A Framework for Understanding Botnets

Justin Leonard, Shouhuai Xu, Ravi Sandhu University of Texas at San Antonio

Botnet Lifecycle Botnet Architecture Command and Control Mechanisms (C&C) Dynamic Graph Model

Botnet Attributes

Botnet lifecycle

Formation – master compromises, recruits vulnerable machines, and assigns roles.

Command and Control (C&C) – master sends messages to bots

Attack – Bots launch attacks

Post-attack – bots are detected, cured, and new bots recruited.

Botnet Architecture

- What roles are present in a botnet? Master – human attacker(s)
- Controllers coordinates subset of bots, long term asset
- Intruders disposable, high-risk of detection, may downgrade into a bot Bots – responsible for attacks

Botnet C&C Mechanisms

Anonymous Channels Sender anonymous channels Secret Handshakes Privacy-preserving authentication PKI-like infrastructure or group signatures Gossiping Small fan-out of neighbors

Dynamic Graph Model

Directed graph representation Vertex set represents bots

Edge set represents "knows" relation – e.g., (u,v) implies u can spontaneous communication with v.

Does capturing *u* imply exposure of *v*? Undirected graph is special case

Dynamic Graph Model

Directed graph represents snapshot of graph over time.

Captures real network behavior – e.g., offline machines, detected and cured bots.

Implies attributes should be modeled as Random Variables instead of deterministic numbers.

Botnet Attributes

Robustness Resilience Sustainability Exposedness Bandwidth Consumption Botnet Firepower

Resilience

Captures consequence of exposure of a set of bots Tracing uses "knows" relationship Normalized by size of botnet Intuitively captures how much a defender can achieve with fixed resources (e.g., subpoenas).

Resilience vs Robustness

Robustness establishes minimum number of captures, resilience the effects of a capture – the resilience for the corresponding robustness set is 0.

A set smaller than the robustness cannot capture all bots.

Known to attack *a priori*, defender has limited knowledge.

Dynamic Graph Model

Directed graph representation Vertex set represents bots

Edge set represents "knows" relation – e.g., (u,v) implies u can spontaneous communication with v.

Does capturing *u* imply exposure of *v*? Undirected graph is special case

Sustainability

Captures effects of interactions between attacker and defender.

Uses a definition based on number of connected bots.

Reliability from the attacker's perspective against a "malicious" defender.

Exposedness

Worst-case probability a bot is detected by defender due to C&C.

- Captures the effectiveness of the defenders IDS.
- May be used to determine resilience set by using a "detection threshold", above which we assume a bot is detected.

Bandwidth Consumption

Captures the efficiency of the C&C mechanisms.

- Gives an intuitive measure of the "noisiness" of the botnet.
- Whole system point of view, as opposed to exposedness, which captures probability of detecting a particular bot based on C&C messages.

Botnet Firepower

Captures the overall effectiveness of the botnet at launching an attack.

Simple measure is the size of the botnet.

Perhaps also weighted by available resources.

Future Research

Tying definitions to existing botnet case studies.

- What strategies are effective at maximizing particular metrics?
- Can we quantitatively compare attributes relative to a given defender capability?

