Trustworthy Information: Concepts and Mechanisms

Shouhuai Xu¹, Haifeng Qian¹, Fengying Wang¹, Zhenxin Zhan¹, Elisa Bertino², Ravi Sandhu¹

University of Texas at San Antonio (shxu@cs.utsa.edu)

Purdue University (bertino@cs.purdue.edu)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Suppose Alice receives a piece of information (e.g., a message from someone or a response from a database she queried).

- To what extent should she trust the piece of information?
- Can she treat the piece of information as trustworthy? when the information is digitally signed, or when the database is maintained by a recognized organization.

The answer is NO due to the following reasons:

- cryptographic credentials (e.g., private signing keys) can be compromised without being revoked, even possibly after a long period of time;
- the piece of information itself was obtained from another party without proper trustworthiness guarantees;
- the database was manipulated by an attacker.

"Trustworthy information" or "information trustworthiness management"

State of the Art. The need for "trustworthy information" or "information trustworthiness management", is a missing piece of traditional approaches to data and information sharing.

What We Need? Information trustworthiness management should empower information consumers to justify or evaluate the trustworthiness of information, ideally in a real-time fashion.

Our Paper. This work is a significant first step towards addressing the problem.

(ロ) (同) (三) (三) (三) (○) (○)

Concepts. We propose the concept of "information trustworthiness management" in the context of information networks.

Our Approach. We formulate the abstraction of "trustworthiness graph" with respect to a piece of information.

Two Mechanisms. Two mechanisms are proposed that is needed for managing trustworthiness graphs.

- We identify a new kind of cryptographic primitive we call "provenance digital signatures" which preserves the history of a message and give an efficient construction for it.
- We identify the need of optimal security hardening and show that the algorithmic problem in question is NP-hard, but has a good approximation algorithm.

A Simple Example

 P_1, \ldots, P_6 in the graph represent principals, and the arcs indicate how information has moved in the information network. Suppose P_1 enters message M_1 at time T_1 and P_2 enters message M_2 at time T_2 . At time T_3 , P_3 receives M_1 from P_1 and processes M_1 to produce M_3 . At time T_4 , P_4 receives M_1 and M_2 from P_1 and P_2 , respectively, and then produce M_4 . At time T_5 , P_5 receives M_3 and M_4 from P_3 and P_4 , respectively, and processes them to produce M_5 . Finally, P_6 receives M_5 at time T_6 .

Definition (information network)

Let $[T_1, T_2]$ be a time interval and $V([T_1, T_2])$ be a set of principals (users, organizations) which exchanged information during $[T_1, T_2]$. An information network over $[T_1, T_2]$ and $V([T_1, T_2])$, denoted as $G([T_1, T_2])$, is a pair $(V([T_1, T_2]), E([T_1, T_2]))$, where $E([T_1, T_2])$ is the set of edges. An edge $(u, v) \in E([T_1, T_2])$ if $u \in V([T_1, T_2])$ has sent a message to $v \in V([T_1, T_2])$ during $[T_1, T_2]$.

Definition (trustworthiness graph of an information network)

Let $[T_1, T_2]$ be time interval and T be a time instant, where $T_1 \le T \le T_2$. A trustworthiness graph G(T) = (V(T), E(T)) at time T is defined as $G(V[T_1, T]) = (V([T_1, T]), E([T_1, T]))$ with the following annotations. If $(u, v) \in E(T)$ we say that u is an "upstream" node of v and v is a "downstream" node of u. Moreover, each $(u, v) \in E(T)$ is annotated with a pair $(w_T(u, v), \theta_T(u, v))$, where $w_T(u, v) \in [0, 1]$ is v's trustworthiness evaluation of u at time T (e.g., based on the trustworthiness of information it has so-far received from u), and $\theta_T(u, v) \in [0, 1]$ is a threshold specified by v.

Definition (most/least trustworthy path)

Given a trustworthiness graph G(T) = (V(T), E(T)) with annotations and a path $p = (v_1, \ldots, v_\ell)$, we can define the trustworthiness of path p as $W_T(p) = \prod_{i=1}^{\ell-1} w_T(v_i, v_{i+1})$, ^{*a*} which is a real number in the interval [0, 1]. For a given pair of nodes $(u, v) \in V(T) \times V(T)$, let $P_T = \{(u, \ldots, v)\}$ denote the set of paths from u and v. We say that path $\bar{p} \in P_T$ is (one of) the most trustworthy if $W_T(\bar{p}) = \max\{W_T(p) : p \in P_T\}$ and path $\underline{p} \in P$ is (one of) the least trustworthy if $W_T(p) = \min\{W_T(p) : p \in P_T\}$.

^aThis specific mathematical function is used just as an example. More sophisticated definitions are possible.

(日) (日) (日) (日) (日) (日) (日)

Definition (provenance signature)

A provenance signature scheme for *N* signers $S = \{P_i : i = 1, \dots, N\}$ (where *N* is polynomial in the security parameter *k*) consists of the following algorithms:

- Setup(1^k): is a randomized algorithm that takes as input a security parameter k and produces a set of system-wide public parameters pp.
- Keygen(*pp*): is a probabilistic algorithm that, on input of public parameters *pp*, outputs a signer's private-public key-pair (*sk*, *pk*).
- GraphCom(*pp*, loc, $\{G_{\lambda}\}_{\lambda \in \mathcal{R}}$): is an algorithm that, on input of public parameters *pp*, a local information string loc and $\{G_{\lambda}\}_{\lambda \in \mathcal{R}}$ where \mathcal{R} is the group of signers who send their messages/signatures to the present signer, outputs a graph *G*.

Definition (To be continue)

- PSign(*pp*, *sk_i*, loc, {Σ_λ}): on input of public parameters *pp*, a local information string loc, a private key *sk_i* of *P_i* and each Σ_λ = (*G_λ*, *σ_λ*) from *P_λ* ∈ *R_i* ⊂ *S* where *σ_λ* is a provenance signature for *G_λ* generated by signer *P_λ*, this (possibly probabilistic) algorithm outputs a provenance signature Σ = (*G*, *σ*) where *G* ← GraphCom(*pp*, loc, {*G_λ*}_{λ∈*R_i}), or ⊥ if the input {Σ_λ} is deemed invalid.
 </sub>*
- PVrf(pp, Σ): given parameters pp, Σ = (G, σ) where G encodes a network topology graph which contains the signers' identities (or public keys) and other information, this deterministic algorithm outputs 0 if Σ is invalid; otherwise 1.

We require the scheme to have the following *correctness* property. For any sufficiently large security parameters *k* and system-wide parameters *pp* output by Setup(1^{*k*}), for all pairs of private/public key pairs {(*sk*_i, *pk*_i)}_{*i*∈[1,*M*]} produced by Keygen(*pp*), and for any network topology graph *G*, we require Pr[PVrf(*pp*, Σ) = 1] = 1 for any Σ generated by the signing algorithm. We also require that $\bot \leftarrow PSgin(sk_i, m, {\Sigma_\lambda})$ if PVrf(*pp*, Σ_λ) = 0 for any Σ_λ received from $P_\lambda \in \mathcal{R}$ where \mathcal{R} is the set of signers who send their signatures to P_i .

The formal definition is given below.

- Setup. C runs Setup(1^k) to obtain the public parameter pp. C runs Keygen(pp) to generate a challenge key-pair (pk^{*}, sk^{*}). C initializes the list of certified public keys C ← ε, an runs algorithm A with pk^{*} as its input.
- Certificate Queries. A provides a key pair (*pk*, *sk*) in order to certify *pk*. C adds *pk* to C if *sk* is its matching private key.
- **PSigning Queries.** When \mathcal{A} requests a provenance signature under $pk^* = pk_i$, with loc and $\{\Sigma_{\lambda}\}$ where $\Sigma_{\lambda} = (G_{\lambda}, \sigma_{\lambda})$ from $P_{\lambda} \in \mathcal{R} \subset S$ and σ_{λ} is a provenance signature for G_{λ} generated by signer P_{λ} , this query is answered with a provenance signature $\Sigma = (G, \sigma)$ where the corresponding identity id* of pk^* is encoded in G, or \bot if any of the input $\{\sigma_{\lambda}\}$ is invalid.
- Output. Eventually, A outputs $\Sigma = (G^*, \sigma^*)$, which is a valid forgery if
 - PVrf(pp, Σ) = 1.
 - ② $pk^* = pk_{i^*}$, for some $i^* \in \{1, \dots, N\}$ with the corresponding identity encoded in *G*^{*}.
 - All public keys whose identities are encoded in G* (except the challenge key pk_{i*}) are encoded in C.
 - A has never queried any G' that contains pk_{i^*} with G' being a subgraph of G^* .

The advantage of \mathcal{A} , $Adv_{\mathcal{A}}$, is the probability that it wins the above game, where the probability is taken over the coins of Setup, KeyGen and \mathcal{A} itself. In the random oracle model, the probability is also over the choice of the random function(s) implemented by the random oracle(s).

Definition (security)

We say that $\mathcal{A}(\mathsf{T}, q_p, \epsilon)$ -breaks the provenance signature scheme if it runs in time at most T, makes at most q_p signature queries to the **PSigning** oracle, and has an advantage $\operatorname{Adv}_{\mathcal{A}}$ of at least ϵ . If there is no such an adversary, we say that the provenance signature scheme is $(\mathsf{T}, q_p, \epsilon)$ -secure under a chosen message attack.

(日) (日) (日) (日) (日) (日) (日)

We use the BLS signature as the building block.

- Setup(1^k): Generate a bilinear group G with order 2^{k+1} ≥ p ≥ 2^k and an associated bilinear pair e(·, ·) : G × G :→ G_T. Return pp = (e, G, G_T, H), where H : {0, 1}* → G a random oracle.
- Keygen(*pp*): Randomly choose x ^R/_∞ Z_p and output a pair of private and public keys (sk = x, pk = X = g^x).
- GraphCom(*pp*, loc, {*G_λ*}_{λ∈R}): On input of public parameters *pp*, local information string loc = (id_i, *m_i*, *t_i*) for a local message *m_i* of trustworthiness *t_i*, and incoming |*R*| provenance subgraphs {*G_λ*}_{λ∈R} where *R* ⊂ *S*, *P_i* generates a new message *m_i* = alg_i(*m_i*, {*G_λ*}_{λ∈R}) of trustworthiness *t_i* = tru_i(*t_i*, {*G_λ*}_{λ∈R}), where the specification of algorithms alg_i and tru_i is application-dependent and beyond the scope of the paper. Finally, *P_i* outputs a provenance subgraph *G_i* = (({*G_λ*}_{λ∈R}), *a_i*) for its newly produced message *m_i*, where *a_i* = (id_i, alg_i, *m_i*, *m_i*, tru_i, *t_i*, *t_i*) is the "end" node in *G_i*. Note that if {*G_λ*} = ∅, then ((*G_λ*), *a_i*) = (*a_i*).

- PSign(*pp*, *sk_i*, loc, {Σ_λ}_{λ∈R}): on input of public parameters *pp*, local information loc = (id_i, *m_i*, *t_i*) of message *m_i* of trustworthiness *t_i*, a private key *sk_i* of *P_i*, and provenance signatures {Σ_λ}_{λ∈R} on respective provenance subgraphs {*G_λ*}_{λ∈R} received from *P_i*'s upstream nodes belonging to *R* ⊂ *S*, *P_i* executes as follows:
 - Execute $PVrf(pp, \Sigma_{\lambda})$, which is specified below, to verify the individual provenance signatures Σ_{λ} . If any verification fails, abort.
 - 2 Set $G_i \leftarrow \text{GraphCom}(pp, \text{loc}, \{G_\lambda\}_{\lambda \in \mathcal{R}})$
 - **3** Use algorithm $BSig_{sk_i}(\cdot)$ to obtain $\omega \leftarrow H(G_i)^{x_i}$
 - Output $\Sigma_i = (G_i, \sigma_i)$ where $\sigma_i = \omega \prod_{P_\lambda \in \mathcal{R}} \sigma_\lambda$.
- PVrf(*pp*, Σ): given parameters *pp*, provenance signature Σ = (G, σ), the algorithm parses G to obtain {G_i | i = 1, · · · , ℓ} and the signers' identities {id_i | i = 1, · · · , ℓ}, and returns 1 if the following equation holds and 0 otherwise:

$$e(g,\sigma) \stackrel{?}{=} \prod_{i=1}^{\ell} e(X_i, H(G_i))$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

If the \mathcal{BLS} signature is (T', q_s, ε') -secure under a chosen-message attack, our provenance signature scheme is (T, q_p, ε) -secure where

$$\varepsilon \ge \varepsilon', \quad q_p = q_s \quad and \quad \mathsf{T} \le \mathsf{T}' - (q_s + 1)N \cdot \mathsf{T}_e,$$
 (1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where q_s , q_p are the numbers of the queries to the *BLS* signing oracle and the **PSigning** oracle, respectively, and T_e is the time cost of exponentiation computation.

The fact that hardening security is often costly naturally leads to the problem of optimal hardening — an optimization problem. Specifically, given a trustworthiness graph, we want to identify the most "influential" K nodes so as to harden their security.

Theorem

The optimal security hardening problem for trustworthiness graphs is NP-hard.

We now show that the optimal security hardening problem also has a certain submodular structure, and thus the problem renders to some natural greedy algorithm that can produce solutions within a constant approximation factor of the optimal solution. A function $f(\cdot)$ mapping sets to \mathbb{R}^+ is said to be submodular if it has the so-called *diminishing returns* property: for all $v \in V$ and all $A \subseteq B$ it holds that

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B).$$

By defining $\sigma(A)$ as the expected number of nodes "influenced" by the nodes in $A \subseteq V$ (i.e., the expected number of principals that accept the malicious information inserted into the information network by the corrupt principals belonging to A) and the following theorem

Theorem (Nemhauser78)

For a non-negative, monotone submodular function f, let S be a set of size K obtained by selecting elements one at a time, each time choosing an element that provides the largest marginal increase in the function value. Let S^* be a set that maximizes the value of f over all K-element sets. Then $f(S) \ge (1 - 1/e) \cdot f(S^*)$.

We show that the optimal security hardening problem is submodular.

Theorem

The function $\sigma(\cdot)$ incurred by the optimal hardening problem is submodular.

Heuristic Algorithms for Solutions

- Greedy:At each step with an already selected node set A, which is initially empty, we select v that leads to maximal σ(A ∪ {v}) − σ(A).
- Random: At each step, we uniformly select a yet-to-be-selected node at random.
- Heuristic: Given G = (V, E), we select the K highest out-degree nodes.
- Heuristic+: At each step, we select the highest out-degree node in the graph that is obtained after deleting the nodes that have been selected or "influenced", and their outgoing and incoming arcs. This algorithm can be seen as a hybrid of the above Greedy algorithm and Heuristic algorithm.

Results

The Greedy and Heuristic+ algorithm are more effective (with the latter being O(|V|) faster)

For specific results and simulation, please refer to the paper.

- Inspired by our earlier related framework for "trustworthiness-centric information sharing" [IFIPTM'09].
- Different from "information flow" (trustworthiness >secrecy + integrity);
 e.g., what if a bad guy inserts malicious information into a system?
- Our network-level differs from OS/DB-level because we allow compromised OS/DB.
- Our provenance signatures move a step beyond recent similar proposals [Hasan et al. FAST'09; Zhang et al. VLDB-SDM'09]:

(ロ) (同) (三) (三) (三) (○) (○)

- Better security: no peeling off attack because of aggregation
- Better efficiency: no linear increasing in signature size

Conclusions

Our Results

- We present the concept of "information trustworthiness management" in the context of information networks and abstract "trustworthiness graph".
- We identify a new kind of cryptographic primitive, "provenance digital signatures" preserving the history of a message.
- We analyze the optimal security hardening and show that the problem in question is NP-hard, but has a good approximation algorithm.

There are many interesting problems for future investigations.

Further Work

- A first important issue is to efficiently maintain the trustworthiness graphs that in most cases dynamically evolve with time.
- Another important issue is represented by suitable abstractions that can serve as a base for modeling, reasoning, discussing information trustworthiness.
- The relationships of our mechanisms with access control mechanisms and privacy also need to be investigated.

THANK YOU.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●