that, within an organization, true insiders
already will have access to the selected objects provided to
the collaboration group (within the limits of their security
labels). However, assigning true insiders to a collaboration
group further specializes their responsibility for a specific
collaboration and makes explicit what is being shared with



expedient insiders. Moreover, in the collaboration members
can create new objects or update previously added objects
from the organization. These objects will not, and should not,
be accessible by the true insiders of the organization until they
are explicitly imported into the organization. Therefore, adding
true insiders in a group authorizes them instant access to such
information that is necessary to meaningful collaboration.

Administrative management of such groups, including their
establishment and disbanding, can be conveniently carried out
and monitored by an organization. Users share objects within a
group and can edit and update them in a consistent manner that
solves the scalability problem of individual sharing. A group
administrator can add objects to the group from any security
label whenever it is necessary, while keeping the objects
protected within the group to users with proper clearance.
Thus, the organization can be more selective in information
sharing with expedient insiders so this process is more secure
than placing those expedient insiders within the organizational
structure. Groups also confine member’s write permission to
the group thereby restricting malicious subjects, i.e. trojan
horses, to leak confidential information. Finally, presence of a
collaboration group does not disrupt the organization’s original
structure because the group does not share the organization’s
internal information flow. Access via the group is limited
strictly to those objects made available to the group. Objects
modified within the group or created within the group are
not visible to true insiders outside the group until they are
explicitly imported or merged back into the organization.

III. FORMAL SPECIFICATION OF ORGANIZATIONAL
COLLABORATION WITH EXPEDIENT INSIDERS

In this section a group-centric policy model is formally
specified for this specific organizational collaboration with
expedient insiders. In this model, relevant attributes of the
entities are exploited to authorize each operation. For example,
before an operation (such as writing an object) is permitted
all the involved entities’ (e.g. user, object, etc) attributes (user
id, object type, etc) are evaluated in order to approve it. For
this purpose we follow the well-known UCON model [5] and
specifically its pre-authorization component. UCON provides
mutable attributes which are updated dynamically as appro-
priate, as each operation is authorized. For example, if the
operation is to merge two versions of an object, the “object
version” attributes are updated accordingly. Details of the
attributes definition are provided in III-B. The remainder of
this section contains the model overview, the attribute defi-
nitions, the administrative model, and the operational model.
For convenience, we use the term “group” for collaboration
group, “Org” for the organization, “true insider” for a group
member from Org, “group administrator” or “group admin” for
administrative members of the group and “expedient insider”
for outside consultants.

Figure 1. Operational Semantics of Collaboration Group with Out-
siders. The group and the organization have the same security lattice,
e.g., Top Secret (TS), Secret (S), Classified (C), Unclassified (U).
Named arrows show the Administrative operations. User operations
are shown in the rectangle at the top.

A. Overview

An organization may establish any number of distinct
collaboration groups, all of which use the identical lattice
structure as the organization. True insiders always carry the
same security clearance as they have in the organization.
Each expedient insider is assigned a suitable security clearance
when she is assigned to a group. The same clearance will apply
if she is added to additional groups. The group administrator
has complete control on which users (true insiders or expedient
insiders) and objects are members of the group.

In this distributed collaborative setting we assume that
objects are versioned. In a general version model each write
creates a new version of an object. A group administrator
can bring specific versions of selected objects from the or-
ganization into the group. These versions retain their previous
security classification in the group. For simplicity we assume
that all version of an object are at the same security classifica-
tion. Expedient insiders are not permitted to add any objects
from outside. They can only contribute via newly created
and modified objects in the group. New objects, and new
versions of existing objects, may be created in the group during
collaboration. The group administrator may import specific
version of those objects to the organization.



TABLE I
ATTRIBUTE SPECIFICATION

Global Sets and Symbols:
SL: Finite lattice of security levels with dominance ordering ≽
CG: Finite set of existing groups
U: Finite set of existing users
O: Finite set of existing objects
S: Finite set of existing subjects
UNIV V: The universal set of versions (an infinite set)
Org: The organization (a constant symbol)

User Attributes: Att(U)={clearance, ucg, orgadmin, cgadmin, utype}
clearance: U → SL
ucg: U → 2CG

orgadmin: U → {True, False}
cgadmin: U → 2CG

utype: U → {Insider, Expedient Insider, null}

Objects Attributes: Att(O)={classification, origin, versions}
classification: O → SL
origin: O → CG ∪ {Org}
versions: O → 2UNIV V

Subject Attributes: Att(S)={clearance, owner, belongsTo, type}
clearance: S → SL
owner: S → U
belongsTo: S → CG ∪ {Org}
type: S → {RW,RO}

Object Version Attribute: Att(O, V)={vMember, classification}
vMember: O × UNIV V → 2CG∪{Org}

classification: O × UNIV V → SL
/* These are partial function defined only for the versions that exist for each object*/

Figure 1 informally illustrates the group model for such
collaborations. The group uses the same lattice structure as
the organization. Administrative operations are indicated by
named arrows. The arrow end indicates the principal target of
the operation. The operations listed within the rectangle at the
top comprise the user operations, for both true and expedient
insiders. Depending on the security labels, these operations
are authorized to different users for different sets of objects.

B. Attributes

The sets and attributes used in this collaboration system
are given in Table I. The organization is represented by the
constant symbol Org. SL is the lattice of security labels
ordered with the dominance relation ≽. CG, U, O and S
respectively represent the set of current collaboration groups,
users, objects and subjects. UNIV V is the universe of all
version names. At any moment each existing object will have
some finite subset of UNIV V as its existing versions. This
subset will be different for different objects at a given moment.

User Attributes: A user is a human being in the system.
Users are of type Insider or Expedient Insider as specified
by the user attribute utype. A user’s clearance is represented
by the clearance attribute that contains a security label from
SL. Attribute ucg contains the set of groups where the user

is a member. Attribute cgadmin maintains the set of groups
where the user is an administrator. Attribute orgadmin specifies
whether or not the user is an organization administrator.

Object Attributes: Attribute origin represents the group
or Org where the object was created. An object’s security
classification is specified by the classification attribute. The
versions attribute maintains the set of versions of an object.

Subject Attributes: Attribute owner represents the user
who created the subject. The group or Org where the subject is
created is specified by attribute belongsTo. A subject is defined
as either read-only or read-write by the type attribute.

Object Version Attributes: Each object can have a number
of versions and each version may be shared by one or more
groups. Thus, for each object and version pair, the attribute
vMember lists entities (i.e., groups and/or Org) that share it.
Attribute classification indicates the security classification of
the version. All versions of an object have the same classifi-
cation value, so strictly speaking this attribute is redundant.

C. Administrative model

Different semantics of four core group operations (user Join
and Leave and object Add and Remove) have been proposed
in [4]. A user may join a group in two different ways: Strict



TABLE II
ADMINISTRATIVE MODEL

Operation Precondition Updates

Establish(u, cg) u ∈ U ∧ cg /∈ CG ∧ orgadmin(u)=True cgadmin′(u) = cgadmin(u) ∪ {cg}
/*Admin user u establishes CG′ = CG ∪ {cg}
new collaboration group cg*/

Join Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ ucg′(u2) = ucg(u2) ∪ {cg}
/*Admin u1 grants cg membership cg ∈ cgadmin(u1) ∧
to a true insider u2*/ utype(u2) = Insider ∧ cg /∈ ucg(u2)

Leave Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ ucg′(u2) = ucg(u2) - {cg}
/*Admin u1 revokes cg membership cg ∈ cgadmin(u1) ∧ cg ∈ ucg(u2) forall s ∈ S
from a true insider u2*/ ∧ utype(u2) = Insider if owner(s) = u2 ∧ belongsTo(s) = cg

then S′ = S - {s}
/*Kill subjects in cg owned by u2*/

Join Outsider(u1,u2,cg,seclab) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ utype′(u2) = Expedient Insider
/*Admin u1 grants cg membership cg ∈ cgadmin(u1) ∧ cg /∈ ucg(u2) if ucg(u2) = ∅ then clearance′(u2) = seclab
to an expedient insider u2*/ ∧ utype(u2) ̸= Insider ucg′(u2) = ucg(u2) ∪ {cg}

Leave Expedient Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ ucg′(u2) = ucg(u2) - {cg}
/*Admin u1 revokes cg membership cg ∈ cgadmin(u1) ∧ cg ∈ ucg(u2) forall s ∈ S
from an expedient insider u2*/ ∧ utype(u2) = Expedient Insider if owner(s) = u2 ∧ belongsTo(s) = cg

then S′ = S - {s}
/*Kill subjects in cg owned by u2*/

Add(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′(o,v) = vMember(o,v) ∪ {cg}
/*Admin u adds version v v ∈ versions(o) ∧ cg ∈ cgadmin(u) ∧
of object o from Org to cg*/ cg /∈ vMember(o,v)

Remove(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′(o,v) = vMember(o,v) - {cg}
/*Admin u removes version v v ∈ versions(o) ∧ cg ∈ cgadmin(u) ∧
of object o from cg*/ cg ∈ vMember(o,v)

Import(u,o1,v1,o2,cg) u ∈ U ∧ cg ∈ CG ∧ v1 ∈ versions(o) versions′(o2) = versions(o2) ∪ {v2}
/*Admin u imports version v1 of ∧ o1,o2 ∈ O ∧ origin(o2) = Org ∧ /*v2 is newly created version of o2*/
object o1 to new version v2 of cg ∈ cgadmin(u) ∧ origin(o1) = cg ∧ vMember′(o2,v2) = {Org}
object o2 in Org*/ classification(o1) = classification(o2) classification(o2,v2) = classification(o2)

Merge(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′(o,v) = vMember(o,v) ∪ Org
/*Admin u merges version v v ∈ versions(o) ∧ cg ∈ cgadmin(u) ∧
of object o from cg to Org*/ cg ∈ vMember(o,v) ∧

origin(o) = Org ∧ v ∈ versions(o)

Disband(u, cg) u ∈ U ∧ cg ∈ CG ∧ cg ∈ cgadmin(u) forall u1 ∈ U
/*Admin u disbands if cg ∈ ucg(u1)
a collaboration group cg*/ then ucg′(u1) = ucg(u1) - {cg}

if cg ∈ cgadmin(u1)
then cgadmin′(u1) = cgadmin(u1) - {cg}

forall o ∈ O
if origin(o) = cg

then O′ = O - {o}
forall o ∈ O forall v ∈ versions(o)

if cg ∈ vMember(o,v)
then vMember(o,v)′ = vMember(o,v) - {cg}

CG′ = CG - {cg}
S′ = S -

∪
∀s∈S.belongsTo(s)=cgS

Join (SJ) or Liberal Join (LJ). Users with SJ may only access
objects that are added after their join time. With LJ, users
may also access objects added prior to join time. Objects
could be added to a group in two ways: Strict Add (SA) and

Liberal Add (LA). In LA, all the present and future members
of the group can access the object. In SA, access is limited to
present members of the group at the time of SA. Similar to
Join, users may also leave with a Strict Leave (SL) or Liberal



Leave (LL). In SL, users lose complete access to all objects
in the group where in LL, the users retain access to objects
authorized to them during membership period. Further, objects
could be removed in strict and liberal fashion. In Strict Remove
(SR), group users will not able to access the removed object
after remove time where Liberal Remove (LR) allows those
users to retain access permission. Any combination of these
semantics may have different impacts on access relationship
between subjects and objects. For simplicity, we confine the
authorization semantics to Liberal Join, Strict Leave for users
and Liberal Add, Strict Remove for objects. This is the typical
semantics used for groups in traditional access control systems.
Note that any variation of these semantics will only affect the
authorizations of Read and Update operations leaving the rest
of the specification essentially intact.

True insiders and objects retain their organizational security
classifications in a group. However, the administrative model
requires assignment of appropriate security clearance to every
newly joined expedient insider. Note that the clearance of each
user remains the same in all groups. Similarly, each object and
its different versions always have same classification across
different groups and in the Org.

Table II formally specifies a set of administrative operations
for this collaboration group. The first column specifies the
operation that is to be performed. The second column specifies
the conditions that need to be satisfied to authorize the opera-
tion. Attributes and sets that will be updated after an authorized
operation are listed in the third column, with the ′ symbol
indicating the value after the update. These administrative
operations are discussed below.

• Establish collaboration group: An organization forms a
collaboration group and an administrative user from the
organization is appointed as group administrator. First
column of table II specifies the operation name and
parameters. Here u is the selected administrative user
and cg is the new group name. The second column
specifies that cg should be a new group name that does
not currently exist in CG, and that user u is a valid
administrative user of Org. Finally, in the third column,
u becomes the cg administrator and cg is added to the
existing group set CG.

• Join Insider to group: Group administrator u1 can grant
membership to a true insider u2 in a group cg. An
authorization process checks whether u1 and u2 are
group administrator and true insider respectively for this
operation. If so cg is added to the ucg attribute of u2.

• Leave Insider from group: Revokes group membership
of a true insider. Further, it kills subjects that were created
by that insider in the group cg.

• Join Outsider to group: Group administrator u1 can
enroll an outsider u2 as an expedient insider who does
not have current group membership. However, he might
hold membership to other collaboration groups of the
organization. In that case, u2 retains the same security

clearance for this group. Otherwise, group administrator
u1 assigns an appropriate security clearance.

• Leave Expedient Insider from group: Revokes group
membership of an expedient insider. Further, it kills
subjects that were created by that insider in the group
cg. Note that if this results in ucg(u2) becoming empty
then on some future join, should it occur, the security
clearance of this user will be set to a new value.

• Add an object version to group: Administrator of a group
adds a version v of an object o from the organization to
the group. The vMember attribute of version v of object
o is updated accordingly.

• Remove a version from group: Using this operation group
administrator removes an object version from a group cg.
Accordingly cg is removed from the list vMember of that
version.

• Import a version from group to Org: A version v1 of
an object o1 can be copied to Org from a group cg
by the group administrator. This operation can only be
performed to an object o1 that is natively created in cg,
whereby origin(o1)=cg. The group administrator copies
the object version o1, v1 to a new version v2 of o2
where origin(o2)=Org. Note that, classification of o1 and
o2 should be equal for a successful import.

• Merge a version to Org: The semantics of this operation
is to merge back a new object version v of o from
cg to Org where origin(o)=Org. If this operation is
successful, version v of o includes Org in its membership
set vMember.

• Disband group: The semantics of this operation is to
delete the group cg. Prior to Disband the group ad-
ministrator will Merge and Import necessary objects
from the group to the organization. After Disband, the
corresponding attributes of every true insider, expedient
insider and object version are updated accordingly. Every
subject executing in the group needs to be killed and
and every object with origin cg needs to be deleted. The
disbanded group is removed from the cgadmin attribute
of all users. Finally, cg is removed from CG.

D. Operational model

Table III specifies the set of user operations involved in
operational model. Using these operations a user can create
subjects and exercise privileges in a group or Org. A subject
is a program or process that runs in the system on behalf of a
user. A subject inherits the same or lower security clearance
from the user who created it. A user may create multiple
subjects, however, a subject is owned by only one user. We
assume, a particular insider (both true and expedient) can
be a member of more than one group. For the purpose of
aggregation, a user can create a read-only subject which can
read an object version from any group to which the user
belongs and/or the Org (for true insiders). A read-only subject
is unable to write. In order to write a user must create a read-
write subject which is confined to write either only in a single



TABLE III
OPERATIONAL MODEL

Operation Precondition Updates

CreateRWInCG(u,s,cg,seclab) u ∈ U ∧ s /∈ S ∧ cg ∈ ucg(u) ∧ owner′(s) = u
/*User u creates read-write seclab ≼ clearance(u) clearance′(s) = seclab
subject s in a group cg*/ belongsTo′(s) = cg

type′ (s) = RW
S′ = S ∪ {s}

CreateRWInOrg(u,s,seclab) u ∈ U ∧ s /∈ S ∧ utype(u) = Insider ∧ owner′(s) = u
/*Only true insider creates seclab ≼ clearance(u) clearance′(s) = seclab
read-write subject in Org*/ belongsTo′(s) = Org

type′ (s) = RW
S′ = S ∪ {s}

CreateRO(u,s,seclab) u ∈ U ∧ s /∈ S ∧ seclab ≼ clearance(u) owner′(s) = u
/*User u creates read-only clearance′(s) = seclab
subject s*/ type′(s) = RO

S′ = S ∪ {s}

Read(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ None
/*Subject s reads the version v clearance(s) ≽ classification(o,v) ∧
of object o*/ (type(s) = RO ∧

((ucg(owner(s)) ∈ vMember(o,v)) ∨
(utype(owner(s)) = Insider ∧
{Org} ∈ vMember(o,v)))) ∨
(type(s) = RW ∧
(belongsTo(s) ∈ vMember(o,v))))

Update(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ versions′(o) = versions(o) ∪ {v1}
/*Subject s updates the version v clearance(s) = classification(o,v) ∧ /*v1 is newly created version id*/
of object o. This function returns (type(s) = RW ∧ vMember′(o,v1) = vMember(o,v1) ∪ {cg}
updated version v1*/ belongsTo(s) ∈ vMember(o,v)) classification′(o,v1) = classification(o,v)

Create(s,o) s ∈ S ∧ o /∈ O ∧ type(s)=RW O′ = O ∪ {o}
/*Subject s creates version v versions′(o) = {v}
of object o. This function /*v is newly created root version id*/
returns newly created version v*/ vMember′(o,v) = {belongsTo(s)}

origin′(o) = belongsTo(s)
classificaton′(o) = clearance(s)
classificaton′(o,v) = clearance(s)

Kill(u,s) u ∈ U ∧ s ∈ S ∧ owner′(s) = Null
/*User u kills subject s*/ owner(s) = u ∨ belongsTo(s) ∈ cgadmin(u) type′(s) = Null

clearance′(s) = Null
belongsTo′(s) = Null
S′ = S - {s}

group or only in the Org, depending on where it was created.
This is a critical aspect of our model. The scope of a subject’s
write operation is further restricted by the strict star-property
within the single group or Org.

• CreateRWInCG or CreateRWInOrg subjects: A user
can create read-write subject in Org or in a cg where
she is a member. In order to create a read-write subject
in Org the user needs to be a true insider. The user also
determines the security clearance of the subject. However,
the user can only specify the subject clearance as less
than or equal to user’s own security clearance. A subject
belongsTo to the group or Org in which the user creates
it. The type attribute of the subject is RW.

• CreateRO subjects: A user can also create a read-only
subject. Similar to a read-write subject, the subject’s secu-
rity clearance must be dominated by the user’s clearance.
The type attribute of this subject is RO.

• Read version of an object: Read is one of the most
critical operations of the system. In order to aggregate
information, a RO subject can read any object version
from every group and/or Org in which the subject’s owner
is a member, while a RW subject is restricted to read only
in the group or Org in which it is created. By the simple
security policy, in order to authorize a read the clearance
of a subject must be higher or equal to the classification
of the target version.



• Update version of an object: Each update creates a new
version of an object. Only a RW subject can perform an
Update. Authorization process of this operation depends
on the clearance of the subject compared to the classi-
fication of the target object. Our model enforces strict
star-property in which object’s classification should be
equal to the subject’s clearance for a successful Update.

• Create object: A RW subject can create a new object in
the group or Org where it was created. A newly created
object inherits the security classification from respective
subject’s clearance.

• Kill subject: Kill operation can be performed either by the
owner of the subject or the group administrator where the
subject resides. This operation removes the subject from
the set of subjects S.

E. Other Related Works

Several authors have addressed security issues in informa-
tion sharing among organizations. A number of security issues
for the Dynamic Coalition Problem (DCP) are discussed in [6]
for coalitions formed internationally in response to a crisis.
Their model defines involved organization types and roles in
such a coalition and proposes a candidate security approach
that meets the goal of DCP. Warner et al [8] proposed a
dynamic coalition-based access control model that facilitates
users from one coalition entity to automatically access another
entity. In this model, a service registry contains coalition level
access policies for each entity and for accessing other entity’s
resources one must obtain necessary ticket from the registry.
The registry also has its own access control policy to verify
the credentials of a requestor in order to approve the ticket.
O2O [1] combined two concepts: virtual private organization
and role single-sign on for secure information sharing among
organizations. However, none of these models addressed the
issues for organizational collaboration with expedient insiders
as defined in this paper.

F. Model Enhancement

In this section we discuss possible enhancements of the
capability of different operations that we have proposed in
our group-centric collaboration model.

Join Insider could modify clearance: In our proposed
administrative model, a true insider retains his organizational
clearance unmodified in every group he joins. However, in
practice, a true insider might get a different security clearance
in a group. For example, an organization may choose a junior
employee as a leader of a collaboration group. That employee
might have lower security clearance in organization while
he needs higher clearance in the group. Conversely a highly
cleared true insider may be given a lower clearance in a group
depending on the role of that use in the collaboration.

Join Outsider could allow different clearances for the
same expedient insider in different collaboration groups. This
accords with the principles of least privilege and need-to-know.

Add could sanitize information of an object: An object
might contain very sensitive information that makes it un-
suitable to share with expedient insiders in a collaboration
group. However, some sanitization or redaction could make it
appropriate to share. For instance, an organization may not be
willing to share every employee’s salary, while it might share
the average salary.

IV. CONCLUSION

Our goal in this paper is to define a suitable formal model
for collaboration with expedient insiders. To this end, we
adapted the group-centric model due to its potential to exploit
many essential features in this collaboration. For instance, a
group enables selective information sharing with expedient
insiders on need-to-know basis. A collaboration group can
conveniently determine a place for expedient insiders in the
organization without disrupting the main organizational struc-
ture. In this paper, we have also proposed an authorization
model which consists of separate administrative and opera-
tional components.

In the future, we are interested to develop a model for group-
centric multi-organizational collaboration where in a group
every organization’s structure might merge in a certain point
and members from those organizations, as well as, expedient
insiders get proper privileges. Participating organizations may
have different structures, therefore, it is a challenge to find a
proper supporting framework for such group that is flexible
enough to manage members and objects from different orga-
nizations.

ACKNOWLEDGMENT

This work is partially supported by grants from AFOSR
MURI, the State of Texas ETF and NSF.

REFERENCES

[1] F. Cuppens, N. Cuppens-Boulahia, and C. Coma. O2O: Virtual private
organizations to manage security policy interoperability. In Information
Systems Security, volume 4332, pages 101–115. Springer, 2006.

[2] R. Krishnan, J. Niu, R. Sandhu, and W. H. Winsborough. Group-centric
secure information-sharing models for isolated groups. TISSEC, 14, 2011.

[3] R. Krishnan, R. Sandhu, J. Niu, and W. Winsborough. Towards a
framework for group-centric secure collaboration. In CollaborateCom,
2009.

[4] R. Krishnan, R. Sandhu, J. Niu, and W. H. Winsborough. Foundations
for group-centric secure information sharing models. In SACMAT, 2009.

[5] J. Park and R. Sandhu. The UCONABC usage control model. ACM
Trans. on Information and Systems Security, 7:128–174, 2004.

[6] C. E. Phillips, T. C. Ting, and S. A. Demurjian. Information sharing and
security in dynamic coalitions. In SACMAT, 2002.

[7] R. S. Sandhu. Lattice-based access control models. IEEE Computer,
26:9–19, 1993.

[8] J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for
facilitating automatic resource sharing among ad-hoc dynamic coalitions.
In DBSec, 2005.


