
Towards Provenance-Based Access Control with Feasible Overhead

Lianshan Sun
College of Electrical and Information Engineering,

Shaanxi University of Science & Technology,
Xi’an, Shaanxi, China. 710021

sunlianshan@gmail.com

Jaehong Park and Ravi Sandhu
Institute for Cyber Security,

University of Texas at San Antonio,
San Antonio, TX, USA. 78249
{jae.park, ravi.sandhu}@utsa.edu

Abstract

Provenance is a directed graph that explains how a da-

ta item became what it is. It is recently proposed to use

provenance to enable the so-called provenance-based access

control (PBAC) in provenance-aware systems. Evaluating a

PBAC policy usually involves one or more queries against

provenance store. However, directly reusing existing prove-

nance query engines in a PBAC enforcement framework

may introduce unacceptable performance overhead because

provenance store might grow to immense size. This paper

argues that feasible performance overhead for evaluating a

PBAC policy must be under a nearly fixed threshold that is

tolerable for users no matter how big the provenance store

is. This paper designs several tactics, in particular a PBAC-

specific tactic–adding shortcuts in a provenance graph, to

partially satisfy this requirement. Finally, we analyze sev-

eral open questions with respect to adopting these tactics.

1 Introduction

Provenance captures the origins and processes by which

a data item became what it is. Provenance is usually used

to verify the trustworthiness and integrity of data item-

s [7] or to enable better interpretation, examination, and

reproduction of steps and results of scientific experiments

in provenance-aware systems. It is recently proposed to

use provenance in access control of provenance-aware sys-

tems to do so-called provenance based access control (P-

BAC) [12]. For example, in a homework grading system,

a student cannot re-submit his/her homework if the home-

work has already been graded.

Provenance differs from traditional data items and meta-

data in that it is an immutable directed graph [2], which

can incrementally grow to immense size at run-time [4]. A

PBAC policy usually includes one or more assertions on

sub-graphs with meaningful provenance semantics as a w-

hole to adjudicate access requests [12]. A PBAC enforce-

ment framework needs to execute one or more queries on

the underlying provenance store to get these subgraphs of

a provenance graph necessary for evaluating a PBAC pol-

icy. An intuitive solution for this requirement is to reuse

existing provenance query engines in a PBAC enforcement

framework. However this solution may introduce high per-

formance overhead when the provenance store grows to im-

mense size.

Nowadays a large amount of data items are being gen-

erated, transmitted, and used by inter-connected software

systems. Considerably larger quantity of provenance of

these data items could be captured, stored, shared, and

queried [4]. The performance overhead of querying a prove-

nance store via existing provenance query languages and

their query engine prototypes, is known to increase very

fast along with the increasing size of the provenance s-

tore [8, 1]. Evaluating a PBAC policy, that usually involves

one or more queries against provenance stores which can

grow to immense size [4], could introduce unacceptable

performance overhead if existing provenance query engines

are directly reused in a PBAC framework without any cus-

tomization or auxiliary support.

With these insights, this paper argues that the feasible

performance overhead of evaluating a PBAC policy must be

under a nearly fixed threshold that is tolerable for users no

matter how big the provenance store is. This paper further

presents several possible tactics that can be taken in building

a PBAC enforcement framework to partially satisfy these

requirements, and discusses the possible challenges of the

adopting these tactics in real settings. This paper is a first

step towards a PBAC framework with feasible performance

overhead.

2 Provenance-Based Access Control

Provenance captures various entities that are involved in

producing a data item, such as artifacts (data objects), ac-

tion processes, and agents (people), as well as the casuality

dependencies among these entities. As shown in Figure 1,

provenance is usually organized as a directed graph with n-

978-1-4799-3197-2/14/$31.00 ©2014 IEEE

odes for entities and edges for dependencies. Note that we

assume that a data object is never overwritten or updated

in place. Any modification to a data object will create a

uniquely new instance of it in a provenance graph. Each di-

rectional edge denotes that the tail node is partly caused by

the head node or, to put in another way, the head is part of

provenance of the tail.

Figure 1. An example of a provenance
graph [11].

For example, Figure 1 records the provenance of a home-

work in an online course management system. A student s1
submitted a homework hwv1. Later a team member s2 re-

vised the submitted homework to get hwv2. Finally a pro-

fessor p1 graded hwv2 and produced a graded homework

hwv3. Note that a path with multiple edges may also carry

some provenance semantics among entities [12]. In Figure

1, the path from hwv3 to s1 indicates that hwv3 was o-

riginally authored by student s1 and we name this path as

“AuthoredBy(hwv3, s1)” for later use.

Traditional access control protection on data objects are

usually provided through predefined constructs, such as

roles in Role-Based Access Control (RBAC). PBAC pro-

vides access control protection on data objects by using the

casuality dependencies among the requested data objects

and its predecessors [12].

Figure 2. The basic PBAC model (simplified
from [12]).

Figure 2 shows the basic model of PBAC, which is

briefly illustrated as follows.

Acting users (AU) represent human beings who initiate

requests for actions with respect to objects.

Actions (A) are actually action types that can be initiated

by users as action instances against objects.

Objects (O) are resources that are accessed by users.

A request (au,a,o) consists of an acting user, an action

instance, and a set of objects to be accessed.

Provenance data (PD) stores information about the per-

formed actions and includes provenance graphs which start

from current entities in the system.

Dependency List (DL) includes pairs of abstracted de-

pendency names (DN) and corresponding dependency path

patterns (DPATH). A dependency name is the short name

for a DPATH that defines the pattern of similar provenance

dependencies among entities by regular expression using

the edge labels (types) and wildcards. For example, if the

homework can be revised multiple times by different team

members, the path AuthoredBy(hwv3, s1) may have var-

ious forms in different situations. By using wildcards, the

dependency path pattern named AuthoredBy can be de-

fined as follows:

AuthoredBy := (g(grade) · u)? · (g(revise) · u) ∗ ·g(submit) · c,
where “?” means 0 or 1, “*” means 0 or more and “·” con-

catenates two adjacent edges. A dependency name can be

seen as a pre-defined question that can be applied to mul-

tiple data objects of same type to compute their predeces-

sors. In Figure 1, both s1 ∈ AuthoredBy(hwv3) and

s1 ∈ AuthoredBy(hwv2) are true.

Policies (P) include a set of rules that need to be evalu-

ated for either user authorization or action validation. Each

rule may include one or more dependency names as a short

reference to pre-defined provenance questions about a start-

ing node v, which is either the subject or one of the objects

in a request. For example, a PBAC policy that “a user can

publish the graded homework if she/he is the author of the

homework” is expressed as follows

allow(u, publish, o)⇒ u ∈ AuthoredBy(o) ∧ |GradedBy(o)| > 0,

where GradedBy is a dependency name for the provenance

question “who graded a homework”.

Access Evaluation function evaluates a request against

policies and returns a boolean value. Note that PBAC

framework needs to evaluate the policies by querying the

provenance data one or more times. The existing prove-

nance query engines utilizing regular path expressions on

directed acyclic graphs, such as SPARQL [13], that can be

reused in building PBAC framework, can introduce high

performance overhead when provenance stores are very big.

3 PBAC-Specific Performance Overhead

Modern access control systems usually consist of a set

of policies, a set of policy enforcement points (PEPs), and

one or policy decision points (PDPs) [10]. A PDP is re-

sponsible for evaluating requests from PEPs with respect to

rules in policies [10]. Both PEPs and PDP will unavoid-

ably introduce some performance overhead relative to sys-

tems without access control [3]. Researchers have identified

several sources and corresponding solutions of performance

overhead of traditional access control [6, 5, 9].

However, traditional access control, such as RBAC, on-

ly needs to query the finite set of roles when evaluating a

role-based policy. In contrast, PBAC needs to query the

provenance store, which will continuously grow along as

the system runs and could become extremely big. For ex-

ample, Chapman et al show that an online protein interac-

tion database named MiMI is 270 MB, but its provenance

store can be accumulated up to 6GB [4]. Furthermore, it

has been widely recognized that the overhead of querying

a provenance store will grow as the provenance store gets

bigger [8, 1]. From these observations, we can extrapolate

that the provenance store used in PBAC to evaluate policies

might grow to immense size and the performance overhead

of PBAC will become intolerable. Note that this perfor-

mance issue is specific to PBAC because traditional access

control relied on facts, such as roles, that are finite sets and

the performance overhead of querying these finite sets is

usually low and even negligible.

This paper argues that the feasible performance overhead

of evaluating a PBAC policy must be under a nearly fixed

threshold (or at least be a linear function of the number of

queries in the policy with multiple queries on provenance s-

tores) that is tolerable for users no matter how big the prove-

nance store is. This requirement is illustrated more clearly

in Figure 3, which visually illustrates the desired form of

performance overhead for a feasible PBAC framework.

Figure 3. Desired form of performance over-
head for PBAC.

Figure 3-a) indicates that no matter how big the prove-

nance store is, the performance overhead of PBAC should

not exceed a fixed threshold, which denoted by the horizon-

tal bold line. Note that the threshold can vary from appli-

cation to application, from scenario to scenario. That re-

flects the subjectiveness of the tolerance of users in differ-

ent situations. Next section will present possible tactics for

achieving the fixed threshold in a specific situation. Note

that Figure 3-a) assumes that one policy does not include

large number of queries against provenance store. That as-

sumption usually holds true. However, in some extreme sit-

uations, there might be more than one and possibly many

queries on provenance store issued during evaluation of a

PBAC policy. Figure 3-b) indicates that the performance

overhead of PBAC should be a linear function of the num-

ber of queries in a PBAC policy.

4 Tactics and Open Questions

The issue of minimizing performance overhead of access

control itself is not new to PBAC. There are many issues

that could cause performance overhead of access control,

such as the inefficient storage of both policies and request-

s and the inefficient utilization of computing resources [6].

To address these issues, the tactics of policy numericaliza-

tion, policy normalization [9], and policy refactoring [5],

as well as implementing access control decision engine in

technologies that can better utilize computing resources [6]

have been introduced. Although these tactics are general e-

nough to be employed in PBAC, they are not fully capable

of solving the PBAC-specific performance issue identified

in section 3. We introduce a PBAC-specific tactic for solv-

ing the identified performance issue as follows.

PBAC-specific performance overhead is introduced by

querying provenance store that might grow to immense

size when evaluating PBAC policy. In order to mitigate

the performance overhead, an intuitive idea is to shorten

the time used to query a provenance graph. Each query

on a provenance graph is actually a process of recursive-

ly traversing the provenance graph from one starting node

to its predecessors. The traversal is guided by the depen-

dency path pattern corresponding to a dependency name,

such as AuthoredBy. Obviously, the longer the traversed

path is, the more steps of recursion exist and the higher

the performance overhead will be. To this end, we believe

that the performance overhead of querying a provenance s-

tore according to a dependency name can be mitigated if

the path to be traversed can be shortened. To achieve this

goal, we propose to add “shortcuts” of some long paths

in the provenance graph. For example, Figure 4 includes

an additional “shortcut” for the path “AuthoredBy”. By

this “shortcut”, the time used to traverse the longest path

AuthoredBy(hwv3, s1) could be considerably shortened,

from 6 steps of recursion to 1.

Figure 4. An example of shortcut in prove-
nance graph.

We can theoretically prove that the “shortcut” tactic can

work. Suppose the length (number of edges) of the path to

be traversed is N and each node on the path may have M
direct predecessors that can be categorized into A types in

terms of provenance dependencies. Suppose the traversal

algorithm starts from a starting node v and will be recur-

sively executed N times guided by a given path pattern. Let

T (N) denotes the total performance overhead of the traver-

sal algorithm.

Each recursion queries the direct predecessors of the cur-

rent node. That includes two steps. The first step is to locate

all edges of a target type specified in the given dependency

path pattern, such as ggrade and u. Suppose that all edges

starting from the current node are sorted in terms of their

types so that we can use the binary search to locate the edges

of a target type in O(log2(A)) time. The second step is to

further traverse the graph along K identified edges of the

target type, where K is a number less than M . So we can

assume that the further traversal on the graph will cost less

than M × T (N − 1) time. Let T (0) = 0 denote the end of

the traversal. So the recursive equation of the performance

complexity of a query is:

T (N) = log2(A) +M × T (N − 1)

= log2(A) + log2(A)×M +M2 × T (N − 2)

= ...

= log2(A) + log2(A)×M + log2(A)×M2 + · · ·
+ log2(A)×MN−1 +MN × T (0).

= log2(A)× (1 +M + · · ·+MN−1)

= log2(A)× (MN − 1)

(M − 1)
.

The approximate performance overhead of a query

T (N) = O(log2(A) × MN−1) mainly depends on the

length N of a path and M the width of the graph. By

adding “shortcuts” of long paths into a provenance graph,

N can be maintained as a relatively small number even in a

huge provenance store. In this way, it is possible to achieve

performance goals shown in Figure 3.

Note that several questions need to be further clarified

for successfully adopting the “shortcut” tactic in building a

feasible PBAC framework. For example, when should these

shortcuts be added, at the time of capturing provenance, at

leisure time of the provenance store, or at the time appointed

by provenance store manager? Where should these short-

cuts be stored, in a separate store, in memory as cache, or

in the original provenance store? What is the performance

overhead of adding these shortcuts? Further research need-

s to be done to answer these questions to build a feasible

PBAC framework.

5 Conclusion

This paper identifies a PBAC specific performance issue

caused by querying provenance from the huge provenance

store. This paper explicitly argues that the performance

overhead of a feasible PBAC framework must be under a n-

early fixed threshold, and further presents tactics for partial-

ly satisfying this requirement, especially the PBAC-specific

tactic of adding the shortcut of provenance dependencies

represented by a long path in a provenance graph. We fur-

ther analyze the theoretical possibility and open questions

of meeting the performance requirement by adopting the

PBAC-specific tactic in real settings. This paper is our

first step towards a feasible provenance-based access con-

trol framework.

6 Acknowledgments

This work is partially supported by National Science

Foundation (No. CNS-1111925), National Science Foun-

dation of China (No. 61202019).

References

[1] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher.

Techniques for efficiently querying scientific workflow provenance

graphs. In Proc. of the 13th Int. Conf. on Extending Database Tech-
nology, EDBT ’10, pages 287–298, New York, NY, USA, 2010.

ACM.

[2] Uri Braun, Avraham Shinnar, and Margo Seltzer. Secure provenance.

In The 3rd USENIX Workshop on Hot Topics in Security, pages 1–5,

Berkeley, CA, USA, July 2008. USENIX Association.

[3] B. Butler, B. Jennings, and D. Botvich. An experimental testbed to

predict the performance of XACML policy decision points. In 2011
IFIP/IEEE Int. Symp. on Integrated Network Management, IM’11,

pages 353 –360, may 2011.

[4] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient

provenance storage. In Proc. of the 2008 ACM SIGMOD Int. Conf.
on Management of data, SIGMOD ’08, pages 993–1006, New York,

NY, USA, 2008. ACM.

[5] Donia El Kateb, Tejeddine Mouelhi, Yves Le Traon, JeeHyun H-

wang, and Tao Xie. Refactoring access control policies for perfor-

mance improvement. In Proc. of the third joint WOSP/SIPEW Int.
Conf. on Performance Engineering, ICPE ’12, pages 323–334, New

York, NY, USA, 2012. ACM.

[6] L. Griffin, B. Butler, E. de Leastar, B. Jennings, and D. Botvich.

On the performance of access control policy evaluation. In 2012
IEEE Int. Symp. on Policies for Distributed Systems and Networks,

POLICY’12, pages 25 –32, july 2012.

[7] Ragib Hasan, Radu Sion, and Marianne Winslett. Introducing se-

cure provenance: problems and challenges. In Proc. of the 2007
ACM workshop on Storage security and survivability, StorageSS ’07,

pages 13–18, New York, NY, USA, 2007. ACM.

[8] Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fo-

touhi. OPQL: A first OPM-level query language for scientific work-

flow provenance. In Proc. of the 2011 IEEE Int. Conf. on Services
Computing, SCC ’11, pages 136–143, Washington, DC, USA, 2011.

IEEE Computer Society.

[9] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xengine: a

fast and scalable XACML policy evaluation engine. In Proc. of the
Int. Conf. on Measurement and Modeling of Computer Systems, SIG-

METRICS ’08, pages 265–276, New York, NY, USA, 2008. ACM.

[10] Tim Moses. eXtensible Access Control Markup Language TC v2.0

(XACML), February 2005.

[11] Dang Nguyen, Jayhong Park, and Ravi Sandhu. Dependency path

patterns as the foundation of access control in provenance-aware sys-

tems. In 4th USENIX Workshop on the Theory and Pratice of Prove-
nance, TAPP’12, 2012.

[12] Jayhong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based

access control model. In Tenth Annual Int. Conf. on Privacy, Security
and Trust, PST’12, pages 137–144. IEEE, July 2012.

[13] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language

for RDF. W3C Recommendation, 4:1–106, 2008.

