A Role-Based Administration Model for Attributes

Xin Jin
Institute for Cyber Security
Dept of Computer Science
Univ of Texas at San Antonio
San Antonio, TX, USA
xjin@cs.utsa.edu

Ram Krishnan
Institute for Cyber Security
Dept of Electrical and
Computer Engineering
Univ of Texas at San Antonio
San Antonio, TX, USA

Ravi Sandhu
Institute for Cyber Security
Dept of Computer Science

Univ of Texas at San Antonio
San Antonio, TX, USA
ravi.sandhu@utsa.edu

ram.krishnan@utsa.edu

ABSTRACT

Attribute based access control (ABAC) provides flexibility
and scalability for securely managing access to resources,
particularly in distributed environments. In ABAC, access
requests are authorized through policies evaluated with re-
spect to attributes of various entities such as users, subjects,
objects, context, etc. Administration of user attributes is
one of the major issues in ABAC. However, there has been
little research in this area. This paper proposes a frame-
work to administer user attributes using role based access
control (RBAC). Our motivation is that RBAC has demon-
strated advantages in ease of administration and is widely
deployed in the industry. Thus, an appealing possibility is to
use RBAC to manage user attributes. In this paper we pro-
pose a generalized version of the user role assignment model
in the ARBAC97 administrative role based access control
model. The generalized version treats role as just one pos-
sible attribute of the user. The paper explores the model’s
advantages and limitations and provides guidance for future
development of more comprehensive user attribute adminis-
trative models.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection—
Access controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
Security

Keywords

Attributes, Administration, Access Control

1. INTRODUCTION

Attribute based access control (ABAC) has been proposed
to provide flexible and scalable access control in distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SRAS ’12, September 19, Minneapolis, MN, USA

Copyright 2012 ACM 978-1-4503-1777-1 /12/09 ... $15.00.

systems and overcome the shortcomings of classical access
control models such as discretionary access control (DAC)
[10], mandatory access control (MAC) [7] and role based ac-
cess control (RBAC) [9]. Access requests in such models are
generally evaluated against policies which are composed of
attributes of involved entities such as requesters, resources
and so on. User attributes refer to properties of users in the
access control context. Examples are user id, security clear-
ance, etc. User attributes, thus, are crucial factors which
restrict the permissions on resources available to the users.
Considerable papers have been published towards bringing
a consensus on ABAC models and systems [1] [2] [5] [11].
However, much effort has been devoted to issues regarding
request evaluation and policy specification. This effort is
based on the assumption that all users are associated with
sets of user attributes with assigned values. Issues such as
who is authorized to assign user attributes and what is the
range of values he or she is allowed to assign remain unclear.
The assignment and modification of user attributes, which
are important aspect of ABAC, has not received sufficient
attention. Currently there is no widely accepted set of in-
formal requirements, let alone formal models, for supporting
administration of user attributes. An initial informal state-
ment of user attribute administration appears in role based
trust management [4] where owners of their roles are the
only entities who can manager the roles.

Our central contribution in this paper is to study ad-
ministrative issues of user attribute management in ABAC.
For this purpose, we use the well-known administrative role
based access control model (ARBAC97) [6] [8] which to our
knowledge has not been previously applied in this domain.
Our motivation for choosing ARBAC97 includes its ease of
administration and sizable literature. Our principle finding
is that ARBAC97, with proper generalization, is suitable in
large measure to address user attribute assignment adminis-
tration. In particular, we generalize the user role assignment
model (URA) which is part of ARBAC97 since role is just
one type of user attribute, this generalization is straight for-
ward yet efficient. We also discuss the limitations of using
ARBAC97 revealed by this work and provide insights on
future work in the development of a more comprehensive
administrative model for ABAC.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the previously published administrative role
based access control model and related work. Section 3 de-
velops formal URA-based administrative models for user at-
tribute assignment. Section 4 discusses the limitations of
the proposed approach and section 5 concludes the paper.

2. BACKGROUND

In role based access control model (RBAC) [9], permis-
sions are associated with roles and users are made members
of roles, thereby acquiring the role’s permissions. RBAC
simplifies administration of authorization. Administrative
role based access control (ARBAC97) [6] is designed for user-
role assignment, role-permission assignment and role hierar-
chy specification in RBAC. In this paper, we deal with user
attribute assignment, and hence discuss the use of user-role
assignment (URA) which is part of ARBAC97. The URA97
model is defined in two steps: granting a user membership in
arole and revoking a user’s membership. The goal of URA97
is to impose restrictions on which users can be added to a
role by whom, as well as to clearly separate the ability to
add and remove users from other operations on the role. The
notion of prerequisite condition is a key part of URA97. All
examples included in the following are according to figure 1
adapted from [6].

Director (DIR

Project lead 1 (PL1) Project lead 2 (PL2)

Production Quality Production Quality
Engineer 1 (PE1 Engineer 1 (QE1)/) \Engineer 2 (PE2 Engineer 2 (QE2

Engineer 1 (E1) Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

(a) Roles

Senior Security Officer (SSO)

(Department Security Officer (SSO))

(Project Security Officer 1 (PSO1)) (Project Security Officer 2 (PSO2))

(b) Administrative Roles

Figure 1: Example Role and Administrative Role Hierarchies

2.1 The URA97 Grant Model

User-role assignment is authorized by means of the follow-
ing relation .

can_assign C AR x CR x 2" (1)

The meaning of can_assign(ar, x, {a, b, c}) is that a member
of the administrative role x (or a member of an administra-
tive role that is senior to x) can assign a user whose current
membership, or nonmembership, in regular roles satisfies the
prerequisite condition y to be a member of regular roles a,
b, or c. In relation (1), AR stands for specific administrative
roles such as Project Security Officer 1 (PSO1). CR is a pre-
requisite condition which is a boolean expression using the
usual V and A operators on terms of the form x and X where
x is a regular role. A prerequisite condition is evaluated for
a user u by interpreting x to be true if (Ix" > x)(u, x') €
URA and T to be true if (¥x' > x)(u, x') ¢ URA, where
URA is the user-role assignment relation of RBAC. For a

Table 1: Role Range Notation

xyl={reR |r > x Ay >r1} [xy)={r€R | r > x Ay > 1}

(xy]={reR |r>x Ay >r1} (x,y)={reR |[r > x Ay >}

Table 2: can_assign with Prerequisite Roles

Admin. Role Prereq. Condition Role Range
PSO1 ED [PLI, E1]

PSO1 ED A QE1 [PE1, PE1]
PSO1 ED A PE1 [QE1, QEI]

given set of roles R, we let CR denote all possible prerequi-
site conditions that can be formed using the roles in R. 2%
represents the roles which can be assigned to the users who
satisfy the prerequisite condition. In this paper, the role sets
are specified using the range notation given in table 1.

Examples are shown in table 2. The first tuple authorizes
PSO1 role (and its seniors) to assign users with prerequisite
role ED into roles {E1, QE1, PE1l, PL1}. The second tu-
ple authorizes PSO1 role to assign users with prerequisite
condition ED A QE1 to PE1. The third tuple authorizes
PSO1 to assign users with prerequisite condition ED A PE1
to QE1. The second and third together authorize PSO1 to
put a user who is a member of ED into one but not both of
PE1 and QE1.

2.2 The URA97 Revoke Model

In URA, the role assignment and revoke permissions are
authorized separately. The URA97 model controls user-role
revocation by means of the following relation.

can_revoke C AR x 27 (2)

In relation (2), the meaning of can_revoke(x, Y) is that a
member of the administrative role z (or a member of an ad-
ministrative role senior to x) can revoke membership of a
user from any regular role y € Y. Y is also specified using
range notation. Examples are shown in table 3. The first
tuple authorizes PSO1 to revoke membership from the roles
{E1, PE1, QE1} (represented by the role range notation).
Suppose Alice is member of PSO1 and Bob is member of
PE1. Then Alice is authorized to remove Bob’s member-
ship of PE1. The second tuple authorizes PSO2 to remove
membership from the roles {E2, PE2, QE2}.

2.3 User Attribute Definition

We follow the formal definition of user attributes in [2] as
follows.

e UA is a finite set of user attribute functions.

e V ua € UA, Range(ua) specifies the range of each at-
tribute as a finite set of atomic values.

e attType : UA — {set, atomic}.

e YV ua € UA, ua: U — Range(ua) if attType(ua) =
atomic, and ua : U — 2828 jf 44t Type(ua) = set.

Each user is associated with a finite set of user attribute
functions. Attribute ranges are represented as a finite set
of atomic values. For example, range(role) = {manager,

Table 3: Examples of can_revoke

Aadmin. Role Role Range
PSO1 EI, PLI)
PSO2 E2, PL2)

employee, prjleader}, where role is a user attribute. Each
attribute is either set-valued or atomic-valued with respect
to its range. Atomic-valued means that users are assigned
exactly one value from the attribute’s range. Set-valued
attributes are assigned a subset of the attribute’s range. For
example, users are allowed to be assigned more than one role
in a company such as role(Alice) = {manager, prjleader}.
However, users are allowed to be assigned only one value for
salary, e.g. salary(Alice) = 2000.

2.4 Other Related Work

Role based trust management (RT) [4] is a family of role-
based trust management languages. An RT role enables its
members to access specific resources assigned to that role.
Each role is owned by an entity and the assignment of users
to that role is under complete control of the entity. For
example, ACM.Member role is administrated only by the
entity ACM. Automated trust negotiation [12] reveals user
information to the server through processes of negotiation
when server and user gradually expose attributes as mutual
trusts are established. This framework is based on the as-
sumption that users are already associated with attributes
and values are pre-assigned.

3. GENERALIZED URA MODEL (GURA)

We first give an overview of the proposed generalized URA
(GURA) model and then present the formal model illus-
trated through examples. In addition, we discuss the ad-
vantages and limitations of the new model.

3.1 Model Overview

The main purpose of the model is to offer a means to spec-
ify the permissions for each administrative role in managing
user attributes. The permissions include:

e Assign values to a specific user attribute of a spe-
cific set of users. The assignment of set-valued at-
tributes only adds the value to the original user at-
tributes while the assignment to atomic-valued user
attributes automatically removes the old value and as-
signs the new value. For example, a user with senior-
manager role is allowed to set the role of each em-
ployee to values such as {groupmanager, projectman-
ager, prjlleader}. However each employee can only be
assigned one position. Thus, if role seniormanager pro-
motes an employee from role prjlleader to role group-
manager, he must also have the permission to remove
role prjlleader from that employee;

e Delete values from a specific set-valued user attribute
of a specific set of users. For example, role project-
manager is authorized to add employees to any project
among {projl, proj2, proj3}. However, role project-
manager is not authorized to remove employees from
those projects, only corresponding project leaders are
authorized to do so.

This model is designed by generalizing role as an attribute
in the URA97 model in ARBAC97. For this purpose, we
first need to distinguish the difference between role and a
general attribute (for simplicity, the term attributes referred
to in this paper represents user attribute). As introduced
in [2], attributes are functions which take a user as input
and return a specific value. We summarize the difference as
follows.

e Unlike roles, attributes are not assigned with permis-
sions directly while roles are associated with permis-
sions. For example, the name and address of users only
represents certain properties and are not associated
with permissions unless certain authorization policies
depend on those two attributes.

e Unlike role hierarchy, an attribute’s range is not re-
quired to be ordered. For example, a location attribute
of each employee in a company does not reflect a hi-
erarchy. Note that partial ordering of a user attribute
value may not result in permission inheritance. In
RBAC, if manager is a senior role of an employee role,
then manager gains all permissions from employee and
this relationship can be represented using manager >
employee. While in user salary attribute, there may
be a relationship such as 2000 > 1500. However, this
relationship does not imply the inheritance of permis-
sions. That is, a user with salary 2000 need not get
higher privileges than the one with salary 1500.

Similar to URA97, there are relationships between the ad-
ministration range of administrative roles and the semantic
meanings of the roles. Its obvious that these relationships
play as important constraints on the user permissions. In
RBAC, human resource manager is authorized to assign a
regular user an employee role and similarly in ABAC, only
the administrator in computer science department is autho-
rized to assign department attribute for each user and the
value can only be assigned as ComputerScience. Thus, the
model offers mechanisms to specify fine-grained permissions
for each administrative role. The decision regarding which
user attribute to be assigned to which administrative role
depends on specific system design and should follow certain
principles:

e The attribute should be related to the semantic of ad-
ministrative role. For example, manager of projectl
can only add or remove prjl from employee’s attribute
of involvedproj and any attempt to remove prj2 from
the user attribute by this role is not allowed.

e Since administrative roles may be hierarchical, senior
administrative roles get the permissions on junior ad-
ministrative roles. Thus, the permissions assignment
should not cause duplications or conflicts.

In summary, the new model will be able to specify the
following elements in permissions to be assigned to adminis-
trative roles: (1) the prerequisite conditions specified using
user attributes to identify the set of users the permissions
apply to; (2) the user attribute function name whose value
can be modified in this permission; (3) the allowed value to
be assigned.

3.2 Formal Model
3.2.1 Generalized URA Model 0 (GURA)

In this administrative system for user attributes, the gen-
eralized URA model (GURAy) is composed of three rela-
tions: adding set-valued user attribute, deleting set-valued
user attribute and assigning atomic-valued user attribute.
Each of them can be specified by system architects through
definitions 1-3 as follows.

Definition 1. Adding set-valued user attribute is controlled
by means of the relation:

Vsua € SUA.can_addsyea € AR x EXPR(sua) X gRtange(sua)
(3)

The meaning of can_add(ar, Exp(sua), AllowedRange)
is that users who are members of the role ar or senior roles
of ar are authorized to add any element in AllowedRange
to the sua attribute of users whose sua satisfies conditions
specified in Exp(sua). AR represents the set of existing ad-
ministrative roles. SUA is a set representing all set-valued
user attributes. EXPR(sua) represents all possible logic
expressions composed of the specific user attribute func-
tion sua and constant symbols in context. Each expression
should return true or false. For example, Exp(involvedprj)
could be prjl € involvedprj(u) A prj2 ¢ involvedprj(u). The
syntax for specifying these expressions is defined in this pa-
per. We first define a common expression language (CEL)
as follows:

pr=eApleVel(p)|-plIxesetyp|
V x € set.p | set setcompare set | atomic € set |
atomic ¢ set | atomic atomiccompare atomic
atomiccompare = < | = | < | #
setcompare == C | C | ¢

This CEL is further specified for each of the languages we
need to define below and set and atomic are terminals that
need to be specified for each specific instance of CEL. In
this relation, the EXPR(sua) is specified using an instance
of CEL where set and atomic are defined as follows:

set ::= sua(u) | constantSet
atomic ::= constantAtomic

sua is the specific user attribute in the can_assign re-
lation. NULL is included in all EXPR(sua) (also for the
following definitions). If NULL is specified as Exp(sua) in a
specific can_assign command, it means that the can_assign
relation is applicable to all existing users. AllowedRange
specifies the values which can be added to the current value
of user attributes and it should be in accordance with the
range of the user attribute in the context. For example, Al-
lowedRange = {prjl, prj2}. To express the second line in
table 2, the relation for attribute role is: can_add(PSO1, ED
€ role(u) A QE1 ¢ role(u), {PE1}), where role is one of the
set-valued user attributes and the permission is assigned to
role PSO1. More examples are given in table 4.

Definition 2. Deleting set-valued user attribute is con-
trolled by means of the relation:

Vsua € SUA.can_deletesyes C ARXEX PR(sua) x gRtange(sua)
(4)

This is similar to definition 1. The meaning of can_delete(ar,
Ezxp(sua), AllowedRange) is that users who are members
of ar or senior roles of ar are authorized to delete values
in AllowedRange from the attribute sua of users whose
sua satisfies conditions specified in Exp(sua). To specify
the second line in table 3, the relation for attribute role
is: can_delete(PSO2, role(u) C 2{F2PE2QE2} " rpo pEo,
QE2}). Note that if the administrative role attempts to
delete values which do not belong to the user, this operation
has no effect.

We define the following relation for atomic-valued user
attribute assignment and deletion.

Definition 3. Assigning atomic-valued user attribute is con-
trolled by means of the relation:

Vaua € AUA.can_assigneue € ARXEX PR(aua) x gRtange(aua)
(5)

The meaning of can_assign(ar, Exp(aua), AllowedRange)
is that users who are members of ar or senior roles of ar are
authorized to assign the aua attribute of users which satis-
fies conditions specified in Exp(aua). AUA is the set of all
atomic user attributes. EXPR(aua) denotes all possible ex-
pressions composed of aua using the instance of CEL where
set and atomic are formally defined as follows:

set ::= constantSet
atomic ::= aua(u) | constantAtomic

aua is the specific user attribute in can_assign relations.
Note that this relation will automatically remove the current
value. Since we are dealing with atomic-valued attributes
here, there is no notion of can_remove. For example, senior-
Manager is a role who is authorized to set the salary of users
whose salary is higher than 2000 to be 6000, 7000 or 8000. It
is specified as can_assign(seniorManager, salary(u) > 2000,
{6000, 7000, 8000}) for attribute salary. This relation will
give the permission to seniorManager to assign a value for
the salary attribute and thereby the permission to update
the old value. If the seniorManager needs to set the salary
of a user to NULL, this can be achieved by setting NULL as
one of the allowed values.

Let’s further understand the above definitions through a
detailed example. Consider this scenario: each employee in
company A is associated with attributes involvedprj, salary
and group. Attribute involvedprj is a set-valued attribute re-
turning the list of projects the user participates in. Attribute
salary is an atomic-valued attribute returning the salary of
the employee. Attribute group is a set-valued attribute re-
turning the groups the user joins. Role prjmanager is a
senior role of prjlleader and prj2leader. Role prjlleader is
authorized to add employees to projectl only if the employee
is not involved in project2 and add users to any groups. Role
prj2leader is authorized to add employees to project2 only
if the employee is not involved in projectl and add users
to any groups. Both roles can remove employees from their
projects. Role prjmanager can add any employee to prjl or
prj2 but not both. Role prjmanager can assign salary of any
employee to {3000, 4000, 6000, 8000}. To satisfy the re-
quirements, the permissions assigned to each administrative
role are specified in table 4. Note that role prjmanager will
inherit permissions from role prjlleader and role prj2leader.

Table 4: Examples

Table 5: Examples

can_add relation for attribute tnvolvedpry:
(prjlleader, prj2 ¢ involvedprj(u), {prjl})
(prj2leader, prjl ¢ involvedprj(u), {prj2})

can_add relation for attribute group:
(prjlleader, NULL, {groupl, group2, group3})
(prj2leader, NULL, {groupl, group2, group3})

can_delete relation for attribute involvedprj:
(prjlleader, prjl € involvedprj(u), {prjl})
(prj2leader, prj2 € involvedprj(u), {prj2})

can_delete relation for attribute group:
(prjlleader, NULL, {groupl, group2, group3})
(prj2leader, NULL, {groupl, group2, group3})

can_assign relation for attribute salary:
(prjmanager, NULL, {3000, 4000, 6000, 8000})

3.2.2 Generalized URA Model I (GURA,)

There are limitations to the above definitions. We notice
that the precondition is purely based on the user attribute
which is to be modified. In the above example, prjleader
may not be allowed to add employees who did not pass the
technical training in the company. The precondition here
is beyond the expressive power of GURA(. To further gen-
eralize the relation, we can extend the precondition to be
composed of all user attribute functions. Thus we define
GURA 1 model which is composed of definitions 4-6.

Definition 4. Adding set-valued user attribute is controlled
by means of relation:

Vsua € SUA.can_addsye € AR X EXPR(UA) x gRange(sua)
(6)

In the above set, EXPR(UA) represents all possible boolean
expressions composed of all user attributes. One example
of Exp(UA) is prjl ¢ involvedprj(u) A trainingpassed(u) =
true. The language used for specifying the expression is an
instance of CEL where set and atomic is defined as follows:

set ::= allsetua(u) | constantSet

atomic ::= allatomicua(u) | constantAtomic

allsetua ::= {setua | setua € UA A attType(setua) = set}

allatomicua ::= {atomicua | atomicua € UA A
attType(atomicua) = set}

In this language, allsetua and allatomicua means all set-
valued user attribute and atomic-valued user attributes. Thus,
the expression can be more fine-grained and smaller sets of
eligible users can be specified for each permission. With the
new definition, the range of each administrative role can be
further restricted. Similarly, we give the definition of the
remaining two sets for completeness.

Definition 5. Deleting Set-valued user attribute is con-
trolled by means of the relation:

Vsua € SUA.can_deletesyas C ARXEXPR(UA)X gRtange(sua)
(7)

can_add relation for attribute involvedpry:
(prjlleader, prj2 ¢ involvedprj(u) A trainingpassed(u) =
true A clearance(u) > S A C € skills(u), {prjl})

)
(prj2leader, prjl ¢ involvedprj(u) A trainingpassed(u) =
true A clearance(u) > S A C € skills(u), {prj2})

can_add relation for attribute skill:
(secretary, NULL, {C ,C++, Java})

can_delete relation for attribute involvedprj:
(prjlleader, prjl € involvedprj(u), {prjl})
(prj2leader, prj2 € involvedprj(u), {prj2})

can_delete relation for attribute skill:
(secretary, NULL, {C, C++, Java})

can_assign relation for attribute trainingpassed:
(trainingmanager, NULL, {true, false})

can_assign relation for attribute clearance:
(humanmanager, NULL, {TS, S, C, U})

Definition 6. Assigning atomic-valued user attribute is con-
trolled by means of the relation:

Vaua € AUA.can_assignaua C ARXEXPR(UA)XQRange(a“a)
(8)

EXPR(UA) used in definitions 5-6 are specified using the
same language as definition 4. To illustrate the purpose of
the above extension, we give the following example. Con-
sider this scenario: UA = {involvedprj, trainingpassed, clear-
ance, skills}. Attribute involvedprj returns the involved
projects for each employee, trainingpassed represents whether
the employee has passed the training. Attribute clearance
represents the security level assigned to each user and at-
tribute skills returns the programming skills of each em-
ployee. Attribute trainingpassed and clearance are atomic-
valued attributes and others are set-valued. Role prjlleader
is a role that can assign employees to role projectl if (1)
the employee is not assigned to project2 and; (2) the em-
ployee has passed the training and; (3) the employee is as-
signed a higher security clearance than secret (S) and (4)
the employee must be familiar with C programming. Role
prj2leader is a role that can assign employee to role project2
and the conditions are the same as above except the em-
ployee should not be involved in projectl. Other user at-
tributes are managed by corresponding roles. Role train-
ingmanager is authorized to set trainingpassed attribute of
each employee to be true or false. Role humanmanager is a
role in human resource and is authorized to assign the clear-
ance of each employee to be one of the following: top secret
(TS), Secret (S), Classified (C) and Unclassified (UC). Each
level represents different permissions for accessing sensitive
documents in the company. Role secretary is a role that can
enter employees’ information into the system and thus be
able to set the skills attribute of each employee by scanning
their resumes. The solution is specified in table 5.

Suppose we have the following users with corresponding
attributes in table 6. Combined with the policy specified in
table 5, we can see that both prjlleader and prjlleader can
only assign {Alice, Charlie, Dan} to their projects. However,
according to the policy in table 4, both roles are authorized

Table 6: Example User Attributes

User involved training clearance skills

-prj -passed
Alice 0 true TS C++, Java}
Bob prj3 false TS C++, C, Java}
Charlie {prj3 true TS C}
Dan true TS C++, Java
Eve prjl true UC C++, Java
Fred prj2 true UuC C, Java}

to assign all users to their projects. We can see that GURAg
provides mechanism to assign permissions to administrative
roles and provide least privileges considering only single at-
tribute while GURA(provides more expressive power.

4. DISCUSSION

We have incrementally developed a series of URA-based
formal models for user attribute administration. The main
approach is to define the administrative range of each ad-
ministrative role and then assign those roles to users. In this
work we have discovered some advantages and limitations of
the role based approach as described in the subsection be-
low.

Since we leveraged RBAC for user attribute administra-
tion, its advantages are inherited. Once the administrative
permissions for each administrative role is specified, it is
convenient to assign and de-assign users from administra-
tive role without modification of role-permission assignment.
The precondition can be used to accurately specify the ad-
ministration range of each role. In these models, least priv-
ilege can be achieved. Each role is assigned the least per-
missions required. There are a number of limitations. It
is cumbersome to express distributed policies such as: each
user who works for more than two years can update level at-
tribute of employees who have not passed qualification test
to be qualified. In order to specify the policy, an admin-
istrative role need to be specified for each regular user and
they themselves need to be assigned to the corresponding ad-
ministrative role. The complexity of this operation is O(n)
(suppose there are n existing users). In order to achieve
fine-grained administration, large number of roles may need
to be specified. For example, an administrative role pro-
jectleader need to be defined for different projects because
different project leaders can assign the attribute of different
sets of users. While the number of projects in large company
could be hundreds of thousand.

5. CONCLUSION AND FUTURE WORK
This paper presents a GURA framework which applies

RBAC to manage user-attribute assignment in attribute based

access control. The main approach is to follow the URA97
model and generalize role as a general user attribute while
distinguishing them from each other. Through this work, we
are able to show that the generalized framework is capable
of specifying a wide variety of policies and the advantages of
role based access control are inherited. In future work, we
plan to propose more advanced models. For instance, inte-
grating attributes into role as administrative model to im-
prove scalability [3]. Another interesting extension is that
administration permissions are allowed to be delegated in
controlled manner for distributed administration.

Acknowledgment

The authors are partially supported by grants from AFOSR
MURI and the State of Texas Emerging Technology Fund.

6. REFERENCES

[1] Sushil Jajodia, P. Samarati, Maria Luisa Sapino, and
V. S. Subrahmanian. Flexible support for multiple
access control policies. ACM Trans. Database Syst.,
2001.

[2] Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified
Attribute-Based Access Control Model Covering DAC,
MAC and RBAC. In DBSec, 2012.

[3] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC:
Role-Centric Attribute-Based Access Control. In
MMM-ACNS, 2012.

[4] Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based trust
management framework. In 2002 IEEE S& P.

[5] Jaehong Park and Ravi Sandhu. The UCONabc usage
control model. ACM Trans. Inf. Syst. Secur., 2004.

[6] Ravi Sandhu, Venkata Bhamidipati, and Qamar
Munawer. The arbac97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur.,
1999.

[7] Ravi S. Sandhu. Lattice-based access control models.
IEEE Computer, 1993.

[8] Ravi S. Sandhu and Venkata Bhamidipati. The ura97
model for role-based user-role assignment. In DBSec,
pages 262-275, 1997.

[9] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,

and Charles E. Youman. Role-based access control

models. IEEE Computer, 29(2):38-47, 1996.

Ravi S. Sandhu and P. Samarati. Access control:

Principles and practice. IEEE Com. Mag., 1994.

Lingyu Wang, Duminda Wijesekera, and Sushil

Jajodia. A logic-based framework for attribute based

access control. In In 2nd ACM Workshop on FMSE,

2004.

Ting Yu, Marianne Winslett, and Kent E. Seamons.

Supporting structured credentials and sensitive

policies through interoperable strategies for automated

trust negotiation. ACM Trans. Inf. Syst. Secur., 2003.

(10]

(11]

(12]

