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Abstract

Recently proposed usage control concept and models ex-
tend traditional access control models with features for con-
temporary distributed computing systems, including con-
tinuous access control in dynamic computing environments
where subject attributes and system states can be changed.
Particularly, this is very useful in specifying security re-
quirements to control the usage of an object after it is re-
leased into a distributed environment, which is regarded as
one of the fundamental security issues in many distributed
systems. However, the enabling technology for usage con-
trol is a challenging problem and the space has not been
fully explored yet. In this paper we identify the general re-
quirements of a trusted usage control enforcement in het-
erogeneous computing environments, and then propose a
general platform architecture and enforcement mechanism
by following these requirements. According to our usage
control requirements, we augment the traditional SELinux
MAC enforcement mechanism by considering subject/object
integrity and environmental information. The result shows
that our framework is effective in practice and can be seen
as a general solution for usage control in distributed and
pervasive computing environments with widely deployed
trusted computing technologies on various computing de-
vices.

1 Introduction

The traditional access control problem [10, 13, 18] is
considered in closed environments, where identities of sub-
jects and objects can be fully authenticated, and enforce-
ment mechanisms are trusted by system administrators
which define access control policies. However, with in-
creasing distributed and decentralized computing systems,
more computing cycles and data are processed on leaf
nodes. This leads to two distinct access control problem
spaces. The first one focuses on the reasoning of autho-
rizations with subject attributes from different authorities.

For example, in trust management [4, 9, 14, 19] systems, a
user presents a set of attributes or credentials and another
subject (e.g., a resource or service provider) can determine
the permissions of the user based on the presented creden-
tials. In this problem, objects are typically protected in a
centralized server. The second problem focuses on continu-
ous access control to an object after it is distributed to other
(decentralized) locations or platforms, which is referred as
the usage control problem proposed by researchers in liter-
atures [15, 21, 22, 27].

Although there is no precise definition in the literature,
the main goal of usage control is to enable continuous ac-
cess control after an object is released to a different control
domain from its owner or provider, especially in highly dis-
tributed and heterogeneous environments. Typically, a us-
age control policy is defined for a target object by its stake-
holder, which specifies the conditions that accesses to the
object on a target platform can be allowed 1. A stakeholder
can be the owner of a target object, or a service provider
that is delegated by the object owner to protect the object.
An object in usage control can be static data, various types
of messages, or user or subject attribute or even a creden-
tial. Thus, this makes the problem pervasive in many dis-
tributed computing applications such as healthcare informa-
tion systems, Web Services, and identity management sys-
tems. Different from other distributed access control prob-
lems such as trust management, in usage control, an object
is located out of the controlling domain of a policy stake-
holder such that (1) there are many aspects of access control
decisions other than subject identities and attributes, and (2)
an object stakeholder needs high assurance on the enforce-
ment of the policy.

As Figure 1 shows, an object and its usage control pol-

1Some literatures present another way of usage control, which focuses
on confining the usage purposes of an object, instead of security sensitive
purposes like integrity and confidentiality. The typical example on this
kind of usage control system is digital rights management (DRM), which
controls a user’s use of an object based on payment information, e.g., play
and copy. However, we do not distinguish usage rights and other security
sensitive rights on an object, thus this kind of usage control is a subset of
the problem in this paper.
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icy are distributed from a data provider to a target platform.
The policy is enforced in the platform to control access to
the object within a trusted subsystem. Typically, an access
control decision is determined according to pre-defined fac-
tors specified in a policy, which, logically, can be defined
based upon the information of the subject and the object
of an access request, where the subject is an active entity
trying to perform actions on the passive entity object. In
closed access control systems such as in a local platform,
policies are defined based upon the identities of subjects
and objects. In traditional distributed access control sys-
tems such as trust management, policies are defined based
on attributes or credentials that are certified by external au-
thorities. However, in usage control, access control policies
can be defined by very general attributes of subjects and
objects, such as application-specific attributes and temporal
status. Furthermore, as an object can be located on plat-
form in a heterogeneous environment such as a mobile de-
vice, environmental restrictions and system conditions are
mandatory decision factors in many applications, such as
location-based service and time-limited access. An ongo-
ing access should be terminated if these environmental or
system conditions change which violate policies. For ex-
ample, a mobile application might require that a service
can be used only if a mobile device is in a particular loca-
tion, which itself is activated by a user through the service
agent deployed on the mobile device. Simply relying on
traditional access control mechanisms on a target platform
cannot satisfy these requirements since the decision factors
(i.e., subject and object attributes) of these approaches are
mostly static and pre-defined and cannot fit a dynamic com-
puting environment.

Usage
Control
Policies

Data/service provider
(usage control policy stakeholder)

Target platform
(usage control enforcement)

Object Object 

Trusted
subsystem

MAC
Policies

Policy

Figure 1. Distributed usage control. A
trusted subsystem in client platform en-
sures the enforcement of usage control
policies.

As usage control is naturally distributed, another chal-
lenge to enforce usage control policies is the trustworthy
of the security enforcement mechanism. Typically, an ac-
cess control decision is made and enforced by a reference
monitor, which has the requirements of being tamper-proof,
always-invoked, and small enough [5, 11] — which is rel-

atively easy to achieve at least in closed systems. Note
that in trust management systems, policy enforcement is
still within the stakeholder’s control domain. However,
as objects or services are deployed to different domains
from their stakeholders, a mandatory requirement for us-
age control is the trustworthy enforcement of security poli-
cies by the reference monitor. Here, through trustworthi-
ness, a stakeholder needs to ensure that (1) all factors for
usage control decisions can be obtained and their informa-
tion (e.g., attribute values or environmental conditions) are
authentic, (2) correct decisions are made based on these fac-
tors, (3) the reference monitor enforces access control deci-
sions correctly, and (4) all accesses to a target object on a
target platform have to go through the reference monitor.
Overall, by a “trusted subsystem” we mean that it is ex-
pected to behave in a “good” manner and this manner can
be verified by the policy stakeholder.

These requirements represent the essential security con-
siderations in many distributed computing environments.
For example, in our ongoing project, a healthcare service
provider (e.g., a hospital) provides healthcare data to autho-
rized service requestors (e.g., a physician). A physician or a
nurse uses a desktop in a clinic to retrieve healthcare data of
a patient from the service provider. To preserve the integrity
and privacy of the healthcare data, the service provider typ-
ically requires that the data released to the client machine
are correctly processed by authorized users only through
the trusted healthcare application, and are not eavesdropped
by any other hidden processes concurrently running on the
client platform and during data transfers. For another ex-
ample, for a data or service provider to deploy their value-
added services on a mobile device, the runtime environment
of the mobile device has to be trusted and satisfy some se-
curity requirements. For example, location-based services
have been widely deployed and a user is allowed to use ser-
vice only within a particular scope of a physical location.

Previous work on usage control focus on high level pol-
icy specifications and conceptual architectures [15, 21, 22,
27], while enabling mechanisms are mainly relied on digi-
tal rights management (DRM) approaches. However, DRM
mechanisms cannot support general attributes and trusted
enforcement in ubiquitous environments. Most importantly,
DRM approaches cannot provide an overall solution for us-
age control in open and general-purpose target platforms,
since they usually rely on software-enabled payment-based
enforcement in relatively closed environments, e.g., through
a media player by connecting to a dedicated license server.
Another intuitive solution is to use cryptography algorithm.
For example, a stakeholder can encrypt a target object such
that it only can be decrypted on a target platform with a par-
ticular application. Fundamentally, this has the same prob-
lems as the DRM approach, since a typical DRM scheme re-
lies on encryption/decryption with a unique key shared be-
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tween a client and content server [1, 2]. Particularly, cryp-
tography alone cannot protect the key during the runtime on
a target platform such as to build a trusted subsystem [20].
For example, malicious software can easily steal a secret by
exploring some vulnerability of the protection system, ei-
ther when the secret is loaded in some memory location, or
when the secret is stored locally.

In this paper we make the first step towards a general
framework for a trusted usage control enforcement in ubiq-
uitous computing environments. We start with an analysis
of the security requirements in the usage control problem.
Within these high level requirements, we identify manda-
tory components to build a trusted subsystem in a general
client platform for usage control policy enforcement. This
subsystem needs a strong protected environment such that
security mechanisms in the client platform should respect
its autonomy. Specifically, this trusted subsystem should
have the final and complete control over its resources (e.g.,
an object downloaded from a remote stakeholder), and the
security mechanisms of the local platform cannot compro-
mise or bypass this control. Also, information flow between
this subsystem and any others on the target platform has
to be controlled, if allowed. For these purposes, we claim
that mandatory access control (MAC) is necessary. Fur-
thermore, to achieve the assurance of policy enforcement
as aforementioned, the integrity of the subsystem has to be
verifiable by the policy stakeholder. Thus, mechanisms like
integrity measurement, storage, and verification are needed
on such a target platform.

As one of the main contributions of this work, we con-
sider the integrity of a subsystem in access control mecha-
nisms. With this, not only traditional subject and object at-
tributes are considered in access control decisions, but also
the integrity of subjects and objects, and any other support-
ing components in a trusted subsystem. The overall goal of
our approach is to build a “virtually closed” and trusted sub-
system for remote usage control policy enforcement. Our
work presented in this paper can be regarded as the en-
forcement model of usage control in PEI security frame-
work [27].

The present paper is organized as follows. Section 2
presents the principles to build distributed usage control
systems. We describe our general platform architecture to
build a trusted subsystem in Section 3. Our prototype sys-
tem is presented in Section 4. Related work is presented in
Section 5. We eventually conclude this paper in Section 6.

2 System Design Principles

In order to enforce usage control in a trustworthy man-
ner, we have identified a set of general design principles.

Requirement 1: Need high assured but usable security
mechanism. Typically in usage control, objects are located

out of the domain of a stakeholder such that high assur-
ance of policy enforcement is desired. However, as usage
control is such pervasive that it can happen in open and
general-purpose platforms, a “usable security” mechanism
is strongly desired to satisfy also the cost-effective objec-
tive. For example, leveraging a local host access control
mechanism to enforce usage control policy is very desirable
if the mechanism can be trusted to do the “right” thing. That
is, the goal of pervasive usage control is not to provide a per-
fect solution for security but just to be “good-enough” [26].

Requirement 2: Need a comprehensive policy model. Tra-
ditional security systems distinguish policy and mech-
anism [17]. However, early policies such as Bell-
LaPadula [7] and Biba [8] are too restrictive for convenient
use within applications. They support simple policies such
as one-way information flow but provide insufficient and
inflexible support for general data and application integrity.
Typically, usage control considers many constraints or con-
ditional restrictions such as time and location as aforemen-
tioned. Traditional policy models cannot support these and
usage control needs a comprehensive policy model to sup-
port the variants of such additional security requirements.

Requirement 3: Need MAC mechanism for trusted subsys-
tem on a target platform. In discretionary access control
(DAC), a root-privileged subject has the capability to violate
the security configuration of the whole system such that the
subsystem can be compromised either by a malicious user
or software (e.g., a virus or Trojan horse). As evidenced by
many security attacks, a virus or worm can obtain the root
permission of a system by exploring some vulnerabilities,
e.g., with buffer-over-flow attacks. Thus, mandatory access
control (MAC) mechanism is needed. For example, with
SELinux, one can label the applications and all resources of
a subsystem with a particular domain and define policies to
control the interactions between this domain and others for
isolation and information flow control purposes.

Requirement 4: Need a policy transformation mechanism
from high level usage control policies to concrete MAC poli-
cies. Typically, a stakeholder’s policy is specified in differ-
ent formats and semantics from those of the MAC policies
on a target platform. For example, a stakeholder can be
implemented as a Web Service, where a security policy is
specified in XACML. This policy has to be transformed to a
concrete policy that is enforced on a target platform, which
follows its local MAC model. Thus, an efficient and conve-
nient policy transformation mechanism is needed such that
security properties are preserved during a transformation,
i.e., the allowable permissions and information flows are the
same in the policies before and after a transformation.

Requirement 5: Need security mechanism on operating sys-
tem (OS) level. There has been long discussion that appli-
cation level security alone cannot provide high assurance of
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a system. For example, many web service based security
protocols such as WS-Security [3] are built on credentials
(public key certificates) between service providers and con-
sumers. However, credential management and private key
protection are critical problems for general-purpose com-
puting platforms. Without OS level security mechanism,
message-based security mechanisms cannot guarantee end-
to-end security – integrity, confidentiality, and privacy can
be compromised on OS level by software-based attacks
(virus, spyware, worms, etc).

Requirement 6: Build trust chain for policy enforcement
from system boot to application execution. The high as-
surance of a subsystem in a remote computing platform
should origin from a root-of-trust, and then is extended to
other system components upon which the policy enforce-
ment mechanism is built. Typically, a MAC mechanism is
implemented in the kernel of the OS on a platform. Thus,
a trusted subsystem should include a trusted kernel while
any other components booted before the kernel, such as the
BIOS and the boot loader also need to be strictly trusted.
To obtain the trust of the MAC mechanism in a subsystem,
any other supporting components should also be trusted,
including policy transformation and management, subject
and object attribute acquisition, and the reference monitor
itself. The fundamental goal of this trust chain is to achieve
a trusted runtime environment for object access where the
integrity of all related parts can be verified by a stakeholder.

Requirement 7: Build trusted subsystem with minimum
trusted computing base. Related to the above requirement,
to build a practical and usable trusted subsystem, a min-
imum trusted computing base (TCB) is desired. A TCB
includes all the components in the trust chain for policy en-
forcement during runtime. A larger number of components
in this chain results in higher costs both on system develop-
ment and verification since each trusted component requires
a detailed verification of the software implementation.

As policy model and formal specifications have been ex-
tensively studied in previous work, in this paper we focus on
the policy enforcement issue of usage control. We propose
a general platform architecture by following these princi-
ples. We have developed a prototype with emerging trusted
computing technologies including a hardware-based root-
of-trust. We leverage the MAC mechanism in SELinux for
policy enforcement. Due to space limit we ignore the policy
transformation mechanism in this paper.

3 Platform Architecture

A trusted subsystem is the foundation to enforce usage
control policies. We define two phases for this purpose.
First, a prerequisite for usage control is secure object and
policy download. This requirement is two-fold. Before

downloading, a stakeholder wants to verify that the request
comes from an authentic subject on a target platform and the
subject does have the permission to obtain an object. After
downloading, the subject needs to verify the integrity and
authenticity of an object and its policy. Secondly, during the
runtime of processing a target object, a trusted subsystem
ensures that usage control policies are enforced implying
that only authorized processes and users can access the data,
and interactions between running processes are controlled
such that correct information flows are preserved. Typi-
cally, authorized accesses from “known good” processes
and users ensure the confidentiality and privacy of protected
objects, and information flow control ensures the integrity
of the data.

3.1 Trusted Subsystem Architecture

Our trusted subsystem includes a root-of-trust, trust
chain, and a policy transformation and enforcement mech-
anism, and also a runtime integrity measurement mecha-
nism. Figure 2 shows our target platform architecture to en-
force usage control policies. The hardware layer includes a
Trusted Platform Module (TPM), a Core Root of Trust Mea-
surement (CRTM), and other devices. The TPM and the
CRTM provide the hardware-based root-of-trust. Similar to
trusted or authenticated boot [6, 12, 25], the booting compo-
nents of the platform, including BIOS, boot loader, and OS
kernel, are measured and their integrity values are stored in
particular Platform Configuration Registers (PCRs) of the
TPM. Specifically, according to the TCG specification [28],
the CRTM is the first component to run when the platform
boots. It measures the integrity of the BIOS before the
BIOS starts, which in turn, measures the boot loader and
hereafter the kernel and kernel modules, recursively. Along
this booting and measurement sequence, particular PCR(s)
are extended with the measured values, and the result is de-
noted as PCRboot. The TPM guarantees that PCRboot is
reset once the platform re-boots.

Upon a user’s request on the target platform, a client ap-
plication (e.g., a healthcare client software) is invoked to
communicate with a data owner/provider to obtain an ob-
ject. At that same time, a policy can be downloaded by
the client application from a stakeholder, which can be the
same as the data provider or different. For example, a data
provider can delegate its policy specifications to a security
service provider, which is the policy stakeholder when an
object is downloaded and processed on a client platform.

When a usage control policy (e.g., an XACML policy
file) is downloaded from its stakeholder, it is transformed
by the policy transformation service to a MAC policy such
that they can be enforced by the reference monitor. The
client application is the target process that can manipulate
the object and is to be protected by MAC policies. Also,
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MAC policies should include rules to control accesses to the
object from other applications and any configurations for
the client application and the overall security system (e.g.,
local security policy management).

Hardware

Kernel

Device Device

MAC
Policies

Integrity
Measurement

Service

Configurations Object

Client Application

Usage Control Policy
(e.g., XACML Policy )

Policy
Transformation

Service

Sensor

Reference
Monitor

Integrity
Verification

Service

TPMCRTM

Figure 2. Platform architecture for usage con-
trol policy enforcement.

As aforementioned, usage control policies typically in-
clude environmental authorization factors such as time and
location. A sensor is the component that reports these en-
vironmental information and thus can be considered by the
reference monitor. For example, in a mobile application
where a service can only be accessed in a particular loca-
tion, the sensor reports the physical (e.g., through a cellular
network provider or GPS) or logical (e.g., through a Wi-Fi
access point) location of the device, such as home, office,
airport, etc.

In the kernel level of the platform, the reference moni-
tor captures an access attempt to the object and queries the
MAC policies before allows the access. A fundamental re-
quirement for the reference monitor is that it has to capture
all kinds of access attempts, from the storage space of the
local file system to the memory space of the object. Also,
the reference monitor controls the interactions between the
client application and others, locally and remotely, and es-
pecially according to the loaded MAC policies.

The integrity measurement service (IMS) is a manda-
tory component in a trusted subsystem, which starts right
after the kernel is booted. The main function of the IMS
is to measure other runtime components which consist of
the TCB to enforce usage control policies. All measured
events and the integrity values are stored in a measurement
list and the corresponding PCRs are extended accordingly.
Particularly:

• The reference monitor is measured after the kernel is
booted.

• The client application, object, and its configurations
are measured right before the client application is in-
voked.

• The integrity of the usage control policy, policy trans-
formation service, and the sensor are measured when
they are invoked and just before their execution.

• MAC policies are measured when they are loaded, ei-
ther, when the platform boots or during runtime (i.e.,
loaded by the policy transformation service).

• Any other applications or services that need to com-
municate or collaborate with the client application are
measured before they are invoked.

In general, in order to only allow accesses to target ob-
jects from authorized applications, and control information
flow between this applications and others, IMS should mea-
sure not only the policy enforcement services such as policy
transformation and platform sensor, but also all other appli-
cations that are allowed to interact with the sensitive client
applications running on the same platform.

As part of the policy enforcement, the integrity verifi-
cation service (IVS) verifies corresponding integrity val-
ues measured by the IMS and generates inputs to the ref-
erence monitor. As a typical example, the client applica-
tion can only access the target object when its “current” in-
tegrity corresponds a known good value, where the current
integrity is the one measured by the IMS.

Note that although we use data objects (e.g., files)
through this paper, our usage control mechanism is applica-
ble to other types of objects such as messages and streams.
The essential requirement for the object is that its authen-
ticity and integrity can be verified after downloaded, such
that, as an input for the application on a client platform, the
initial state of the platform can be trusted.

3.2 Secure Object and Policy Download

Before any access, the target platform obtains the ob-
ject and the XACML policy file from the policy stakeholder
through authentication and attestation protocols. Without
loss of generality, we assume that the access request is gen-
erated by the client application from the target platform (cf.
Figure 2). Policies can be defined in the target platform to
confine that only the dedicated client application (e.g., the
healthcare client software or a mobile service agent) can
generate an access request to the stakeholder.

Upon receiving the request, the stakeholder generates an
attestation challenge to the target platform. An attestation
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agent on the target platform collects a set of integrity val-
ues measured by the IMS, signs them with an attestation
identity key (AIK) of the TPM, and sends them back to the
stakeholder. The integrity included in this response consists
of PCRboot and all mandatory components for the runtime
policy enforcement, including the reference monitor, policy
transformation service, IVS, sensor, and system configura-
tions. After positively verifying these integrity values, the
stakeholder decides that the data can be released, and the
corresponding usage control policy can be generated. The
integrity of the policy to confine which application can gen-
erate access request to the stakeholder can also be measured
and attested.

Note that although we assume each object is associated
with a usage control policy logically, a policy can also be
associated with an application or the type of objects or ser-
vices. For example, the healthcare application aforemen-
tioned can use the same policy for all patient records of a
particular type of diseases.

3.3 Runtime Policy Enforcement

When a usage control policy is received, it is transformed
to local MAC policies on a local platform. The policies
specify the following factors for secure information pro-
cessing during runtime. Firstly, the MAC policies should
confine the users that can initialize applications to access
certain target objects. For example, a patient’s healthcare
information only can be manipulated by a registered nurse,
which is represented by a digital credential. Secondly, MAC
policies should also specify the integrity of the client plat-
form and the target application which allow an object ac-
cess. The integrity information, typically, provides the as-
surance that the object is correctly processed, and there is
no illegal information leakage. Thirdly but not lastly, MAC
policies should consider the environmental restrictions by
which an object can be accessed, e.g., the location of a mo-
bile platform to access a service.

We now explain how these factors are considered in our
trusted subsystem during runtime. With a TPM-enabled
platform, all booting components are measured and their
respective integrities are stored in the TPM, including the
IMS in the kernel. When the kernel boots, the integrity
of our reference monitor and other user space services are
measured. Consider that an object and its usage control
policy has been downloaded by a client platform and their
integrity have been verified after downloading. The usage
control policy is then transformed to a set of MAC policy
rules that can be enforced by the reference monitor. These
MAC rules specify all the security requirements including
user, integrity, and environmental restrictions.

• When a user logins or attempts to access the object by
invoking the client application, the user attributes are

checked by the reference monitor based upon the au-
thentication of the user to the system, for example, the
role and necessary credentials of the user. When the
client application is invoked by the user, it is measured
by IMS before loaded to memory.

• During runtime, if the client application generates ac-
cess requests to the target object, the measured in-
tegrity of the application is evaluated and verified by
the IVS and the result is considered by the reference
monitor.

• The sensor service monitors the environmental infor-
mation of the computing device (e.g., location) and
provides these also to the reference monitor for pol-
icy evaluation when an access happens on the platform
with regarding to the policies. Whenever there is a
change of any information specified in the policies, the
new information is reported by the sensor service thus
invokes the re-evaluating of the ongoing access.

With these mandatory components, we show that a general
usage control policy can be enforced on a target platform
with verifiable trustworthiness.

4 Implementation and Evaluation

4.1 Conditional SELinux Policy

As aforementioned, we have developed a policy trans-
formation mechanism to transfer high level policies, spec-
ified by a stakeholder in XACML format, to low level
policies specified by the MAC policy model inside the
target platform. In our project, we use SELinux as
our reference monitor, and usage control policies are re-
alized via the conditional policies of SELinux. Fig-
ure 3 shows an example policy for a medical applica-
tion. The policy is formed as an SELinux loadable
policy module, where types and allow rules are de-
fined within this module. The permission statement of
medicalApplication t is made conditional on the
basis of application integrity and platform location. The
boolean variable integrity and accessLocation
correspond to those in the constrain expression. The
overall semantics of this policy module is that, if predi-
cate (integrity && accessLocation) is true, the
permissions are allowed by SELinux; otherwise, only
getattr is allowed, e.g., the file can be listed in the di-
rectory but cannot be opened.

Note that the policy in Figure 3 shows only a simple
example of how to integrating integrity information with
read file permission in SELinux. Other permissions, such
as the executing of the medical application or its writing to
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the object during runtime, or the integrity of other compo-
nents in the platform, can be integrated with similar mech-
anism. Typically, the usage control policy defined by its
stakeholder determines these configurations in SELinux.

Figure 3. Example SELinux loadable policy
module with conditional policy.

4.2 Policy Enforcement Architecture

Figure 4.2 shows the overall architecture of our proto-
type. The left part of the diagram is the usual SELinux
access permission check module. On the right part, there
is a set of services running on the user space, including the
policy transformation, integrity verification, and sensors. In
the kernel space, the SELinux filesystem provides interfaces
to allow user space services to set boolean values for con-
ditional policies. When an XACML policy is transformed,
a set of files are created in this filesystem and default val-
ues are set. The boolean values are updated by the user
space services, e.g., with the result of integrity verification
or location change. Whenever there is an access request, the
SELinux security server obtains the current boolean values
(if specified in the policy) and makes a decision.

Client Application

System Calls

Linux DAC Check

LSM Hooks

Access Operations

Allow or deny?

XACML
Policies

Policy
Transformation

SELinux Filesystem

Access
Vector
Cache

Security Server
(Binary Policies and Decision Logic)

SElinux LSM Module

User Space

Kernel Space

Integrity
Verification

Service

Sensor
Service

Figure 4. Usage control platform architecture
via SELinux and conditional policies.

An important feature of SELinux is that an ongoing ac-
cess can be revoked when the security context or related

policies are changed. For example, in SELinux, file access
permission is checked on every read and write to a file, even
when the file has been already opened. With this, if the se-
curity context of the file or the accessing subject changes,
the access is revoked on the next read or write attempt 2.
With this feature, many flexible and dynamic security re-
quirements can be supported, such as runtime integrity ver-
ification and location-based authorizations.

4.2.1 Integrity Measurement

Integrity measurement service is implemented by re-using
some codes from IBM Integrity Measurement Architec-
ture (IMA) [25]. Specifically, we re-use the ima main.c
and drivers/char/tpm.c in IMA. The measure-
ment function is called within the SELinux hook function
file mmap(). Whenever, a new file is loaded into mem-
ory, the file mmap is called for the verification of addi-
tional permissions by SELinux.

An independent configuration file called
/sys/kernel/measure is maintained to indicate
the files that are needed to be protected. Each entry in this
file contains the file name and its absolute path. The mea-
surement function searches the configuration file for the
desired entry – passed as a parameter to file mmap().
If the file passed as a parameter to the file mmap() is
found in /sys/kernel/measure, the same procedure
is followed as done by the IMA for augmenting the hash to
the kernel list. These measurements are then protected by
the TPM.

4.2.2 Integrity and Location verification

The Integrity and location verification is done by two
separate daemons. The integrity verification service
(IVS) daemon is responsible for monitoring the integrity
of all those files listed in /sys/kernel/measure.
Each listed file has a corresponding SELinux boolean
variable which is stored in a corresponding file inside
the SELinux filesystem. For example, in our healthcare
scenario, the file /usr/share/medicalPolicy is
listed in /sys/kernel/measure and the boolean
variable file /selinux/booleans/user share
medicalPolicyIntegrity corresponds to it. The
absolute path of a target file is used for the boolean variable
filename to avoid conflicts between boolean variables
augmented by different loadable policy modules.

The integrity verification service daemon retrieves the
kernel list and the /sys/kernel/measure file period-
ically. More than one entry for an integrity protected file

2However, SELinux does not support access revocation to memory-
mapped objects, e.g., memory-mapped file data and inter-process commu-
nication messages.
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in the measured kernel list designates that the file is com-
promised. Based on the measurement list integrity ver-
ification, this daemon transits the corresponding boolean
variables accordingly. For example, in our scenario, the
IVS sets the usr share medicalPolicyIntegrity
to false if the /usr/share/medicalPolicy has more
than one entry in the kernel list.

Similarly, the sensor daemon monitors the location of the
device, e.g., through the IP address or Wi-Fi access point of
the device. If the device location changes, the daemon re-
evaluates the location and based on a set of locations, sets
the corresponding SELinux boolean variable.

4.3 Evaluation

Our implementation leverages IMA for integrity mea-
surement. Therefore, on the kernel level, our system has the
similar performance as IMA [25]. Our experiments show
that it takes 5765μs to measure a medical record file and ex-
tend the PCR with the corresponding measurements. Like
in IMA, this overhead is due to opening the configuration
file, writing the measurement request and closing the con-
figuration file. Further, the size of the files in our healthcare
scenario is small, therefore, fingerprinting the files does not
poses significant performance concerns for our implemen-
tation. We have taken these results on a desktop with 2.4
GHz processor and 1 GB of RAM.

On the user space, our system includes the extra integrity
verification step to consider integrity in access control de-
cisions. We measure the time to make an integrity verifi-
cation and set the value for the boolean variable inside the
SELinux filesystem, and the time to evaluate a single ac-
cess control decision with SELinux, respectively. The data
shows that it takes 95μs overall for integrity verification,
transiting the corresponding SELinux boolean variables and
accessing the protected file. Whereas, without integrity ver-
ification, it is just 88μs on average. This shows that the dif-
ference is not so much from the performance point of view.
Note that the overhead of integrity verification is indepen-
dent from the measured file size by IMS.

5 Related Work

A distributed usage control policy language and its en-
forcement requirements are presented in [15, 22]. Similar
to our objective, their work targets on control over data after
its release to third parties. However, the significant differ-
ence between this and our work is that our work relies on
the underlying trusted subsystem of a platform, where the
root-of-trust is built by a hardware TPM and extended to
all mandatory components for policy enforcement. A com-
prehensive usage control policy model is proposed by Park

and Sandhu [21]. However, it is basically a centralized ap-
proach and there is no concrete implementation mechanism
existing for it yet.

Attestation-based remote access control [24] is proposed
based upon the IBM integrity measurement architecture
(IMA). Similar to usage control, an enterprise server de-
ploys security policies on a client platform which are en-
forced based on the integrity status of the client platform.
However, there are significant differences between this and
our work. First, the objective of attestation-based remote
access control is to filter the traffic origins from a client to
a server while target objects (i.e., enterprise resources) are
still located on centralized server. In usage control, the fun-
damental goal is to enable continuous control after an object
is distributed. Second, based on the limitation of IMA, the
policy enforcement in this work needs to verify all com-
ponents loaded in a platform after booting, such that it is
not practical to deploy it in very open and heterogeneous
environments [23, 16]. Most importantly, our approach
integrates IMA with SELinux with an augmented policy
model. Moreover, we leverage the loadable policy mod-
ule of SELinux so that we can build a relatively “closed”
trusted subsystem by defining SELinux policies according
to usage control requirements on remote platforms.

6 Conclusions and Future Work

Usage control focuses on the problem of enforcing se-
curity policies on a remote client platform with high as-
surance and verifiable trust. In this paper we present gen-
eral security requirements for usage control and propose a
general framework for this problem. The main idea of our
approach is to build a trusted subsystem on an open plat-
form such that a policy stakeholder can deploy sensitive
data and services on this subsystem. We propose an archi-
tecture with a hardware-based TPM as the root-of-trust and
consider integrity measurement/verification and other envi-
ronmental restrictions in our MAC policy model. We have
also implemented a real prototype system by integrating in-
tegrity measurement and SELinux. By leveraging the latest
SELinux conditional policies and loadable policy modules,
our approach enables verifiable assurance to build a rela-
tively “closed” trusted subsystem for usage control.

References

[1] Fairplay. http://en.wikipedia.org/wiki/FairPlay.

[2] Windows media digital rights management (DRM).
http://www.microsoft.com/windows/windowsmedia
/drm/default.aspx.

[3] Web Services Security: SOAP Message Security 1.1.
OASIS Web Service Security TC, 2004.

17



[4] M. Abadi, M. Burrows, and B. Lampson. A calcu-
lus for access control in distributed systems. ACM
Transactions on Programming Languages and Sys-
tems, 15(4):706–734, 1993.

[5] J. P. Anderson. Computer security technology
planning study volume II, ESD-TR-73-51, vol.
II, electronic systems division, air force systems
command, hanscom field, bedford, MA 01730.
http://csrc.nist.gov/publications/history/ande72.pdf,
Oct. 1972.

[6] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A se-
cure and reliable bootstrap architecture. In Proc. of
IEEE Conference on Security and Privacy, pages 65–
71, 1997.

[7] D. E. Bell and L. J. LaPadula. Secure computer sys-
tems: Mathematical foundations and model. Mitre
Corp. Report No.M74-244, Bedford, Mass., 1975.

[8] K. J. Biba. Integrity consideration for secure com-
puter system. Technical report, Mitre Corp. Report
TR-3153, Bedford, Mass., 1977.

[9] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. In Proceedings of IEEE
Symposium on Security and Privacy, pages 164–173,
Oakland, CA, May 1996.

[10] D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5), May 1976.

[11] Department of Defense National Computer Security
Center. Department of Defense Trusted Computer
Systems Evaluation Criteria, December 1985. DoD
5200.28-STD.

[12] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart. Building the ibm
4758 secure coprocessor. IEEE Computer, (10):57–
66, 2001.

[13] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Pro-
tection in operating systems. Communication of ACM,
19(8), 1976.

[14] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and
Y. Ravid. Access control meets public key infras-
tructure, or: assigning roles to strangers. In Proc. of
IEEE Symposium on Security and Privacy, pages 2–
14, 2000.

[15] M. Hilty, D. Basin, and A. Pretschner. On obligations.
In Proc. of 10th European Symp. on Research in Com-
puter Security, September 2005.

[16] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-
reduced integrity measurement architecture. In Pro-
ceedings of the 11th ACM Symposium on Access Con-
trol Models and Technologies, pages 19–28, June
2006.

[17] B. Lampson. Computer security in the real world.
IEEE Computer, (6):37–46, June 2004.

[18] B.W. Lampson. Protection. In 5th Princeton Sympo-
sium on Information Science and Systems, pages 437–
443, 1971. Reprinted in ACM Operating Systems Re-
view 8(1):18–24, 1974.

[19] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In Proc.
of IEEE Symposium on Security and Privacy, pages
114–130, 2002.

[20] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor,
J. Turner, and J. Farrell. The inevitability of failure:
The flawed assumption of computer security in mod-
ern computing environments. In Proceedings of the
National Information Systems Security Conference,
October 1998.

[21] J. Park and R. Sandhu. The UCONabc usage control
model. ACM Transactions on Information and Sys-
tems Security, 7(1):128–174, February 2004.

[22] A. Pretschner, M. Hilty, and D. Basin. Distributed us-
age control. Communications of the ACM, (9):39–44,
2006.

[23] J. F. Reid and W. J. Caelli. Drm, trusted computing
and operating system architecture. In Australasian In-
formation Security Workshop, 2005.

[24] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote ac-
cess. In Proceedings of ACM Conference on Computer
and Communication Security, 2004.

[25] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In USENIX Security Sym-
posium, pages 223–238, 2004.

[26] R. Sandhu. Good-enough security: Toward a prag-
matic business-driven discipline. IEEE Internet Com-
puting, (1):66–68, 2003.

[27] R. Sandhu, K. Ranganathan, and X. Zhang. Secure
information sharing enabled by trusted computing and
PEI models. In Proc. of ACM Symposium on Informa-
tion, Computer, and Communication Security, 2006.

[28] TCG TPM. Main part 1 design principles specification
version 1.2, https://www.trustedcomputinggroup.org.

18


